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Abstract: The demand for high quality and low-cost spatial distribution information of soil texture
classes (STCs) is of great necessity in developing countries. This paper explored digital mapping of
topsoil STCs using soil fractions, terrain attributes and artificial neural network (ANN) algorithms.
The 4493 soil samples covering 10 out of 12 STCs were collected from the rice fields of the Guilan
Province of Northern Iran. Nearly 75% of the dataset was used to train the ANN algorithm and
the remaining 25% to apply a repeated 10-fold cross-validation. Spatial prediction of soil texture
fractions was carried out via geostatistics and then a pixel-based approach with an ANN algorithm
was performed to predict STCs. The ANN presented reasonable accuracy in estimating USDA STCs
with a kappa coefficient of 0.38 and pixel classification accuracy percentage of 52%. Hybridizing soil
particles with relief covariates yielded better estimates for coarse- and medium-STCs. The results
also showed that clay particle and terrain attributes are more important covariates than plant indices
in areas under single crop cultivation. However, it is recommended to examine the approach in areas
with diverse vegetation cover.

Keywords: soil texture modeling; convolutional neural network; soil particle size fraction; digital
soil mapping; artificial intelligence

1. Introduction

Detailed high-resolution soil property maps are an essential tool for agricultural man-
agement and environmental sustainability [1], including management zones in precision
agriculture [2], land management, civil projects, and environmental risk assessment [3–5].
Soil texture is one of the main characteristics that controls buffering capacity [6], nutrient
availability [7,8], carbon cycle [9,10] and diagnostic horizon characteristics of soil taxon-
omy [11] as well as erodibility and water dynamics [12]. Soil texture is a relatively stable
property over time, which makes it a useful measure for predicting spatially distributed
nonuniformity of soil [13]. It is the most frequently used input for PedoTransfer functions
(PTFs) in predicting different soil characteristics [14]. Since soil texture often has consider-
able variability both laterally and vertically [15] due to geologic and pedogenic processes,
for soil scientists, producing such information is a key challenge in land use planning,
soil protection measurements and soil moisture regime [16,17] at different spatiotemporal
resolutions [18,19], especially in Iran [20–22].

Soil textural classes are generally estimated via two main direct (point source) and
indirect (by model) approaches. In the latter, soil texture fractions (STFs) are incorporated
with environmental variables to spatially estimate soil texture classes [23]. Although lab-
oratory STF measurement for soil texture classification is not very costly, determining
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and understanding its behavior is a challenge due to the high sampling costs and time
consumption [24,25]. Conventional statistics are unable to discriminate between vari-
ous sources of spatial variability influencing soil properties in a surveyed site. This is
because their relationships are blurred and different variations are mixed in the classical ap-
proach [26]. However, geostatistics examine both the spatial distribution and dependency
of the attributed values. Although soil scientists believe in soil variation at different scales,
knowledge of changes in soil properties is still limited [19]. To overcome this challenge,
authors of [25,27] proposed digital soil texture mapping based on spatial prediction meth-
ods such as geostatistics and multinomial logistic regression (MLR) coupled with remote
sensing. Despite the results of [28] showing similar accuracies in predicting STFs for both
untransformed and transformed datasets, authors of [29] reported that STF transformation
resulted in better estimates.

The qualitative variables were rarely investigated by soil scientists both at local and
regional scales, specifically in forest, hillslope, desert and mountainous land uses, which
have broadly been ignored in recent studies in Iran [22]. For instance, Zaeri et al. [30]
stated that interpolating qualitative data by using traditional geostatistical techniques is
difficult, as these methods were generally focused on describing and predicting numerical
variables. Contrary to quantitative data, the qualitative data could not be estimated by
observing neighboring observations of linear methods. At national level, Paterson et al. [19]
modeled the spatial variability of soil texture in Australia using the country’s legacy data
set (National Soil Site Collation, NSSC) at 1 km to continental scales. They used a grid-
based declustering method and an experimental variogram using spatial declustering to
manage the challenges. Hengl et al. [31] mapped Iran’s soil textural classes using four
interpolators. Based on the results, they introduced regression kriging as the optimal
method for mapping.

Widelyused SCORPAN is a basis of DSM, which makes relationships between soil
attributes or classes and other spatially referenced factors [32]. The SCORPAN model by
McBratney et al. [33] offers an authentic approach to spatial prediction of soil attribute
classes [32] using auxiliary data. Among environmental factors, terrain attributes represent
the relief in the SCORPAN equation of [33]. Zhang et al. [34] indicated that if auxiliary
variables were appropriately selected, it would be possible to satisfactorily estimate soil
texture. It seems that the spatial modelling of the soil texture class is highly dependent on
the situation of the study area, i.e., the soil texture classes showed different correlation with
different covariates at different areas. For example, Zhou et al. [1] found good results from
using RS-based plant indices to predict soil texture classes because the studied area had a
diverse vegetation cover as a result of subtropical climate. Thus, plant indices have strongly
entered the modelling of soil texture classes. However, Kaya and Başayiğit [27] found
reasonable accuracy mainly using terrain attributes due to high elevation and physiographic
feature diversity in the studied area.

According to Padarian et al. [35], various widespread machine learning (MS)-based
techniques including ANN, deep learning (DL), fuzzy, boosted regression trees (BRT)
and random forest (RF) have been studied by many researches due to their accuracy
and adaptability capabilities, ability to capture nonlinear relationships [1,5,14,28,36–42].
It seems that model performance is site-specifically changed and dissimilar outputs are
acquired when provided the same inputs [43]. Moreover, advanced ML methods usually
perform better than simpler ones [35]. For example, Taghizadeh-Mehrjardi et al. [14]
and Yang et al. [44] proved that convolutional neural networks (CNNs) outperform RF
since CNNs are able to integrate contextual information about the landscape, which is
of great help in DSM analysis. An interpretable machine learning (ML) strategy, namely
the Shapley additive explanations (SHAP) method has recently been proposed by Zhou
et al. [1], which enables the improvement of the transparency in black-box ML models.
Pixel-based classification is one of the most powerful methods of producing qualitative
thematic maps derived from aquantitative classification approach that uses various spectral
bands, data extracted from the digital elevation model (DEM) and/or soil forming factors.
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This method entails assigning each pixel to a specific class. The pixel-based method has
rarely been used for evaluating soil properties, and the few conducted have mostly focused
on biophysical properties [45–48]. An ANN is an alternative to pixel-based methods with
assumption constraints such as normality, linearity and variable independence. It can also
extract patterns and recognize trends in complex and uncertain data [49]. Moreover, it was
widely used in hydrology and pedology for mapping purposes due to its capability of
describing nonlinear relationships [50–54]. ANNs have historically been combined with
geostatistical methods in hydrological studies for spatial distribution of variables, e.g.,
soil organic matter, salinity, soil water content and total N, but they have recently been
employed for mapping soil properties [55–57].

A review of the past studies shows a lack of sufficient knowledge on the application
of hybridized classical statistics and an ANN approach using remote sensing and STFs
for spatial estimation of soil texture classes at the regional scale and under single crop
cultivation. In addition, the study area included a wide range of soil texture classes, which
is unique. Therefore, structural correlation for multivariate data characterization is required
to analyze using geostatistics techniques. Additionally, most agricultural areas in Guilan
Province are under rice cultivation, where the soil is puddled to improve water-holding
capacity and control weeds, and the precise soil texture class map can lead to better land
management. Therefore, integrating quantitative physical soil properties such as soil
texture fractions (STFs) with environmental auxiliary data would increase the accuracy
of soil texture class predictions. Consequently, this study aims to perform a digital soil
mapping of topsoil texture classes with 30 m spatial resolution using remotely sensed data
and STFs using ANN algorithms for a large geographical extension in Iran.

