
Citation: Vargová, M.; Bołoz, Ł.;
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Abstract: To ensure the care of forests, it is necessary to make them sufficiently accessible by forest
roads. The basic working tool are hammers, or round shanks of various shapes, composed of a body
and a tip. They are subject to a strong abrasive environment, which often leads to damage up to the
complete destruction of the functional part of the tool. For these reasons, it is necessary to deal with
the possibilities for increasing their lifetime. One of the possibilities of increasing the service life of
these tools is hardfacing by welding. The article deals with the abrasive resistance of the original
material of the tool and the hardfacing materials. Based on the chemical analysis of the base material
of the tool, we found that the tool is made of manganese steel 38Mn6. This material was used as
a standard and was compared with the hardfacing materials Abradur 58, E DUR 600, UTP DUR
600 and OK 84.58. Electron microscopy was used to evaluate the microstructure. Next, the Rockwell
hardness measurement was performed on the samples. The original tool material 38Mn6 reached the
lowest hardness value, namely, 21 HRC. The highest value was reached by the hardfacing material
E DUR 600, namely, 59 HRC. Subsequently, a test of resistance to abrasive wear was performed
according to GOST 23.208-79. Based on this test, we can conclude that the highest value of resistance
to abrasive wear was achieved by Abradur 58. Even though the hardness of this coating was slightly
lower than the hardfacing material E DUR 600, specifically 56 HRC, we can state that this hardfacing
material (Abradur 58) achieved the best results among the investigated materials.

Keywords: forest road maintenance; tools durability; road milling machines; cutting tools; road
cutters; road cutters; resistance to abrasive wear

1. Introduction

To ensure the care of forests, it is necessary to make them sufficiently accessible by
forest roads. Unfavorable terrain conditions and the relatively large weight of wood place
high demands on the technical level of forest roads. Forest roads help to ensure the timely
fulfillment of economic tasks related to logging, forest protection, cultivation, transport of
harvested wood and temporary storage. Therefore, it is necessary to improve, reconstruct
and maintain their high technical condition. Currently, road cutters-stone crushers are
used for the construction and reconstruction of forest roads. The basic working tool are
hammers, or round shanks of various shapes, composed of a body and a tip. The tools
are exposed to difficult working conditions caused by the heterogeneous composition of
the working environment, which mainly consists of hard rocks of various shapes and
sizes. They are subject to a strong abrasive environment, which often leads to damage,
up to the complete destruction of the functional part of the tool. There are frequent tool
changes, which increases the working time and increase the cost of fuel, and the purchase
of new tools. For these reasons, it is necessary to deal with the possibility of increasing
their lifetime.

Currently, conical picks are the essential tools used in cutterheads of many working
machines in various industries [1–3]. They are used in underground and opencast mining
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and often in construction, tunneling, road construction and maintenance. The service life
of conical picks depends on their working conditions, where the most important is the
abrasiveness of the mined rocks. In harsh conditions, these tools work for only a few
hours, and changing them is time-consuming and requires the machine to be stopped.
Hence results in a decrease in efficiency and higher costs of the process. Figure 1 shows
an example of worn conical picks. Figure 1a,c have asymmetrical forms, and the rest have
symmetrical forms. Typical cutterheads are usually equipped with about 40–60, but their
number exceeds a hundred for longer drums. Therefore, their durability is crucial, and it
has an economic dimension.

Conical picks are often the subject of research and development works in many univer-
sities and research centers worldwide. Research is often conducted to increase the durability
of knives operating in abrasive conditions, i.e., to develop tools resistant to abrasive wear.
There are many examples of such studies. In one of the articles, tools with a body protected
with wear-resistant coatings and sintered carbide rings were tested [4]. In another, the
mechanism of abrasive wear was studied, and tool wear prediction was proposed [5]. In
the next one, the possibility of supporting the mining process was investigated [6]. Tests
were also carried out for the cemented carbides themselves [7]. Complete tools [8] and
entire cutting heads [9] are often tested. The following articles concerned the adaptation
of modern tools and machines to difficult conditions [10,11] and the use of disc tools as
an alternative to conical picks [12,13]. Testing the quality of tools was also discussed to
facilitate the selection of the best offer in public tenders [14].
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Figure 1. Worn conical picks [14]: (a,c) asymmetrical forms; (b,d,e) symmetrical forms.

