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Abstract: Coffee has high relevance in the Brazilian agricultural scenario, as Brazil is the largest
producer and exporter of coffee in the world. Strategies to advance the production of coffee grains
involve better understanding its spatial variability along fields. The objectives of this study were to
adjust yield-prediction models based on a time series of satellite images and high-density yield data,
and to indicate the best phenological stage of coffee crop to obtain satellite images for this purpose.
The study was conducted during three seasons (2019, 2020 and 2021) in a commercial area (10.24 ha),
located in the state of Minas Gerais, Brazil. Data were obtained using a harvester equipped with a
yield monitor that measures the volume of coffee harvested with 3.0 m of spatial resolution. Satellite
images from the PlanetScope (PS) platform were used. Random forest (RF) regression and multiple
linear regression (MLR) models were fitted to different datasets composed of coffee yield and time
series of satellite-image data ((1) Spectral bands—red, green, blue and near-infrared; (2) Normalized
difference vegetation index (NDVI); or (3) Green normalized difference vegetation index (GNDVI)).
Whether using RF or MLR, the spectral bands, NDVI and GNDVI reproduced the spatial variability
of yield maps one year before harvest. This information can be of critical importance for management
decisions across the season. For yield quantification, the RF model using spectral bands showed
the best results, reaching R2 of 0.93 for the validation set, and the lowest errors of prediction. The
most appropriate phenological stage for satellite-image data acquisition was the dormancy phase,
observed during the dry season months of July and August. These findings can help to monitor the
spatial and temporal variability of the fields and guide management practices based on the premises
of precision agriculture.
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1. Introduction

A coffee crop interacts with several factors, such as soil, climate and the plant itself,
presenting particularities that result in the high spatial variability of yield [1,2]. In this
sense, delineating high- and low-yielding zones can guide farmers to the adoption of
management strategies across the season [3–5]. However, knowledge about yield before
harvest is still a challenge [6].

Remote sensing (RS) is a potential source of data for monitoring agricultural fields. At
the orbital level, RS [7] stands out for its high coverage rate, allowing the monitoring of
large areas combined with a temporal database. Recent research has demonstrated that
spectral variations captured by orbital imaging can be related to soil and crop characteristics,
identifying patterns of interest for agriculture [1,8,9]. These data are a potential support
for the diagnosis of agronomic parameters and decision making in agricultural production
steps [10–13]. However, some of the main limitations related to orbital images are the lack
of field data that, in synergy with remote sensing techniques, will enable the calibration of
predictive models [14]. Furthermore, researchers showed that agronomic prediction models
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may have spatiotemporal constraints for application in different fields and seasons [15–19].
This reinforces the necessity to establish simple, fast and cost-effective methods to calibrate
prediction models in the different fields of agriculture.

The assessment of crop spatial variability is challenging due to the limited solutions
available, mainly for yield mapping in coffee crops. Yield can be considered the most
important data layer to start the investigation of spatial variability within the field [20], to
delimit management zones and enhance site-specific applications [16,21,22], leveraging
precision-agriculture (PA) management strategies.

Currently, the coffee-crop yield, by hand or machine harvesting, may be estimated
from in-field samples [23–25] or exclusively with mechanical harvesting, using a yield
monitor [26,27]. Sampling coffee fruits in-field is an onerous and destructive process,
besides its difficult implementation for large areas [28]. A commercially available yield
monitor measures the volume of harvested fruits using a conveyor belt with cells of known
volume [26,27,29]. This method is associated with a high investment cost and its use is
exclusive to a single brand of coffee harvester. In addition, yield maps require calibration,
the accessibility of data-processing tools and knowledge to manage data from multiple
harvesters.

Studies have reported the strength of the linear correlation between vegetation indices
(VIs) using orbital images and coffee-yield prediction. Bernardes et al. [30] evaluated
possible correlations between coffee yield and MODIS-derived vegetation indices, but the
authors obtained the yield data interviewing producers, with no direct field acquisition.
Nogueira et al. [31] reported the use of vegetation indices obtained with images from the
Landsat-8 satellite’s OLI (operational land imager) sensor to estimate yield. Evaluating
two seasons considered low- and high-yielding, they found that NDVI had the strongest
yield correlation during the dormancy and flowering stages. Thao et al. [32], in a study that
attempted to assess a coffee-yield forecasting at Dak Lak province in Vietnam using vegeta-
tion indexes (NDVI, LAI and FAPAR) derived from SPOT-VEGETATION and PROBA-V
satellites obtained satisfactory accuracy (Adj. R2 = 64 to 69%) in estimating yield in coffee
fields by means of multiple linear regression models using data from the first semester of
the years 2000–2019.