2. Materials and Methods

The model architecture and its detailed configuration are illustrated in Figure 1.
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Figure 1. The proposed architecture of the procedure used in this study.

The approach consists of three main stages including (1) most probable STF-interpolated
mapping, (2) covariate reduction and selection and (3) hybridization of STFs and selected
covariates through ANN to predict soil texture class.

2.1. Study Area

The study area covers nearly 14,000 km2 of the Guilan province in northern Iran
(Figure 2), bordering the Caspian Sea to the north, Qazvin and Zanjan provinces to the
south, Ardabil Province to the west and Mazandaran Province to the east. The elevation
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ranges from −90 m in the coastal zones to 660 m in the southern Alborz mountain chains.
According to the deMartonne climate classification [58], Guilan’s northern and central re-
gions have a very humid, temperate and warm Mediterranean climate whereas its southern
regions have a cold, subhumid climate. Maximum precipitation occurs in Amlash with
approximately 2270 mm, while annual average rainfall of Guilan province is 1260 mm.
Hence, the soil moisture regime is udic, ustic and xeric along the same geographic gra-
dient [59]. The irrigated and rainfed areas are 476,000 and 142,000 hectares, respectively.
The rice fields are mostly located on low coastal alluvial plains on the mountainsides
and alluvial fans. The main physiographic features are mountains (65.42%) and plains
(34.58%). The rock-type geology of the agricultural lands matched with soil sample points
were sedimentary (97.8%), igneous (1.6%), volcano-sedimentary (0.4%) and metamorphic
(0.2%), respectively [60], which implies uniformity of the earth within the region of interest.
The soils of agricultural areas are predominantly fertile as a result of favorable climatic
conditions and play a key role in food security in Iran.
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Figure 2. Location map of the study area and topsoil samples collected from the horizon at a wide
range depth (0–45 cm) over agricultural areas with elevations lower than 500 m.

2.2. Soil Data

A quantity of 4870 soil samples were collected from different soil surveys at points
located in different soil types based on legacy soil databank (Figure 2). These projects were
conducted mainly on rice croplands between 2001 and 2018 by a joint project between the
Rice Research Institute of Iran (RRII) and the Soil and Water Research Institute (SWRI),
with the collaboration of private soil laboratories of Guilan Province and a number of MSc
dissertations and PhD theses [61]. The dataset included clay, silt and sand content at 0–10,
0–15, 0–30 and 30–45 cm (rooting) depths. Three hundred and seventy-seven soil samples
that presented incorrect spatial location or over outcrop, duplicates, outliers and the sum of
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the soil fractions exceeding 100% were excluded from the dataset. The remaining 4493 soil
samples were normalized according to skewness and kurtosis.

Soil samples were air-dried, grounded and sieved to a 2 mm mesh. The hydrometer
method [62] was used for measuring the soil particles percentage of all samples. Soil
samples were classified in textural classes using USDA methods [62] implemented in the
“NAME” package [63].

2.3. Parameter Optimization of STF Spatial Interpolation

The STFs must be evaluated with respect to centrality, distribution, outliers and
normality of frequency distribution prior to geostatistical analysis. The centrality statistics
were computed for each STF in Statistical Package for the Social Sciences (SPSS) software
v.17 with the assumption that the data are spatially independent. The significance of
skewness and kurtosis were used to test the normality of variable frequency distribution.
The outliers were explored using the Norfolk test. Variables with nonnormal distributions
were normalized using logarithmic transformations. Log-ratio transformations guarantee
the effect of non summing of to 100% of STFs [28].

Geostatistics has been widely used to interpret the spatial variation of natural phe-
nomena [64] as well as spatial variation of soil properties [65]. GS+ 9.1 [66] was conducted
to build semi-variograms and analyze spatial structure of STFs. The semi-variogram is
estimated using the following equation, presented by [67].

(h) =
1

2N(h) ∑N(h)
i=1 [Z(xi)− Z(xi + h)]2 (1)

where γ (h) is the semi variance, Z is the regionalized variable, Z (xi) refers to the measured
sample at point xi, Z (xi + h) is the measured sample at point (xi + h) and N (h) is the number
of pairs separated by distance or lag h.

The detailed spatial structure of STFs were investigated in the previous study [29] us-
ing semi-variogram models (spherical, exponential and linear). Selection of semi-variogram
models was made according to the highest coefficient of determination (R2) and the smallest
residual sum of squares (RSS) to fit the model. Variable isotropy was determined in various
orientations using component analysis of the semi-variogram (the range, A0; the sill, C +
C0; and the nugget, C0) through linear, spherical, Gaussian and exponential methods with
a nugget effect to verify the spatial applicability of the geostatistics. The nugget-to-sill ratio
was used to quantify each variable’s strength of spatial dependence. This ratio represents
the contribution of variance of the total variance. If the ratio is smaller than 25%, the spatial
dependency is strong, if it is between 25 and 75%, the spatial dependence is moderate, and
if it is above 75%, the spatial dependence is weak, according to [67].

The best-fitted model was then used in an ordinary kriging (OK) procedure considering
transformation and back-transformation to clay, silt and sand values to estimate different
STFs at unvisited points as interpolated values for mapping. The selected values were then
employed to produce individual STF maps.

2.4. STF Interpolation

Two methods were used for interpolating STFs, namely (a) ordinary kriging (OK)
and (b) inverse distance weighted (IDW) interpolations. The components of the models
with sills were used for interpolating and representing variables using OK and IDW in
ArcGIS 10.4.

In OK, the weighted average of data values in points neighboring an unvisited point
was determined while considering the spatial structure of data based on the spatial correla-
tion of the points [26]. Samples in the search radius were selected as the nearest neighbors
by comparing the outcome of 5 to 25 points in the OK search radius using the evalua-
tion statistics (results not shown). In the end, 20 were selected as the optimal number of
neighboring points.
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Inverse distance weighting (IDW) is one of the most extensively used practical inter-
polation methods, based on the hypothesis that the target variable value in the unvisited
point is the weighted average of values in which weight decreases with distance from the
function point [68]. In IDW, the choice of exponent value and number of nearest neighbors
significantly affect estimation quality [69,70]. The estimations were performed in ArcGIS
10.4 by comparing 8 to 30 nearest points, and the estimated value was in the 1–4 range [69];
eventually, maps of all covariates were resampled to 30 × 30 m.

2.5. Covariate Selection

In DSM, covariates are generally derived from soil maps, DEM, remote sensing data
and expert knowledge [33]. Here, RS-based auxiliary data were not used for predicting
soil texture classes for the reason that they had a smaller contribution compared to other
SCORPAN factors in a number of reviewed studies, specifically [38]. As can be seen in
Table 1, the studies conducted in arid areas showed a good relationship with RS-based
auxiliary data, especially with vegetation indexes. However, RS-based data were excluded
from the modelling in the study areas with dense vegetation cover.

Table 1. Literature review on the use of covariates for soil texture fractions and soil texture class
estimations.

Reference
Variables Strongest

Correlation
Climate/Soil

Moisture Regime Scale/Location
Dependent Independent

Zhao et al., 2009 [42]
STFs:
Sand;
Clay.

The hydrographic parameters
derived from DEM;

SD;
SDR;
VSP.

Hydrographic
parameters

derived from DEM.

Average annual
rainfall,

snowfall, and daily
temperatures are

730.7 mm, 306.7 cm
and

3.7 ◦C, respectively.