A typical conical pick has a characteristic shape. It is made in the form of a solid
revolution (Figure 2a). It consists of a working part (cutting part) 2 and a gripping part
3 (mounted in pick holder). The working part is reinforced with a sintered carbide insert
1. Conical picks are mounted in pick holders with special locks. The characteristic shape
of the body and the mounting method allows free rotation of picks. The rotation of picks
results in even wear of the working part and the insert. Thanks to the even wear, the picks
shorten but retain their shape and can properly carry out the mining process. The body
of the pick and the gripping part are made of steel characterized by high impact strength
(usually U > 25 Jcm−2) and very high tensile strength (Rm > 1000 MPa), as well as resistance
to abrasive wear. The working part should have a hardness of at least 45 HRC, while the
hardness of the gripping part should be in the range of 25 HRC–35 HRC [15]. Depending
on working conditions, various types of steel are applied, such as 14NC11, 41Cr4, 40NiCr6,
36CRNIMo4 or 34CRMo4 (designations according to EN 10084). In addition, the knives
are subjected to heat treatment to increase their hardness and, thus, the abrasion resistance
of the surface layer. Additional wear-resistant layers are made of stellites or cemented
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carbides, usually based on cobalt, nickel and iron. These layers are made by hardfacing
with electrodes. The hardness of the coatings may exceed 60 HRC [15].
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Figure 2. The most common conical picks: (a) scheme of the pick, (b) dimensions of the pick: 1—WC
tip; 2—body; 3 — tool shank.

The inserts are made by sintering. Typically, cemented carbides for rock mining consist
of wolfram carbide WC (89–95%), and the rest is cobalt C, a matrix. Wolfram carbide is hard
and wear-resistant but brittle. Cobalt is the bonding phase and increases the toughness
of the insert. The hardness of the cemented carbides exceeds 1050 HV30. Nowadays,
sometimes users also require a specific grain size of WC. The inserts are soldered in sockets
of working parts.

In addition to the material parameters discussed above, geometric and kinematic
parameters also determine the correct mining course. Below is the range of parameters
of typically tapered cutters used for mining rock and other materials. The markings are
shown in Figure 2b.

Usually, these parameters amount to the following [15]:

• Length of pick: Lc = 120 mm–250 mm;
• Length of working part: Lr = 40 mm–100 mm;
• Gripping part diameter: du = φ20 mm–φ40 mm;
• Flange diameter: dk = φ45 mm–φ70 mm;
• Mounting method: Seger, HERT, expanding or friction ring;
• Insert diameter: dw = φ10 mm–φ25 mm;
• Insert height: hw = 14 mm–40 mm;
• Tip angle: 2βu = 80◦–95◦ (more than 95◦ for ballistic shape);
• Yip shape: conical, multi-conical, ballistic, hat-shaped.

Many models of picks are available on the market, differing in material and geometrical
parameters, shape and assembly method. This results in the existence of more than two
hundred models of picks. Shape and size depend on the type of machine, which is related
to the type of cutting material and environment (Figure 3a–d).



AgriEngineering 2023, 5 569AgriEngineering 2023, 5, FOR PEER REVIEW  4 
 

 

 

Figure 3. Often used types of conical picks: (a) for coals and rocks; (b) for salts; (c) for road, rocks, 

concrete; (d) for roads, concrete and asphalt. 

Basic equipment for the creation, modification and reconstruction of forest roads in-

cludes adapters as additional equipment for UKT (universal wheeled tractor). Alterna-

tively, they are designed as adapters for various special machines or mounted on hydrau-

lic manipulators (Figure 4). 