Recently, Silva et al. [33] evaluated the correlation of different phenological stages’
spectral responses of coffee in a center pivot and concluded that the method was suitable
for predicting coffee yield. However, the strategy applied was of manual sampling points,
then extrapolating them to the whole field. This strategy of low-density yield samples used
as ground-truth data is widely observed for coffee crops due to the difficult implementation
of high-density yield-data acquisition. However, the low density can compromise the
ability of the model to trustworthily represent yield spatial variability.

Aware of the lack of studies based on remote sensing with yield-monitor data for
coffee crops [1], it is reasonable to test a solution proposed for sugarcane crops [34] with
coffee. The method to estimate sugarcane yield is based on satellite images and yield
monitor data at high density, using machine-learning (ML) techniques and random forest
(RF) regression, which can cope with both linear and non-linear relation and which have
higher prediction accuracy compared to standard statistics (i.e., multiple linear regression
that performs better on linear relations), and allow us to identify the best datasets to be
used in yield estimation [35–37].

Therefore, the objective of this work was: (a) to adjust yield-prediction models based
on a time series of satellite-image data (spectral bands and VIs) and high-density data
from yield monitors using random forest and multiple linear regression algorithms, and (b)
indicate the appropriate phenological stage of the coffee crop to obtain satellite-image data
for this purpose.

2. Materials and Methods

The study was conducted in a commercial area located in the municipality of Patos de
Minas, Minas Gerais state, Brazil, with central geographic coordinates at 18◦32′28.55” S
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latitude and 46◦3′51.17” W longitude (coordinate reference system WGS 84) and an altitude
of 1025 m (Figure 1). The climate of the study area is classified as Aw, tropical with dry
winter and rainy summer, according to the Köppen climate classification [38]. The monthly
normal temperatures (1991–2020) range from 18.9 ◦C in the coldest month (June) to 23.4 ◦C
in the warmest month (October) with average annual temperature of 21.6 ◦C [38]. The area
of interest had 10.24 ha cultivated with the species Coffea arabica L. (IAC Catuaí 144 variety)
planted in 2006 and had its first harvest in 2009, under a drip irrigation system, with yields
ranging from 0.98 to 2.61 Mg ha−1 during the evaluated period.
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and its proper validation and reliability assessment are available in Martello et al. [27]. 
The data were collected during the 2019, 2020 and 2021 harvests, then converted to weight 
of processed coffee through a conversion factor [27]. Headland-maneuver and bordering-
area data close to roads that divide and cross the area were first removed. Discrepant data 
inside the field were filtered using the MapFilter 2.0 software using global filtering with a 
threshold of 100%, based on the methodology proposed by Maldaner and Molin [40]. 
Yield data were interpolated using the Vesper software 1.6 [41] using the ordinary kriging 
method with a spatial resolution of 3.0 m × 3.0 m, and the grid obtained from the central 
coordinates of the satellite-image pixels. 

Figure 1. Location of coffee-field study site in Brazil. (a) Historical data of monthly precipitation
for the years 2018, 2019, 2020 and 2021 and the line with the monthly climatological precipitation of
30 years (1981–2010) for the study area, [39]. (b) Study area; the red line represents the area boundary.

2.1. Field Data

Data were obtained using a K3 Millennium harvester (Jacto, Pompeia, Brazil), equipped
with a yield monitor that measures the volume of coffee harvested with a resolution of ap-
proximately 3.0 m for the total area. Full information about the methodology and its proper
validation and reliability assessment are available in Martello et al. [27]. The data were
collected during the 2019, 2020 and 2021 harvests, then converted to weight of processed
coffee through a conversion factor [27]. Headland-maneuver and bordering-area data close
to roads that divide and cross the area were first removed. Discrepant data inside the field
were filtered using the MapFilter 2.0 software using global filtering with a threshold of
100%, based on the methodology proposed by Maldaner and Molin [40]. Yield data were
interpolated using the Vesper software 1.6 [41] using the ordinary kriging method with a
spatial resolution of 3.0 m × 3.0 m, and the grid obtained from the central coordinates of
the satellite-image pixels.
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2.2. Satellite Data

Satellite images from PlanetScope (PS) were used [42]. PS images had 3.0 m of spatial
resolution with cloud-free coverage, and each image included four spectral bands: blue
(455–515 nm), green (500–590 nm), red (590–670 nm) and near-infrared (780–860 nm).
Considering the condition of zero cloud coverage, it 33 images were obtained between 2018
and 2021, always at the end of the month and trying to keep an interval of 30 days between
images from the sensor Dove Classic—PS2, product Orto Scene—Analytic—Level 3B; these
images underwent a series of processes by the vendor, including sensor and radiometric
correction, atmospheric correction and conversion to top-of-atmosphere reflectance (TOA)
and geometric correction (Table 1).

Table 1. Dates of the PlanetScope orbital images obtained.