Watershed,
Canada

Greve et al., 2012 [36]

STFs:
Coarse sand;

Fine sand;
Silt;

Clay.

Seven primary terrain
parameters:

ELV;
Slope gradient;

Slope aspect.
Existing maps: parent

materials, landscape types,
geographic region, profile

curvature.
Available pluviometric station

data:
yearlyprecipitation,

seasonalprecipitation.
CTI-extracted, generated

usingLIDAR.
Others: plan curvature, flow
direction, flow accumulation.

Coarse sand:
elevation (13%);
fine sand: slope

aspect (14%), ELV
(12%), CTI (9%).

Common in all STFs:
parent materials

(47–100%),
geographic regions

(31–100%) and
landscape types

(68–100%).
Clay:

Yearly-precipitation,
Seasonal-

precipitation, ELV
(10%)
Silt:

Yearlyprecipitation,
Seasonalprecipita-

tion,
parent materials
(47% and 100%),

geographic regions
(31–100%), landscape

types (68–100%).

Temperate climate
with a mean winter
temperature of 0 ◦C
and a summer mean

of 16 ◦C.

Denmark
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Table 1. Cont.

Reference
Variables Strongest

Correlation
Climate/Soil

Moisture Regime Scale/Location
Dependent Independent

Bakker A., 2012 [3]

STFs:
Sand;
Silt;

Clay.

PC3;
NDVI;
DEM;
Slope;
TWI;

CURVATURE;
Profile;

Planform;
Temperature;

Seasonal precipitation;
SWI;
CI;
MI;
QI.

STFs:
Clay: temperature,

seasonal
precipitation, DEM,

QI;
Silt: seasonal

precipitation, SLOPE,
planform,

CURVATURE, MI,
NDVI;

Sand: seasonal
precipitation, NDVI,

DEM, planform;

Warm,
temperate with dry

and hot summer.
Morocco

ST

Slope;
CURVATURE;

Mineral indices;
ASTER SWIR bands;
ASTER TIR bands.

Liao et al., 2013 [24]

STFs:
Sand;
Silt;

Clay.

Six bands DN of Landsat
ETM:

Bands 1–5 and Band 7;
DN of Band 7.

Band 7 ETM

Wang et al., 2015 [25]

STFs:
Sand;
Clay;

Physical clay
content.

LSDT;
LSNT;
DTR.

(During 2004, 2007 and 2008)

DTR Not reported.
Farmland/

river plain, East
China

Song et al., 2016 [39]
STFs:
Sand;
Clay.

ELV;
TWI;
Slope;
ASP.

Plan curvature;
Profile curvature;

MAP;
MAAT;

SR;
NDVI;

Land cover;
ST.

Sand: DEM, MAAT,
TWI, slope, SR, plan
curvature, land cover.

Clay: NDVI, ST,
MAP, TWI,

profile curvature.

Humid and cold.

Mountains/
Qinghai-Tibetan
plateau, China,

covered
primarily by

alpine
meadow

Wu et al., 2018 [41]

STC:
Sandy;
Loamy;
Clayey.

ELV;
TCI_Low;

Flow-PathL.

ELV;
TCI_Low;

Flow-
PathLength.

MAP: 1037.7 mm.

Small
mountainous

watershed
located in the
core areas of a

river in
southwest China

Mehrabi-Gohari et al.,
2019 [38]

STFs:
Sand;
Silt;

Clay.

Terrain attributes extracted
from DEM—90 m resolution
(Slope, ASP, TWI, NDVI, etc.)

B2, B3, B4,
B5, B6, B7, B8, B10

and B11 Landsat 8 bands.
Soil spectral data;

Soil spectral data.
Spectrometric data;

multi-resolution,
valley-bottom

flatness index and
wetness index.

Arid.

Approximately
70 km awayfrom
Kerman, city of

Zarand,
southeastern Iran

Amrian-Chakan
et al., 2019 [28]

STFs:
Sand;
Silt;

Clay;
TIW;

AWC.

Terrain attributes;
B1, B2, B3, B4, B5, B7; Landsat

8 bands;
BS2, BS3, BS4, BS6, BS7, BS8,

BS12 Sentinel-2 bands;
NDVI;

Clay index.

MRVBF;
NDVI;

Elevation;
Slope;

B3.

Semi-arid region
with mean annual
temperature, mean
annual rainfall and
annual evaporation

of 25 ◦C, 323 mm and
2818 mm.

Northeast of
Behbahan city in

Khuzestan
province,

southwestern
Iran
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Table 1. Cont.

Reference
Variables Strongest

Correlation
Climate/Soil

Moisture Regime Scale/Location
Dependent Independent

Wang et al., 2020 [40]

STFs:
Sand;
Silt;

Clay.

MAP;
Temperature;

SOC;
Thickness;

NDVI;
ELV;

Vegetation types;
ST;

Geomorphology types;
Land-use types.

Temperature;
MAP;
ELV;
ST;

SOC;
NDVI.

Extremely hot in
summer and

severely cold in
winter with low MAP,
strong solar radiation

and
high evaporation

rate.

River basin,
China

Ding et al., 2020 [5]
STFs:
Sand;
Clay.

Nine topo-hydrogenic from
DEM (ELV, Slope, PSR, ASP,
SDR, VSP, FD, FL) with 10 m

resolution.

DEM-derived
topo-hydrologic

variables(ASP, ELV,
SDR, PSR, FL, VSF,

PSR, STF).

Udults. Forest, China

Khanbabakhani et al.,
2020 [37]

STFs:
Sand;
Silt;

Clay.

Longitude;
Altitude;

ELV;
Slope (%).

Not reported. Not reported.

Gavoshan dam
basin

in Kurdistan
Province

Taghizadeh-
Mehrjardi et al., 2020

[14]

STFs:
Sand;
Silt;

Clay.

Terrain attributes;
RS data;

Climatic data;
Soil data.

B12 and
B7 of Sentinel-2 and
Landsat-8 images;

NDVI;
Clay index.

Arid and semi-arid
average annual

rainfall: 96–359 mm.
Central Iran

Zhou et al., 2022 [1] ST

Multitemporal Sentinel-2
image;

DEM derivatives and stratum;
B5, B6, B7, B8A, B11, B12,
red-edge factors, MCARI,

NDI45, CI, BI,
NDVI, SAVI.

Elevation, stratum,
red-edge factors.

Multi-crop farming
and subtropical

monsoon, humid
climate.

Southwestern
China

STFs: soil texture fractions; TIW: total amount of irrigation water; AWC: available water soil capacity; SD: soil
drainage; SDR: sediment delivery ratio; VSP: vertical slope position; STF: soil terrain factor; SDR: sediment
delivery ratio; VSP: vertical slope position; FL: flow length; DN: Digital numbers; DTR: diurnal temperature range;
LSDT: land surface day temperature; LSNT: land surface night temperature; TWI: topographic wetness index;
MAP: mean annual precipitation; NDVI: ion, normalized difference vegetation index; VRM: vector ruggedness
measure; TCI: terrain classification index; SOC: soil organic carbon; QI: quartz index; ASP: aspect; ELV: elevation;
ST: soil type; SR: solar radiation; PSR: potential solar radiation; FD: flow direction; FL: flow length.

The provincial STF soil data of Section 2.4 with a 30 m × 30 m spatial resolution were
included in the analysis. All categorical covariates were converted to predictor variable
format. The 90 m SRTM terrain-gridded covariates were downscaled into the STF’s higher
resolution of the common grid of 30 m × 30 m using an adopted bilinear resampling
technique to obtain the raster covariates in a better and uniform frame.