   

(a)        (b)        (c) 

Figure 4. Machines for the creation, modification and reconstruction of forest roads: (a) for UKT; (b) 

for special machines; (c) for hydraulic manipulators. 

Since the tools work in a highly abrasive environment, they are subject to a lot of 

abrasive wear. Abrasive wear occurs whenever a solid object is loaded with material par-

ticles of equal or greater hardness [16]. The abrasive wear mechanism is a complex process 

in the context of many factors. The intensity of these factors depends on the operating 

conditions of the environment in which these components and tools work. Furthermore, 

there are the operating parameters of the machines and the material properties of the con-

tact surfaces [17]. There are several methods for increasing the resistance to abrasive wear. 

One such method is to apply additional materials to the exposed parts of the functional 

surfaces of the tools. Hardfacing is a commonly used method to improve the surface prop-

erties of agricultural tools, mining components and soil preparation equipment, among 

others [18]. In order to choose a suitable hardfacing material, it is necessary to know not 

only the basic material of the tool but also the environment in which the tool works. 

2. Materials and Methods 

The functional surfaces of the tool are the surfaces that are most involved in stone 

crushing and are exposed to strong abrasion and abrasive wear. In Figure 5, we see a new 

(unused) tool (Figure 5a) and a worn tool (Figure 5b) that has been used in continuous 

operation for approximately three months. We can see that there is a change in the shape 

and loss of material of the wolfram carbide (WC) tip and the area under the WC tip. From 

Figure 3. Often used types of conical picks: (a) for coals and rocks; (b) for salts; (c) for road, rocks,
concrete; (d) for roads, concrete and asphalt.

Basic equipment for the creation, modification and reconstruction of forest roads
includes adapters as additional equipment for UKT (universal wheeled tractor). Alterna-
tively, they are designed as adapters for various special machines or mounted on hydraulic
manipulators (Figure 4).
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Figure 4. Machines for the creation, modification and reconstruction of forest roads: (a) for UKT;
(b) for special machines; (c) for hydraulic manipulators.

Since the tools work in a highly abrasive environment, they are subject to a lot of
abrasive wear. Abrasive wear occurs whenever a solid object is loaded with material
particles of equal or greater hardness [16]. The abrasive wear mechanism is a complex
process in the context of many factors. The intensity of these factors depends on the
operating conditions of the environment in which these components and tools work.
Furthermore, there are the operating parameters of the machines and the material properties
of the contact surfaces [17]. There are several methods for increasing the resistance to
abrasive wear. One such method is to apply additional materials to the exposed parts of
the functional surfaces of the tools. Hardfacing is a commonly used method to improve the
surface properties of agricultural tools, mining components and soil preparation equipment,
among others [18]. In order to choose a suitable hardfacing material, it is necessary to know
not only the basic material of the tool but also the environment in which the tool works.

2. Materials and Methods

The functional surfaces of the tool are the surfaces that are most involved in stone
crushing and are exposed to strong abrasion and abrasive wear. In Figure 5, we see a new
(unused) tool (Figure 5a) and a worn tool (Figure 5b) that has been used in continuous
operation for approximately three months. We can see that there is a change in the shape
and loss of material of the wolfram carbide (WC) tip and the area under the WC tip. From
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this, we can conclude that these surfaces are most involved in stone crushing. The tool had
to be taken out of service after a high rate of wear.
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Figure 5. Destruction of the working tool: (a) new tool; (b) worn tool.

We used the visualization method to detect the wear of the working tool. With this
method, a 3D image (scan) of the new (Figure 6a) and the used (Figure 6b) working tool
was performed. After subsequently overlaying them, we see that there was a change in
the shape of the WC tip and a loss of material below the carbide tip (Figure 6c). This also
confirmed the defined functional areas of the working tool.

AgriEngineering 2023, 5, FOR PEER REVIEW  5 
 

 

this, we can conclude that these surfaces are most involved in stone crushing. The tool 

had to be taken out of service after a high rate of wear. 

 

Figure 5. Destruction of the working tool: (a) new tool; (b) worn tool. 