Harvest 1st (2018/19) Harvest 2nd (2019/20) Harvest 3rd (2020/21)

30 July 18 28 July 19 27 July 20
31 August 18 31 August 19 31 August 20

29 September 18 22 September 19 28 September 20
27 October 18 14 October 19 26 October 20

21 December 18 31 December 19 18 December 20
30 January 19 14 January 20 30 January 21

25 February 19 21 February 20 1 February 21
15 March 19 19 March 20 21 March 21
27 April 19 25 April 20 28 April 21
28 May 19 28 May 20 25 May 21
30 June 19 28 June 20 28 June 21

No images were found without cloud cover in the month of November for the three years.

2.3. Statistical Analysis

The dataset was composed of high-density samples of coffee yield, spectral bands (red,
green, blue and NIR); the normalized difference vegetation index (NDVI) was proposed
by Rouse et al. [43] and the calculation was performed using the normalized difference
between the spectral regions of red and near infrared, showing correlation with the green
biomass of the plants [44]. Additionally, the green normalized difference vegetation index
(GNDVI), which was proposed by Gitelson et al. [45], was used, using the green band
instead of the red band which increases the sensitivity of the index in identifying the
concentration of chlorophyll when compared to the NDVI [44].

Before fitting yield models, the Pearson correlation coefficient (r) was calculated
among variables (spectral bands × yield, NDVI × yield and GNDVI × yield) aiming to
find those that present the highest linear correlation values with yield and indicate the most
suitable periods to obtain satellite-imagery data, while being aware of the cloud-cover and
temporal resolution limitations. To find the most suitable period the use of Vis was chosen,
since they can be considered a dimensionality-reduction method which might facilitate the
interpretation of the data correlation.

RF regression and MLR were fitted to the different datasets composed of the temporal
series (spectral bands and VIs) and the selected periods based on the indication of the most
suitable period (VIs).

According to Breiman [46], RF is an algorithm composed of several decision trees,
where each tree depends on the values of a random vector sampled independently of the
input vector with an identical distribution for all trees within the forest. In this study, RF
regression was implemented in RStudio (R Core Team, 2018) using the “randomForest”
package [47]. The coffee-yield predicted value is the mean fitted response from all the
individual trees that resulted from each bootstrapped sample.

MLR is a regression method that aims at one target variable related to multiple features,
where the target can be estimated using Equation (1) [48].

Y = Xβ + e (1)



AgriEngineering 2022, 4 892

where Y is a (n × 1) target vector, X is a (n × p) features matrix (predictor variables), β is a
p × 1 vector of unknown coefficients and e is a n × 1 random vector of errors.

Yield-predictive models were compared, considering the coefficient of determination
(R2), root mean squared error (RMSE—Equation (2)) and mean absolute error (MAE—
Equation (3)). These parameters were calculated for training (2/3), test (1/3) and the entire
dataset (3/3). Yield maps were generated using the geographic information system (GIS)
Quantum GIS—QGIS [49].

RMSE =
{

n−1
[
∑(yi − ŷ)2 + . . . + (yn − ŷ)2

]}0.5
(2)

where RMSE = root mean squared error, n = number of samples, y = observed variable
response and ŷ = predicted variable response.

MAE =
{

n−1
[
∑(|yi − ŷ|) + . . . + (|yn − ŷ|)

]}
(3)

where MAE = mean absolute error, n = number of samples, y = observed variable response
and ŷ = predicted variable response.

A flowchart corresponding to the coffee-yield prediction and mapping procedure
is shown in Figure 2. It presents the process through the stages of data collection using
satellite imagery (including pre-processing and data selection), georeferenced coffee-yield
sampling, data merging (satellite imagery and coffee-yield sampling data), data splitting
(train and test data) and RF regression e MLR application.
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3. Results and Discussion

Figure 3 shows the Pearson correlation values among spectral bands, VIs and yield
from 2019, 2020 and 2021 harvests. The highest correlation values were found one year
before harvest regardless of the season. July and August were the months that presented
the highest correlation values with yield, a fact related to the plant phenology and already
reported by some authors, since the vegetative vigor of the plant can be inferred from this
stage [30,31,33].
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For the 2019 harvest (performed in June 2019), the highest values of r were 0.64 and
0.65 for NDVI and GNDVI on July and 0.67 for both NDVI and GNDVI for August. In the
2020 harvest (performed in July 2020), the highest r values were 0.89 and 0.85 for NDVI
and GNDVI, respectively, on July and 0.85 for NDVI and 0.83 for GNDVI in August. Note
that a similar behavior was found for 2021’s harvest (June 2021), presenting r values of 0.8
and 0.78 for NDVI and GNDVI on July and 0.8 for both NDVI and GNDVI in August.