In this study, two types of gridded auxiliary dataset as potential predictors were used,
involving mostly terrain attributes and provincial soil data, which are summarized in
Table 2. Several terrain attributes were extracted from a DEM of a 90 m × 90 m grid-based
shuttle radar topography mission (SRTM)-preprocessed product using SAGA GIS (system
for automated geoscientific analyses [71].
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Table 2. Covariates used to develop soil texture class ANN prediction model.

Attr. Def. Abr. Res. Sor.

Analytical hill-shading ANHL 90 m SAGA GIS
Aspect ASP 90 m SAGA GIS

Channel network base level CHNBL 90 m SAGA GIS
Convergence index CONI 90 m SAGA GIS

Cross-sectional curvature CRCRV 90 m SAGA GIS
Digital elevation model DEM 90 m SRTM

Flow accumulation FACC 90 m SAGA GIS
Landforms LFMs 90 m SAGA GIS

Longitudinal curvature LNCRV 90 m SAGA GIS
LS factor LSFA 90 m SAGA GIS

Multiresolution index of the
ridgetop’sflatness MRRTF 90 m SAGA GIS

Multiresolution index of valley
bottom’sflatness MRVBF 90 m SAGA GIS

Relative slope position RESLPO 90 m SAGA GIS
Slope SLP 90 m SAGA GIS

Topographic wetness index TWIN 90 m SAGA GIS
Valley depth VADE 90 m SAGA GIS

Vertical distance to channel Network VDCN 90 m SAGA GIS
Clay particle content CLC 90 m [61]
Silt particle content SIC 90 m [61]

Sand particle content SDC 90 m [61]
Attr.: attribute; Def.: definition; Abr.: abbreviation; Res.: resolution; Sor.: source; SRTM: shuttle radar topography
mission; SAGA GIS: system for automated geoscientific analyses in a geographical information system.

2.6. Covariate Reduction and Selection

In the current study, we considered soil texture class as the target variable and most
relevant covariates as the independent variable. The correlation between auxiliary data and
soil attributes was applied using the Pearson statistical technique, which is a correlation-
based feature selection method [72] in SPSS version 19 software to remove irrelevant
covariates and to select those that are most associated for soil texture class modelling based
on the ANN algorithm. The importance of all 20 grid-based covariates were analyzed and
the least statistically significant covariates were eliminated. In addition, the maximum
value of NDVI time-series was extracted from Sentinel-2 images, coded in the Google Earth
Engine (GEE) online platform to investigate the importance of RS-based plant indices in
predicting soil texture classes.

2.7. The Predictive Soil Texture Class Models Built with ANN
2.7.1. Data Split into Training and Testing Sets

Analyzing the variation of soil texture classes in both the calibration and validation
dataset was conducted via local polynomial regression method [73]. The confidence interval
was assumed at the 0.95 level. The soil texture class and covariate datasets were randomly
split into a training set (70%) to fit the model parameters and an independent test set (30%)
in the ANN-based models.

2.7.2. Training the Machine Learning Algorithms

ANN training was performed based on a multilayer feed-forward perceptron neural
network, with a back-propagation algorithm to release highly efficient soil texture class
prediction. The ANN was executed in JMP (John’s Macintosh Project) software (11.0.0) for
dataset training and model build to establish a relationship between the selected covariates
and the soil texture classes at the sampled points. Once the ANN models were trained,
the calibration dataset was subdivided into 80% for training and the remaining 20% to
validating the ANN models. Different arrays of input variables, middle layers and the
numbers of nodes were evaluated in the training stage. Three layers comprising one input,



AgriEngineering 2023, 5 49

one hidden and one output layer, each containing interconnected weighted connection
neurons [49] run in parallel to transform the covariates into soil texture class values. The
number of neurons and predictors are balanced in the input layer, while the output layer
is inclusive of a single neuron. The hidden layer identifies the nonlinear relationships
between two covariates and soil texture classes. In this network, the sigmoid and Levenberg-
Marquardt functions were employed with several iterations for optimization. The error
back-propagation algorithm, which is the most well-known approach in training neural
networks [74] was used to minimize built network error. Two to fifteen neurons in the
hidden layer were tested, and the architecture with the lowest mean error (ME) was
nominated. In this study, the network with 8 hidden layers, 250 iterations and the lowest
error was chosen.

2.7.3. Testing the Prediction Results and Covariate Importance

Each model was trained more than a hundred times, in which the data were randomly
selected on every occasion. The testing set was used to make predictions and thus determine
the accuracy of the metrics. The best goodness-of-fit statistic for the ANN was determined
according to the highest coefficient of determination (R2) and the least root of mean square
error (RMSE). The output of the developed ANN model was converted to SAGA GIS at the
visited sample points, then run for unvisited pixels.

2.8. Model Evaluation
2.8.1. Interpolated Data Evaluation

The validation set provides an unbiased evaluation of the most probable model to
avoid overfitting. Four common indices, namely coefficient of determination (R2), mean
error (ME) and normalized root of mean squared error (NRMSE) were used for assessing
the accuracy of interpolating STFs including sand, silt and clay particles. The MBE is an
estimate of the average bias in the interpolation method, and the closer to 0, the lower the
bias. Its positive values represent overestimation and its negative values underestimation.
NRMSE is a percentage that represents the relative difference of the observed and estimated
values. According to [75], NRMSE values of up to 10, 10–20, 20–30 and >30% represent
excellent, good, relatively good and poor models, respectively. RMSE represents the
predicted model accuracy, while MBE also suggests model performance but with less
sensitivity to outliers compared to RMSE.

2.8.2. ANN-Predicted Soil Texture Class Evaluation

The KIA and Pa were used for evaluating the accuracy of the soil texture classification
estimation maps. In addition, the identity line (the 1:1 line) was employed to fit the
predicted values to the observed values of the variables. The KIA, Pa, MBE, and NRMSE
equations are represented as Equations (2)–(5):

KIA =
(P0 − Pe)

1 − Pe
(2)

Pa =
∑m

j=1

(
Ĉ(sj) = C(sj)

)
m

(3)

MBE =
∑(Pi − Oi)

n
(4)

NRMSE =

√
∑n

i=1(Oi − Pi)
2

n
× 100

O
(5)

Oi is the observed value, Pi refers to the estimated value, n is the number of observa-
tions. KIA is the kappa coefficient, P0 is the overall accuracy from the confusion matrix, and
Pe denotes the hypothetical probability of chance agreement. The KIA is a statistical agree-
ment indicator that calculates the probability of presence or absence of a class estimated
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by the model. It varies from 0 to 1. KIA values greater than 0.8, 0.8–0.6, 0.6–0.4, 0.4–0.2
and smaller than 0.2 indicate very good, good (strong), moderate, fair and poor agreement,
respectively [76]. Ĉ(sj) C is the estimated class at the Sj validation location and C(sj) the
observed class at the Sj location. Pa varies from 0 to 100% and the higher value indicates
the closeness between predicted and observed values [31].

2.9. Spatial Predictions

There are two main schemes of classification—pixel-based and object-based approaches—
in thematic mapping according to [77]. In a pixel-based approach, image classifications
are mostly performed pixel by pixel to produce soil texture classes. The advantages of
this classifier correspond to both its capability in using data from different scales and its
independence of prior assumptions [78].