We used the visualization method to detect the wear of the working tool. With this 

method, a 3D image (scan) of the new (Figure 6a) and the used (Figure 6b) working tool 

was performed. After subsequently overlaying them, we see that there was a change in 

the shape of the WC tip and a loss of material below the carbide tip (Figure 6c). This also 

confirmed the defined functional areas of the working tool. 

 

Figure 6. 3D image (scan) of the working tool: (a) 3D image (scan) of the new working tool; (b) 3D 

image (scan) of the working tool used; (c) overlay of the surfaces of the new and used working tool. 

As it was not known what material the tools were made of, a chemical analysis was 

carried out. Based on the chemical analysis performed, we found that the tool is made of 

38Mn6 manganese steel [19]. The chemical composition of this steel is in Table 1. 

Table 1. The chemical composition of the base material. 

Element C Mn Cr Si S P Ni Mo Fe 

(wt.%) 0.34–0.42 1.4–1.65 max. 0.4 0.15–0.45 max. 0.035 max. 0.035 max. 0.4 max 0.1 balance 

Figure 6. 3D image (scan) of the working tool: (a) 3D image (scan) of the new working tool; (b) 3D
image (scan) of the working tool used; (c) overlay of the surfaces of the new and used working tool.

As it was not known what material the tools were made of, a chemical analysis was
carried out. Based on the chemical analysis performed, we found that the tool is made of
38Mn6 manganese steel [19]. The chemical composition of this steel is in Table 1.

Table 1. The chemical composition of the base material.

Element C Mn Cr Si S P Ni Mo Fe

(wt.%) 0.34–0.42 1.4–1.65 max. 0.4 0.15–0.45 max.
0.035

max.
0.035 max. 0.4 max 0.1 balance
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The working tools of a road milling machine are subject to a lot of abrasive wear and
need to be replaced frequently. Their frequent replacement causes technical and economic
problems. For this reason, it is necessary to devise ways of increasing the lifetime of such
tools. On the basis of practical experience, as well as the results of some authors [20,21], we
have decided to hardfacing by welding the functional surfaces of the working tools of road
milling machines.

To perform the experiment, we chose the following four types of electrodes:

• Hard deposit created by the ABRADUR 58 electrode [22];
• Hard deposit created by the E DUR 600 electrode [23];
• Hard deposit created by the UTP DUR 600 electrode [24];
• Hard deposit created by the WEARTHRODE 55 HD (OK 84.58) electrode [25].

The samples were made by a certified person for welding in the company ZOŠ Zvolen
(Railway Repair and Engineering Works Zvolen). Hardfacing by welding was carried out
manually by electric arc at welding position PA.

Sample 1 (Figure 7a) was made from the hard deposit formed with the ABRADUR
58 electrode. ABRADUR 58 is an electrode from SIJ ELECTRODE JESENICE, which creates
a hard layer with extreme resistance to abrasion and a moderate impact. The hard deposit
is made of chrome steel. Depending on the carbon and chromium content, the hard deposit
has ferritic, austenitic-martensitic and semi-ferritic structures. It is mainly used for the
hardsurfacing by the welding of crushers, parts of earth-moving machines and soft ore
crushers. The typical hardness of the hard deposit is approximately 59 [20]. The chemical
composition of the electrode can be seen in Table 2. For Sample 1 (Figure 7a), the electrodes
were dried in a dryer at 300 ◦C before hardfacing by welding. Drying took 2 h. The
preheating temperature of the base material was 150 ◦C. The ignition of the electric arc was
simple, instantaneous hardfacing by welding occurred. An electrode with a diameter of
Ø 2.5 mm was used for hardfacing by welding. The hard deposit was carried out on the
base material of the tool. The hardfacing by welding conditions for Sample 1 are given
in Table 3.
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Table 2. Basic data of the selected electrodes.

Electrode
Chemical Composition (wt. %) Hardness

(HRC)
Diameter Ø

(mm) Producer
C Cr Si Mn P Fe

ABRADUR 58 3.2 32 - - - balance 59 2.5 JESENICE

E DUR 600 0.5 8.5 - - - balance 59 2.5 JESENICE

UTP DUR 600 0.5 9.0 2.3 0.4 - balance 58 3.2 BÖHLER
WELDING

OK 84.58 0.6 9.0 0.3 0.3 0.03 balance 57 3.2 ESAB
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Table 3. Conditions of hardfacing by welding.

Conditions of Welding Sample 1 Sample 2 Sample 3 Sample 4

Voltage (V) 22.5 21.5 21.5 21.5

Current (A) 100 140 140 140

Heat input 0.881 1.814 1.275 0.722

From the hardfacing by welding with electrode E DUR 600, Sample 2 (Figure 7b)
was made. E DUR 600 is a hardfacing electrode from SIJ ELECTRODE JESENICE for
hardfacing by welding parts that are exposed to abrasive wear associated with impacts.
The hard deposit has a higher resistance to abrasion. The electrode is suitable for the
surfaces of earth-moving machine parts and crushers. It is an electrode, forming the
ledeburitic structure of the hard deposit, with a low content of carbon and chromium [23].
The chemical composition of the electrode can be seen in Table 2. The hardness of the hard
deposit depends on the hardfacing by welding conditions and the chemical composition
of the base material. The electrodes were dried at 400 ◦C for one hour before hardfacing
by welding. The welded tool base material was preheated to 150 ◦C. The electric arc was
unstable during hardfacing by welding. The electrode had a fragile shell. It was welded
with an electrode with a diameter of Ø 2.5 mm. From Table 3, we can see that a lot of heat
was introduced during the hardfacing by welding.

Sample 3 (Figure 7c) was made from the hard deposit formed with the UTP DUR
600 electrode. The UTP electrode DUR 600 is a universal electrode from BÖHLER WELD-
ING. The hard deposit is abrasion, pressure and impact resistant, with a typical hardness
of approximately 58 HRC. It is applied to armor parts of steels, manganese steels, castings
and tool steels. Mainly used for earthmoving and construction machinery parts, hammer
mills, crushing jaws and cones, hammer mills, etc. It has great hardfacing properties due to
its quiet arc, easy slag removal, uniform current and good weld [24]. The basic data of the
electrode are given in Table 2. The base material was preheated to 150 ◦C. The electrodes
were dried in a dryer for two hours at 300 ◦C. Electrodes with a diameter of Ø 3.2 mm were
used for hardfacing by welding. The hardfacing by welding conditions for Sample 3 are
given in Table 3.

The OK WEARTRODE electrode (OK 84.58) from ESAB was made in Sample
4 (Figure 7d). The ESAB OK WEARTRODE electrode (OK 84.58) is an electrode for the
hardfacing by welding of abrasive wear-resistant functional surfaces under simultaneous
impact stresses with partial corrosion resistance. It is mainly used for parts of agricultural
and forestry machinery, transport equipment, etc. The resulting hard deposit is formed
by a martensitic structure. Full hardness is achieved already in the first layer of the hard
deposit, regardless of the cooling rate [25]. The chemical composition of the electrode can
be seen in Table 2. The sample base material was preheated to 150 ◦C. Electrodes with a
diameter of Ø 3.2 mm were used for hardfacing by welding. The electrodes were dried
in a dryer for 2 h at 200 ◦C. The hardfacing by welding conditions for Sample 3 are given
in Table 3.

In Table 2 is the chemical composition and summarizes the basic data of all electrodes
that were used for hardfacing by welding to the working tools of road milling machines.

Table 3 shows the hardfacing by welding parameters for all electrodes. The calculated
heat input is also found here.

According to GOST 23.208-79-Testing the resistance of materials against wear by free
abrasive particles (a group of standards ensuring the resistance of products against wear),
all samples were prepared-base material 38Mn6 and deposits. The essence of the method
described in the standard consists in comparing the loss of the tested material and the loss
of the standard material under the same test conditions [26].