In this case, to represent a continuous STCs map, the produced ANN related covariates
to soil texture classes at each point. Consequently, the outputs of the most accurate ANN at
the unvisited sites were first extracted. Then, the point-source dataset was converted to a
pixel-based set after using conversion tools in ArcGIS 10.4, in which each pixel was only
assigned to one soil texture class. There are various studies confirming that pixel-based
classification is an authentic method for digital soil mapping [38,48,79–84].

3. Results and Discussion
3.1. Soil Dataset Descriptive Statistics

The classical analysis of descriptive statistics related to the topsoil sand, clay and silt
particles of the legacy soil dataset of Guilan Province are represented in Table 3. The silt
fraction presented an average of 39.8%, whereas the clay and sand particles presented 29.3
and 30.8%, respectively. Soil texture fractions have a central tendency for the reason that
the values of means are generally greater than the median [85]. Therefore, particular care
should be taken to balance the variance in the transformation process [86].

Table 3. Statistical summary of STFs of the total dataset for Guilan province (n = 4493).

Particle Min Max AM GM Mode Median St. Dev Skewness Kurtosis % C.V

Clay (%) 1 66 39.4 29.3 40 29.7 10.6 −0.408 * −0.408 * 27
Sand (%) 1 99 31.5 30.8 24 30.4 13.4 −1.197 * 0.709 * 43
Silt (%) 1 81 39.8 39.8 42 39.6 9.14 −1.493 * 0.158 * 23

AM: arithmetic mean; GM: geometric mean; St. Dev: standard deviation; CV: coefficient of variation (%);
* significance at 5% level.

The coefficient of variation (C.V %) was the highest for sand particles (43%) since it
varies in a wide range from 1 to 99%. These results are in agreement with those reported
by [87] in Mazandaran, a neighboring province. In contrast, clay particles had the lowest
variation with 27%, while the variability of silt particles was moderate.

The median, mean and mode values were similar, and skewness and kurtosis were
significant at the 5% level, which implies a normal frequency distribution (Table 3). The
high coefficient of variation values for the sand particle indicate that this variable has a
high level of nonuniform distribution. This may be the consequence of three simultaneous
phenomena, namely marine sediments, mountain debris and riparian alluvial deposits,
that usually have a bigger effect on the transport of large particles such as sand. Moreover,
the accumulation of finer particles in low lands could be attributed to selective particle
removal via soil erosion [88]. Despite the normal frequency, the clay particle has a platy
kurtic distribution as indicated by the negative kurtosis, which may indicate the overlap of
two populations with different means.

3.2. Soil Texture Class Evaluation

From the 4493 observations, soil textural classes (According to the USDA) were of
clay (549 samples), silty clay (352 samples), silty clay loam (414 samples), sandy clay loam
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(75 samples), clay loam (1274 samples), silt loam (344 samples), loam (1239 samples), sand
(6 samples), loamy sand (17 samples), sandy clay (1 sample) and sandy loam (222 samples),
as shown in Figure 3. Half of the observational soil texture classes were typically classified
as clay loam and loam, given that the silt particle had the maximum arithmetic and
geometric mean (Table 3), in which it ranged from 15 to 53%.

3.3. STF Spatial Structure

Geostatistical analysis first required, evaluating the variables in terms of outliers,
normality, and isotropy. According to the Norfolk test, 172 samples were considered
outliers and omitted from the dataset. The silt and clay particles with a relatively nonnormal
distribution were normalized via logarithmic transformations. Detailed results of the spatial
structure evaluation of the variables using the components of the best-fitted semi-variogram
model are presented in Table 4. Obviously, the STFs were fitted using exponential models,
where C0 is the nugget effect, C0 + C is sill and A0 is range according to [66].
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Table 4. The best-fitted semi-variogram results on sand silt and clay soil particles.

STFs Model (C0) (C0 + C) A0 (m) C0/(C0 + C) (%) R2 RSS

Clay Expo 60 110 4000 0.54 0.91 86
Sand Expo 0/13 0/24 6000 0.54 0.94 0.001
Silt Expo 62 89 8000 0.7 0.93 16.8

C0: nugget effect; C0 + C: sill; A0: range; C0/(C0 + C): spatial dependence ratio.

The semi-variogram model with the lowest RSS and highest R2 was the best-fitted
and allowed for the mapping of each STF. According to the spatial dependence (nugget to
sill), sand and clay particles had moderate structure, whereas sill of silt particles found was
0.7%—which often means that the spatial dependency is relatively high—in the present
sampling. Zhang et al. [34] investigated the spatial structure of soil texture fractions and
showed that a ratio of C0/(C0 + C) > 50% was related to their nonuniform susceptibility
to random components. Under such conditions, the interpolation techniques, which are a
subset of spatial statistics based on spatial correlation of variables, are less efficient. The
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spatial distribution of mineral soil particles in the fields of Guilan Province appears to be
affected by the sediment load from the Sepidrud River, mountain debris from the Alborz
range and coastal sediments in addition to soil parent materials. Moreover, the variables of
soil mineral particles showed regional non-isotropy (results not presented). Therefore, the
anisotropic orientation was considered in the search radius for the OK interpolation method.
In addition, all particles of the best-fitted model had a rather low nugget effect, meaning
that the studied soils are homogeneous. This can be attributed to puddling practices and
similar rice cultivation over the study area. Higher effective range produced a large patch
over the continuous PSF map in silt and sand particles in particular (Figure 4a).
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The accuracy assessment of the clay and sand particles using OK and IDW methods
and deviation from the identity line (Figure 5) shows their goodness-of-fit (silt particle
results not presented). A comparison of the predicted and observed values for the two
interpolation methods of sand and clay particles against the identity line showed that IDW
had a near-zero intercept, a slope closer to 1, and a higher coefficient of determination
(Figure 5). The IDW method performed more accurately for clay and sand particles based
upon lower NRMSE, ME and R2 statistics of 0.22; 0.02 and 0.64; and 0.25, 0.03 and 0.67;
respectively (Table 5).
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Table 5. Statistics validation of sand and clay particles interpolation.

Variable Interpolation
Method R2 RMSE NRMSE d ME Equation

Clay OK 0.54 7.3 0.25 0.8 0.006 y = 0.4365x + 16.366
IDW 0.64 6.4 0.22 0.87 0.023 y = 0.5962x + 11.762

Sand
OK 0.52 9.3 0.29 0.8 0.29 y = 0.4565x + 17.429

IDW 0.67 7.9 0.25 0.87 0.03 y = 0.6039x + 12.518

R2: coefficient of determination; RMSE: root mean square error; NRMSE: normalized root mean square error, d:
index of agreement; ME: mean error; y: observe; x: predict.

Researchers have reported improvements in STFs predicting problems using machine-
learning techniques in general. For instance, a key improvement was reported by [40]
for clay particle prediction even with an RMSE of less than 1. In the present study, clay
particle results achieved better ME and moderate RMSE as compared to other studies
(Table 6). There was no improvement in the prediction of sand particles in extensive studies,
which reflects that the problems of this soil particle still remain. However, the results
showed better estimates of sand particles than advanced methods such as machine learning.
The authors of this study believe that non-isotropic spatial distribution of sand particles
corresponds to the frequent disposal mainly caused by periodic variation in sea level,
particularly in coastal areas. Toposequence is another driven factor that forms different
physiographic units [89]. Coarse residuals are transported via mountains (colluvium) and
alluvial plains to lowlands where the distance between mountain and sea is minimum.
This mostly happened in eastern and western parts of the study region (Figure 4c).
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Table 6. Overview of selected research findings on STFs large-scale estimations.