Due to the high hardness of the material, hydroabrasive cutting was used to cut the
samples. The surface of the sample was milled and subsequently ground on a planar
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magnetic grinder to achieve dimensions of 30 mm × 30 mm × 10 mm with a roughness
parameter Ra = 0.4 µm.

Vickers and Rockwell hardness measurement methods were chosen to evaluate the
surface hardness of the samples. The hardness of the surface of the materials was measured
in the laboratories of the Institute of Materials Research of SAV Košice. Vickers hardness
was measured according to the procedure given in ISO 6507-1:2018 [27] on a Vickers 432SVD
device. Load time t = 15 s and load force F = 98.07 N. Rockwell hardness was measured
according to the procedure given in ISO 6508-1:2016 [28] on a UH250 device. The selected
load force had a value of F = 1471 N.

The test of resistance to abrasive wear was performed according to GOST
23.208-79 [26]. The substance of the method consists of comparing the weight loss of
the tested material and the standard material under the same test conditions. The grinding
material used is electrocorundum with a grain size of 100–250 µm [29] with a relative
humidity of ϕmax. = 0.15%. The hardness of electrocorundum corresponds to the 9th
degree according to the Mohs scale. The standard [26] further states that when assessing
wear resistance under specific wear conditions, it is possible to use an abrasive material cor-
responding to the material that acts during operation. However, the granularity condition
must be maintained.

Before the test, each test body (standard, tested sample) is weighed and placed in
the principle of the scheme of the test equipment for testing the abrasion resistance of
the sample materials is shown in Figure 8. Each sample must be weighed on an accurate
analytical balance before testing. Then the sample is placed in the holder of the testing
equipment, the abrasive supply is started, and the rubber disc is pressed against the sample.
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Figure 8. Scheme of the test equipment [26].

Three samples for each material were tested in the experiment. After each completed
cycle, the sample was weighed three times on a Kern ABS analytical balance with a
sensitivity of e = 0.1 mg. Arithmetic mean Wh was calculated for each measurement from
the observed sample weight loss.

The test conditions were set as follows:

• Friction path length in one cycle R = 153.6 m;
• Rubber disc diameter D = 48.9 mm;
• Compressive force F = 15.48 N;
• Number of revolutions in one cycle n = 1000;
• Abrasive-silica sand OTTAWA with a grain size of 0.1 mm;
• Hardness of the abrasive material 54 HRC.

Samples were weighed after each cycle run. From the observed weight loss after each
cycle, the arithmetic average for each sample was calculated.
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The hardness coefficient KT (-) is calculated from Formula (1) [26] as follows:

KT =
H
Ha

(−) (1)

where:
H—standard material hardness (HRC);
Ha—abrasive hardness (HRC).
The relative resistance to abrasive wear Ψh is calculated from the relation (2) [26]

as‘follows:
Ψh =

WhE
WhPV

(−) (2)

where:
WhE—mass loss of the standard sample (g);
WhPV—mass loss of the tested sample (g).

3. Results and Discussion

In the metallographic analysis, we evaluated the microstructure of the base material
of the working tool and the hardfacing materials. At the same time, we analyzed the
interface of the base material of the working tool with the hardfacing material, their mutual
mixing and the build-up zone during hardfacing by welding. A metallographic analysis
was carried out at the Institute of Materials Research of the Slovak Academy of Sciences
in Košice.

In Figure 9, we see the microstructure of the base material (BM). Cor etchant (120 mL
CHCCOOH, 20 mL HCl, 3 g picric acid, 144 mL CH3OH) was used to induce the mi-
crostructure. The BM has a sorbitic microstructure-a mixture of ferrite and cementite. It is a
ferritic-perlitic steel with a higher proportion of pearlite.
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Figure 9. Microstructure BM–SEM.

In Figure 10a, we see the hardfacing material of Samples 1. Cor etchant was used to
develop the microstructure. We also see the mixing of the base material with the facing
material (Figure 10b). The hardfacing material is mixed without voids, cracks and other
defects that adversely affect the quality of the hard deposit cohesion. The hardfacing
material has a dendritic microstructure. We can see that the microstructure of the BM has
changed in the heat-affected zone (HAZ). We observe the presence of tempered martensite.
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Figure 10. Microstructure of Sample 1: (a) hardfacing material; (b) interface hardfacing material-BM.

In Figure 11a, we see the microstructure of the hardfacing material of Sample 2. The
sample was etched with a Cor etcher. The hardfacing material has a ledeburitic microstruc-
ture. It is identical to the microstructure stated by the manufacturer. In Figure 11b, we can
see the interface hardfacing material-BM. The connection of the BM and the hardfacing
material is without defects and without breaking the integrity of the hardfacing material
and the BM.
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Figure 11. Microstructure of Sample 2: (a) hardfacing material; (b) interface hardfacing material-BM.

In Figure 12a, we see the microstructure of the hardfacing material of Sample 3. The
sample was etched with 2% Nital (solution of HNO3 in ethyl alcohol). We observe the
acicular needle-like structure of BM in the HAZ. In the HAZ, the presence of diffusion
between the BM and the hardfacing material can be seen. We can conclude that there was a
good mixing of the hardfacing material with BM (Figure 12b).

In Figure 13a, we see the microstructure of the hardfacing material of Sample 4. The
sample was etched with a Cor etcher. We observe the polyhedral and acicular microstruc-
ture of BM in the HAZ (Figure 13b). We can see that the mixing of the hardfacing material
with the BM of the tool is free of cracks, voids and other defects. There was a diffusion of
chemical elements between the BM and the hardfacing material.
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Figure 13. Microstructure of Sample 4: (a) hardfacing material; (b) interface hardfacing material-BM.

The Vickers-HV0.5 measurement method and the Rockwell measurement method
were used to measure the hardness of the base material samples and hardfacing material.

The indentations during measurement were guided from the core of the base material
to the surface of the hardfacing material. The average hardness of BM, according to Vickers,
was 285 HV0.5. The course of the measured hardnesses on Sample 1 is shown in Figure 14a.
We can see that the thickness of the hardfacing material layer was about 3 mm. The hardness
of the hardfacing material is significantly higher than the hardness of the base material of
the working tool. The highest hardness value of the hardener was 652 HV0.5. The highest
hardness value in the HAZ was 353 HV0.5.
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Figure 14. Graphic representation of the course of hardness according to Vickers: (a) Sample 1;
(b) Sample 2; (c) Sample 3; (d) Sample 4.

The course of the measured hardnesses of Sample 2 can be seen in Figure 14b. We can
see that the hardfacing material also has significantly higher hardness values than the base
material of the tool. The hardness of Sample 2 is higher than the hardness of Sample 1. The
hardfacing material layer of Sample 2 is about 4 mm thick. The highest hardness value in
the HAZ was 430 HV0.5.

The course of the measured hardnesses in Sample 3 can be seen in Figure 14c. The
highest hardness of Sample 3 hardfacing material had a value of 761 HV0.5. The hardfacing
material layer is approximately 3 mm thick. We can see that in the HAZ, the hardness values
fluctuate considerably, which could have been caused by uneven mixing of the hardfacing
material with the tool base material at the point of measurement or by the structure of the
material in the HAZ. The highest hardness value in the HAZ was 491 HV0.5.

The greatest hardness of the hardfacing material on Sample 4 has a value of 713 HV0.5,
and in the HAZ, it has a value of 568 HV0.5. The hardfacing material layer has a thickness
of approximately 2.5 mm. The course of the measured hardnesses on Sample 4 can be seen
in Figure 14d.

The average measured values of samples and BM microhardness are shown in Table 4.
We can see that the measured hardness values of hardfacing materials are significantly
higher than the hardness of BM.

Table 4. Average values of microhardness of hardfacing materials and BM.

BM Sample 1 Sample 2 Sample 3 Sample 4

Average HV0.5 285 632 741 688 577

The average Rockwell hardness values of BM and hardfacing materials are shown
in Table 5. We can conclude that all hardnesses of hardfacing materials are significantly
higher than the hardness of the base material.
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Table 5. Measured hardness values by the Rockwell method.