Reference
No of

Samples
Depth
(cm) Method

Particles

Sand
Silt Clay

Fine Sand Coarse Sand Sand

ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

Zhao et al., 2009 [42] 442 NA
ANN LM NA NA NA NA 8.11 16.6 NA NA 1.18 7.9
ANN RP NA NA NA NA 1.12 14.9 NA NA 2.07 8.5

Greve et al., 2012 [36] 45,224 0–30 RT 7.54 11.31 8.64 12.46 NA NA 2.51 12.41 2.27 11.41
Wang et al., 2015 [25] 62 Topsoil LRM NA NA NA NA 8.72 10.69 NA NA 3.44 4.57
Song et al., 2016 [39] 119 0–120 ANN RF NA NA NA NA NA 12.5 NA NA NA 3

Mehrabi et al., 2019 [38] 115 0–5
RT NA NA NA NA 0.09 6.98 0.21 4.64 0.04 5.07

ANN NA NA NA NA 0.06 4.07 0.1 2.75 0.02 2.02
ANFIS NA NA NA NA 0.06 4 0.09 2.68 0.02 2

Wang et al., 2020 [40] 640 0–20

ALR-BRT NA NA NA NA 0.57 15.99 −2.23 15.1 NA 1.75
ALR-RF NA NA NA NA 0.38 15.7 −1.78 14.53 NA 1.4
ALR-RK NA NA NA NA −2.34 17.92 0.86 17.05 NA 1.49
ILR-BRT NA NA NA NA 0.84 15.56 −2.44 14.71 NA 1.6
ILR-RF NA NA NA NA 0.51 15.35 −1.89 14.2 NA 1.38
ILR-RK NA NA NA NA −2.66 16.91 1.77 16.6 NA 0.89

Khanbabakhani et al.,
2020 105 0–15 ANN NA NA NA NA NA 4 NA 4 NA 4

Zhou et al., 2022 [1,37] 943 0–20 SVM and
SHAP NA NA NA NA NA NA NA NA NA NA

LM: Levenberg-Marquardt algorithm; RP: resilient algorithm; LRM: linear regression models; RT: regression-tree; ANN: artificial neural network; RF: random forest; ANFIS: neuro-fuzzy
technique; ALR: additive log-ratio; BRT: boosted regression tree; RK: regression kriging; ILR: isometric log-ratio; NA: not available (not reported or used).
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3.4. Soil Texture Fraction Mapping

The OK estimation for clay the fraction ranged between 12 and 46% (Figure 4b), while
the IDW values varied from 2 to 63% (Figure 4d), which is closer to the observed values
(1–66%). The values for the sand particles were between 7 and 60% using OK (Figure 4a)
and 5 and 92% (Figure 4c) with IDW. However, the observed values of sand particles in
Guilan Province ranged from 1 to 99% [29]. The regions located in the central part of
the province had higher clay and lower sand particle content, which originated from the
Sepidrud River’s sediment load. The areas in the eastern and western parts of the area,
where there is a short distance between the mountainous and the Caspian Sea, contained
higher a sand percentage in both (Figure 4). Alteration, suitable aeration and occurrence of
ferrolysis lead to lower clay particle content in plateaued lands [89].

3.5. Important Covariates

The linear correlation matrix analysis of all environmental and soil-related covariates
showed that 130 and 9 out of 210 paired comparisons were significant at 5% and 1% levels
of confidence, respectively (Figure 6). This supports the reduction and also the selection of
the most important covariates to avoid robust parallel correlation and covariance metrics.
In addition, there were several negative correlations between covariates where the greatest
rose between the channel network base level and DEM.
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Figure 6. Correlogram overview of all the covariates used to develop the ANN prediction model.SDC:
sand particle content; CLC: clay particle content; SIC: silt particle content; ANAHILL: analytical
hill-shading; ASP: aspect; CHNBL: channel network base level; CONI: convergence index; CRCRV:
cross-sectional curvature; DEM: digital elevation model; FACC: flow accumulation; LFMs: landforms;
LNCRV: longitudinal curvature; LSFA: LS Factor; MRRTF: multiresolution index of the ridgetop’s
flatness; MRVBF: multiresolution index of the valley-bottom’s flatness; RESLPO: relative slope
position; SLP: slope; TWIN: topographic wetness index; VADE: valley depth; VDCN: vertical distance
to channel network; MXNDVI: maximum NDVI (normalized difference vegetation index).

As can be seen, some of the covariates had more influence on the soil texture class
predictions according to the removal method as a multiplelinear regression in the context of
sensitivity analysis (Table 7). It should be noted that these covariates selected by statistics
are only beneficial for the modelling of soil texture classes and they are useless to explicit
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soil process and SCORPAN components. The most effective covariates were clay particles,
DEM, channel network base level, relative slope position, slope, valley depth, vertical
distance to channel network, MRRTF and cross-sectional curvature, respectively, in order
of P-value and partial correlation metric. Surprisingly, time-series NDVI (normalized
difference vegetation index) as plant indices derived from reflection-based satellite data
were excluded, which is exactly the opposite of results reported by [1], which indicated
that elevation, stratum and red-edge factors are critical variables for the prediction of soil
texture classes. This is related to the site-specific-dependent prediction of soil texture class
modelling. For instance, authors of [28] identified curvature parameters such as the shape
of the slope as the most important predictive variables in a flood plain, while the stratum
(legacy soil maps) and red-edge electromagnetic spectrum in addition to elevation were
discovered as critical variables topredicting soil texture classes in multi-crop farming and
the humid, subtropical monsoon climate of southwestern China [1]. In addition, authors
of [28] reported elevation, slope, MRVBF, NDVI and B3 as critical variables. This can be
due to the diversity in elevation (from 315 to 500 m above sea levels) and land use types
that are cultivated in the regions.

Table 7. Sensitivity analysis of related sets of covariates results.

Covariates B Std. Error St. B P.co T p-Value

CLC 0.051 0.005 0.156 0.162 10.270 0.000
SIC −0.007 0.006 −0.019 −0.031 −1.273 0.038

ANAHILL −0.383 0.531 −0.012 −0.006 −0.721 0.471
ASP 0.009 0.026 0.006 0.007 0.371 0.662

CHNBL 0.014 0.014 0.160 0.083 1.009 0.000
CONI 0.002 0.003 0.007 0.005 0.483 0.629

CRCRV 229.050 288.751 0.014 0.027 0.793 0.428
DEM −0.008 0.014 −0.111 0.080 −0.588 0.000
FACC 2.820 × 10−10 0.000 0.003 −0.002 0.209 0.835
LFMs −0.059 0.157 −0.007 0.032 −0.375 0.034

LNCRV 287.705 247.781 0.022 0.004 1.161 0.246
LSFA −0.157 0.099 −0.056 0.032 −1.586 0.031

MRRTF −0.145 0.034 −0.072 −0.0081 −4.308 0.000
MRVBF 0.061 0.051 0.028 −0.053 1.196 0.232
RESLPO −247.250 67.044 −0.563 0.042 −3.688 0.000

SLP 5.694 2.881 0.086 0.053 1.976 0.000
TWIN 0.004 0.022 0.003 −0.019 0.161 0.202
VADE 0.000 0.001 −0.010 −0.053 −0.495 0.000
VDCN 0.132 0.036 0.591 0.047 3.688 0.000

MXNDVI −0.313 0.432 −0.011 −0.012 −0.725 0.468
SDC: sand particle content; CLC: clay particle content; SIC: silt particle content; ANAHILL: analytical hill-shading;
ASP: aspect; CHNBL: channel network base level; CONI: convergence index; CRCRV: cross-sectional curvature;
DEM: digital elevation model; FACC: flow accumulation; LFMs: landforms; LNCRV: longitudinal curvature; LSFA:
LS factor; MRRTF: multiresolution index of the ridgetop’s flatness; MRVBF: multiresolution index of the valley
bottom’s flatness; RESLPO: relative slope position; SLP: slope; TWIN: topographic wetness index; VADE: valley
depth; VDCN: vertical distance to channel network; MXNDVI: max NDVI (normalized difference vegetation
index); B: unstandardized beta coefficient; Std. Error: standard error; St. B: standardized beta coefficient; P.co:
partial correlation.

These results were in line with those reported by [5,37,41,42], which where mostly
located in areas with dense vegetation cover. They realized that terrain attributes have a
great influence on the prediction of soil texture class. Notably, surface sand particle content
was without any influence on the estimation of soil texture class against clay particle content
of surface soil.

3.6. Soil Texture Class Prediction Performance

Pixel-based classification combined with ANN was used to estimate the soils’ textural
classes in the unvisited pixels in which the texture class was unclear. Since IDW is superior
in estimating sand, silt and clay particle content at unvisited points (Table 5), its continuous
mapoutput was used as the network’s input variable. The ANN was trained very well
using accuracy evaluation statistics. The training (2995 samples) and testing (1498 samples)
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achieved R2 0.98, RMSE 0.07 and 0.94, 0.08, respectively. This demonstrated its capability in
determining each pixel of the regions without any soil texture class data. Results showed
remarkable outputs for the predictive model in terms of the coefficient of determination
and RMSE for the calibration dataset.

The aim of the accuracy assessment was to numerically assess how effectively the
pixels (samples) were observed into the corresponding soil texture classes (Table 5). The
confusion matrix displays the soil texture classes in the reference dataset as columns and the
same information as in the output dataset. The individual cells within the table indicate the
number of samples with a given combination of reference data and output data. Looking
down the first row (A) (Table 8), out of 549 samples for clay soil texture class, 147 were
classified correctly, and from the rest, 19 were indicated as silty clay, and 24 and 25 as
silty clay loam and loam soil texture classes, respectively. However, the ANN could not
achieve reasonable accuracy for more than 60% of soil texture classes within a class. The
results from the error matrix show that in all textural classes, there were some samples
representing other ones. It should be noted that the imbalanced distribution of STCs may
have affected the results [90]. Nevertheless, out of 4493 samples, 2360 were predicted
correctly. This finding was inconsistent with those reported by Kaya et al. [91] who used an
RF algorithm to predict soil texture classes in northwestern Türkiye.

Table 8. Confusion matrix of actual and predicted soil texture classes.

Class C S LS SL SIC SICL SC SCL CL SIL L Observation
C 147 - 0 0 19 24 - 0 334 0 25 549
S 0 - 3 0 0 0 - 0 1 0 2 6

LS 0 - 1 7 0 0 - 1 3 0 5 17
SL 0 - 2 53 0 0 - 3 26 1 137 222
SIC 20 - 0 0 92 75 - 0 157 2 6 352

SICL 2 - 0 0 12 146 - 0 201 13 40 414
SC 0 - 0 0 0 0 - 0 1 0 0 1

SCL 0 - 0 2 0 0 - 9 24 0 40 75
CL 20 - 0 5 6 39 - 5 979 2 218 1274
SIL 1 - 0 2 0 18 - 0 59 93 171 344
L 3 - 1 12 4 11 - 1 345 22 840 1239

Total 193 - 7 81 133 313 - 19 2130 133 1484 4493

C: clay; S: sand; LS: loamy sand; SL: sandy loam; SIC: silty clay; SICL: silty clay loam; SC: sandy clay; SCL: sandy
clay loam; CL: clay loam; SIL: siltyloam; L: loam.

The evaluation of results according to the statistics showed that the ANN method
achieved a reasonable pixel classification accuracy percentage (Pa) of 55% (Table 9). In ad-
dition, the value of the kappa coefficient (0.38) using the ANN classification showed strong
agreement between predicted and observed soil texture classes. The model performance
for each class was examined individually and a noticeable improvement arose for 10 out
of 12 soil texture classes. This finding was also in harmony with previous studies, such
as [5,24], who could not correctly predict silt loam and clay loam classes using multiple
stepwise regression and cokriging, and old soil texture classes of loose sand, light sand,
medium clay and heavy clay using ANN, respectively, both in China. Uniquely, authors
of [30] effectively predicted six soil texture classes of clay, sand, sandy loam, sandy clay
loam, sandy clay and sandy loam with 120 surface soil samples (0–30 cm) in an arid region
of central Iran. We believe that the analogous sampling depth with choice of method have a
considerable effect on the success of estimates just as others [30,41] have examined surface
soil samples against different approaches. Additionally, the variety of soil texture classes
may affect the results. For example, Kaya et al. [91] employed five out of 12 soil texture
classes that obtained an overall accuracy of 0.63 and a kappa index value of 0.14.
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Table 9. Accuracy assessment results of the studied area’s soil texture class prediction map.

Soil Texture Class Reference
Totals

Classified
Totals

Number
Correct PA UA

Clay 193 549 147 76% 27%
Sand 0 6 0 0% 0%

Loamy sand 7 17 1 14% 6%
Sandy loam 81 222 53 65% 24%

Silty clay 133 352 92 69% 26%
Silty clay loam 313 414 146 46% 35%

Sandy clay 0 1 0 0% 0%
Sandy clay loam 19 75 9 47% 12%

Clay loam 2130 1274 979 46% 77%
Silt loam 133 344 93 70% 27%

Loam 1484 1239 840 56% 68%
Total 4493 4493 2360 55% 33.5%

PA: producer accuracy; UA: user accuracy. Overall accuracy = 52.53%; kappa = 0.38.

3.7. Predicted Soil Texture Class Map

Ten main USDA soil texture classes were detected, namely sandy loam, sand, loamy
sand, loam, silty loam, clay loam, sandy clay loam, silty clay loam, silty clay and clay. The
PBC predicted the loam and loam clay textural classes appropriately. These two classes had
a higher number of samples compared to the other ones. Moreover, estimation accuracy
was lower in fine-textured classes (sand, loamy sand, sandy loam, sandy clay loam) in
which the sand particle was the predominant component in all discussed classes. This can
be attributed to the low number of fine-textured class samples that had a lower share in the
training dataset as well as a poorer relationship between the covariates and sand particle
contents. This is in disagreement with findings by authors of [92–94], who worked in areas
with higher sand particle content compared with silt and clay particle content. They had a
diverse range of samples (50–1958 soil profiles) and a low variety of soil texture classes,
which was in strong contrast to our research. Furthermore, it is noteworthy, however, that
the clayey soil texture classes, despite having a higher number of samples, had a lower
accuracy than the medium-textured classes such as loamy clay silt, clay silt, and loamy silt
(Figure 7).
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The most probable map produced by using the PBC approach using resampled data is
represented in Figure 8. PBC was successful in estimating coarse-textured classes, especially
in the central region where the soils contained less clay and more sand particles. The loam,
loamy sand and sandy loam classes were mapped in the northern regions, which are almost
coastal. The clayey loam class dominated in the center, and other classes were scarcely
distributed in the study area. With respect to the predicted clay particle map (Figure 4d),
there was higher clay content in the central than the southern region of the province,
which matched with the river delta and flooding are as where the fine-texture particles are
dominantly sedimented [87]. Moreover, clayey loam and silty clay loam heavy soil texture
classes mostly happened in areas where four main rivers and their main stream meanders
change over time due to fluctuation in water flow [95]. The samples with clay particle
contents accounted for over 40% and mainly occurred at lower elevation. In comparison
with clayey soil texture classes, the sand particle content was higher in the coastline edge
of Caspian Sea, especially in the northwest, where the lands are mostly degraded, and
parent materials are prone to erosion. Morphological characteristics and, accordingly, soil
physical characteristics of paddy fields are highly influenced by artificial flooding and
periodic wet (higher vermiculite/smectite ratio) and dry (lower vermiculite/smectite ratio)
conditions [95].
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Despite the fact that verification statistics (Table 8) confirm that PBC had reasonable
accuracy, authors of [96] stated that ignoring the information on neighboring pixels may
be beneficial to correctly identifying the target pixel’s class. This is one of the limitations
of pixel-based classification. Indeed, it was expected that when the quantitative variables
of sand, silt and clay particles were transformed into the qualitative variables of the soils’
textural class, the spatial similarity of the data as well as the effectiveness of the IDW
interpolation method would increase. However, these expectations were not met in this
research.