BM Sample 1 Sample 2 Sample 3 Sample 4

Average 21 56 59 58 52

Resistance to abrasive wear was tested according to GOST 23.208-79. For each tested
material, three samples were tested. Before the test, the sample is weighed, placed in the
device and the feed of the abrasive is started. After each completed cycle, the sample
is removed and reweighed to determine the weight loss. The arithmetic average Wh is
calculated from the detected weight losses.

First, the KT hardness coefficient is calculated according to relation (1). This value will
provide us with the first information about a possible better or worse abrasion resistance.
Subsequently, relative resistance to abrasive wear Ψh is calculated according to relation (2).
BM has a value of 1 because it is a standard sample. All obtained and calculated data from
the test of resistance to abrasive wear are presented in Table 6.

Table 6. Values from the test of resistance to abrasive wear.

KT (—) Wh (g) Ψh (—)

BM 0.39 0.0996 1

Sample 1 1.04 0.0105 9.49

Sample 2 1.09 0.0247 4.03

Sample 3 1.07 0.0325 3.06

Sample 4 0.96 0.0355 2.80

In Figure 15a, we can see a graphic representation of the KT hardness coefficients for
individual materials. If this value is higher than 1, it is assumed that the tested material
will be able to better resist abrasive particles. We can state that the highest value of the
hardness coefficient was achieved by Sample 2. At the same time, the lowest value of the
KT hardness coefficient was achieved by BM, namely, 0.39. In Figure 15b, we can see a
graphical comparison of values of relative resistance to abrasive wear Ψh. It is clear from
the graph that Sample 1 achieved the best relative resistance to abrasive wear. It is almost
9.5 times more compared to the BM of the tool. Sample 4 achieved the smallest value of
relative resistance to abrasive wear, namely, 2.8. However, it is 2.8 times more compared
to the BM of the tool. We can conclude that all the tested hardfacing materials achieved
several times better resistance to abrasive wear compared to the BM of the tool.
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Some authors report that hardness is strongly correlated with resistance to abrasive
wear [30–32]. However, based on the results of the hardness measurement and the test of
resistance to abrasive wear, we can conclude that the hardfacing material with the highest
hardness value (59HRC) achieved a lower value of relative abrasion resistance compared
to the hardfacing material with lower hardness (56HRC). The hardfacing material with
lower hardness achieved a 2.36 times higher value of relative resistance to abrasive wear.
In the results of their research, the authors [18] also state that hardness is correlated with
resistance to abrasive wear. However, from the partial results, it can be concluded that
the W-rich alloy reached a lower value of resistance to abrasive wear compared to the
Cr-rich hardfacing material, even though its hardness was higher than that of the Cr-rich
hardfacing material.

4. Conclusions

Based on the chemical analysis of the base material of the tool, we found that the tool
is made of manganese steel 38Mn6. Based on the results, it is possible to state the following:

• Based on the evaluation of the microstructure, we can conclude that there was a good
mixing of BM with the hardfacing material for all four samples. Therefore, we can
conclude that the selected hardfacing materials are suitable for hardfacing by welding
on BM 38Mn6;

• Based on the results from the Rockwell hardness measurement and the test of resistance
to abrasive wear, we can conclude that hardness, in this case, did not correlate with
resistance to abrasive wear. The highest value of resistance to abrasive wear was
achieved by the hardfacing material Abradur 58, despite the fact that its hardness
was not the highest among the investigated hardfacing materials. The microstructure,
which was dendritic with the presence of tempered martensite, could have had an
effect on the resistance to abrasive wear.

Hardfacing by welding with an Abradur 58 electrode appears to be the most suitable
solution for increasing the lifetime of road milling tools. Therefore, we recommend hardfac-
ing by welding on the new tool this additional hardfacing material, which will strengthen
its exposed surfaces. A tool modified in this way could better withstand the effects of an
abrasive environment.
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