The IDW interpolation method is based on the hypothesis that the degrees of correla-
tion and similarity between adjacent samples correspond to the distance between them.
It seems that the abrupt soil texture class changes in the central part of the study area
compared to its eastern and western parts, and the lack of the required number of samples,
were among the most probable reasons for the increased uncertainty in estimating soil
textural classes using this method, which was not feasible due to the high costs of sampling
and lab measurement. The produced map can potentially be utilized as a base map for the
agro-ecological modelling of future studies. Paddy rice fields should be developed in the
clayey soil texture classes’ central parts to restrict water from penetrating the soil profile,



AgriEngineering 2023, 5 60

while irrigation mismanagement in sandy soil texture class regions may lead to water loss
and fertilizer leaching.

4. Conclusions

The proposed hybrid architecture was able to accurately predict and map various
soil texture classes. Among considered covariates, soil texture fractions, specifically clay
particles, made a significant contribution to modelling soil textural classes. This means
without such an approach, we may fail to reach an accurate STC prediction using DSM.

IDW outperformed OK and produced better results for all STFs. Once combining
STF data with multi environmental covariates (mainly terrain) the hybridized approach
resulted in better performance across all metrics. ANN was able to find the nonlinear
relationships between variables, which improves uncertainties. This advantage was more
pronounced in the loam and loamy clay textural classes. We observed that the punctual
value was better-estimated than the soil class value.

We highlighted the importance of contextual information in accordance with the
geographical environment for soil texture studies. Since the vegetation cover of the area is
almost evergreen, even the use of RS-based datasets adds more complexity to the modelling
procedure. The ANN pixel-based classification method using hybridization of soil particles
and terrain attributes proved beneficial in estimating such qualitative data, specifically in
single crop-covered areas.

The high-resolution STFs and pixel-based USDA soil textural class maps prepared
in this study can be practiced for integrated soil and water management to facilitate
sustainable agricultural production even at regional scale. Access to legacy soil databases
and producing large geographical maps of soil stable properties, i.e., soil texture classes
is vital for sustainable land management and land use planning. They can also reduce
laboratory test expenses and provide serviceable information to decisionmakers at the farm
level with respect to irrigation and drainage management, and agricultural mechanization.
The use of the proposed architecture for predicting soil texture class with a balanced
number of observations using other models and in areas with multiple crop types is highly
recommended for further research.
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Properties for the Delineation of Management Zones in Production Fields. Commun. Soil Sci. Plant Anal. 2014, 45, 2289–2304.
[CrossRef]

http://doi.org/10.1109/JSTARS.2022.3164140
http://doi.org/10.1080/00103624.2014.912289


AgriEngineering 2023, 5 61

3. Bakker, A. Soil Texture Mapping on a Regional Scale with Remote Sensing Data. Ph.D. Thesis, Wageningen University, Wagenin-
gen, The Netherlands, 2012.

4. Bouma, J.; Stoorvogel, J.; Van Alphen, B.; Booltink, H. Pedology, Precision Agriculture, and the Changing Paradigm of Agricultural
Research. Soil Sci. Soc. Am. J. 1999, 63, 1763–1768. [CrossRef]

5. Ding, X.; Zhao, Z.; Yang, Q.; Chen, L.; Tian, Q.; Li, X.; Meng, F.-R. Model Prediction of Depth-Specific Soil Texture Distributions
with Artificial Neural Network: A Case Study in Yunfu, a Typical Area of Udults Zone, South China. Comput. Electron. Agric.
2020, 169, 105217. [CrossRef]

6. Koseva, I.S.; Watmough, S.A.; Aherne, J. Estimating Base Cation Weathering Rates in Canadian Forest Soils Using a Simple
Texture-Based Model. Biogeochemistry 2010, 101, 183–196. [CrossRef]

7. Ghiri, M.N.; Abtahi, A. Factors Affecting Potassium Fixation in Calcareous Soils of Southern Iran. Arch. Agron. Soil Sci. 2012, 58,
335–352. [CrossRef]

8. Goli-Kalanpa, E.; Roozitalab, M.; Malakouti, M. Potassium Availability as Related to Clay Mineralogy and Rates of Potassium
Application. Commun. Soil Sci. Plant Anal. 2008, 39, 2721–2733. [CrossRef]

9. Vaughan, E.; Matos, M.; Ríos, S.; Santiago, C.; Marín-Spiotta, E. Clay and Climate Are Poor Predictors of Regional-Scale Soil
Carbon Storage in the US Caribbean. Geoderma 2019, 354, 113841. [CrossRef]

10. Xu, H.; Liu, K.; Zhang, W.; Rui, Y.; Zhang, J.; Wu, L.; Colinet, G.; Huang, Q.; Chen, X.; Xu, M. Long-Term Fertilization and
Intensive Cropping Enhance Carbon and Nitrogen Accumulated in Soil Clay-Sized Particles of Red Soil in South China. J Soils
Sediments 2020, 20, 1824–1833. [CrossRef]

11. Bockheim, J.; Hartemink, A. Distribution and Classification of Soils with Clay-Enriched Horizons in the USA. Geoderma 2013, 209,
153–160. [CrossRef]

12. Reichardt, K.; Timm, L.C. Solo, Planta e Atmosfera: Conceitos, Processos e Aplicações; Manole: Barueri, Brazil, 2004.
13. Dupuis, E.M.; Whalen, J.K. Soil Properties Related to the Spatial Pattern of Microbial Biomass and Respiration in Agroecosystems.

Can. J. Soil Sci. 2007, 87, 479–484. [CrossRef]
14. Taghizadeh-Mehrjardi, R.; Mahdianpari, M.; Mohammadimanesh, F.; Behrens, T.; Toomanian, N.; Scholten, T.; Schmidt, K.

Multi-Task Convolutional Neural Networks Outperformed Random Forest for Mapping Soil Particle Size Fractions in Central
Iran. Geoderma 2020, 376, 114552. [CrossRef]

15. Behrens, T.; Zhu, A.-X.; Schmidt, K.; Scholten, T. Multi-Scale Digital Terrain Analysis and Feature Selection for Digital Soil
Mapping. Geoderma 2010, 155, 175–185. [CrossRef]

16. Klein, V.A.; Baseggio, M.; Madalosso, T.; Marcolin, C.D. Soil Texture and the Estimation by Dewpoint Potential Meter of Water
Retention at Wilting Point/Textura Do Solo e a Estimativa Do Teor de Agua No Ponto de Murcha Permanente Com Psicrometro.
Ciência Rural 2010, 40, 1550–1557. [CrossRef]
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