July and August were also the most correlated months, indicated by Silva et al.
(2021) [33] and could be used to predict coffee yield. These months are related to the
phenological stage (dormancy bud phase) of the plant on which potential production of
the next year is already established due to flowering induction occurring in the previous
months [50]. The coffee plant enters a mandatory dormancy stage during the period of
water deficit (months of dry winter in Brazil) until the rainfall breaks flower-bud dor-
mancy [51,52].

The coffee crop shows intense vegetative growth for one year, allowing it to produce
grains more intensively (reproductive stage) in the coming year [53]. During the dormancy
phase, plagiotropic branches (productive branches) go into senescence. Due to the vege-
tative growth stage, orthotropic branches (vegetative stage) receive more nutrients than
the plagiotropic branches until the next reproductive stage so they can form new branches
and leaves [51,54,55]. The alternation of r values (negative and positive) in the temporal
sequence can be explained based on the phenological process of the crop, where positive
values can be found right after the prior harvest season and negative values during the
development of the crop. These results indicate that the dormancy phase (July and August)
based on VIs can be an indicative of potential yield in qualitative terms for the next harvest.

Based on the results from NDVI and/or GNDVI, it can be inferred that yield modelling
could be conducted using only two months (July and August) for linear models, in case of
limited data from satellite imagery, which brings benefits since these months constitute the
dry season, and are thus not greatly limited by the interference of cloud cover.

From the results of the linear correlation, yield-predictive models were fitted according
to the different types of datasets: (a) temporal series of spectral bands, NDVI and GNDVI
and (b) data from July and August for NDVI and GNDVI. It was selected the use of July
and August because they presented the highest Pearson correlation with yield.

Table 2 shows RMSE, R2 and MAE results for training, test and the entire dataset,
applying RF and MLR to predict coffee yield based on different types of variables and
months within seasons. Note that the highest R2 results are found in the models based
on the RF regression regardless of the dataset, as also found in Wei et al. [56] and Canata
et al. [34]. These results highlight that even if there are some linear correlations among
yield and satellite-imagery data (spectral bands or vegetation index), the RF in this context
is likely to be used instead of MLR regression.

Comparing the results relying on the temporal series (11 months) and only on the two
best months (July and August), it can be noted that the fewer variables used, the lower the
accuracy regardless of the dataset and regression model.

Figures 4–6 represent the yield maps from the yield monitor and different yield-
predictive models. From Figures 4A, 5A and 6A, the biennial bearing effect of coffee yield
can be visualized, an expected phenomenon and one widely reported in the literature [30,33]
in which harvest 1 and 3 could be considered as low-yielding seasons and harvest 2 as a
high-yielding season. However, the effect is usually reported in studies performed with
sampling at low spatial resolution, which is different from this work in that it shows results
based on the entire harvest with high-density data. Thus, from these results not only the
variability between years can be inferred, but also the variability within the field, which
can provide data for decisions makers to improve crop management [27,29,57].
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Table 2. Mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE)
results for training, test and the entire dataset, applying random forest and multiple linear regression
to predict coffee yield based on different types of variables and months within harvests.

Variable Model Hs Mt
Training Dataset (2/3) Test Dataset (1/3) Full Dataset (3/3)

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE

Spectral
Bands

RF

1 11 a 0.04 0.99 0.03 0.09 0.91 0.07 0.06 0.96 0.04

2 11 a 0.05 0.99 0.04 0.13 0.93 0.10 0.09 0.97 0.06

3 11 a 0.05 0.99 0.03 0.12 0.93 0.09 0.08 0.97 0.05

NDVI

1
11 a 0.04 0.98 0.03 0.10 0.87 0.08 0.07 0.94 0.05
2 b 0.10 0.89 0.08 0.20 0.51 0.16 0.14 0.76 0.11

2
11 a 0.06 0.99 0.05 0.15 0.91 0.11 0.10 0.96 0.07
2 b 0.10 0.96 0.08 0.21 0.81 0.16 0.15 0.91 0.11

3
11 a 0.07 0.98 0.05 0.16 0.86 0.12 0.11 0.94 0.08
2 b 0.12 0.93 0.09 0.25 0.68 0.19 0.17 0.84 0.13

GNDVI

1
11 a 0.05 0.97 0.04 0.12 0.83 0.09 0.08 0.93 0.05
2 b 0.10 0.90 0.08 0.19 0.53 0.16 0.14 0.77 0.11

2
11 a 0.06 0.98 0.05 0.15 0.90 0.12 0.10 0.96 0.07
2 b 0.10 0.96 0.08 0.21 0.82 0.16 0.15 0.91 0.11

3
11 a 0.07 0.97 0.06 0.17 0.84 0.14 0.12 0.93 0.08
2 b 0.12 0.93 0.09 0.24 0.69 0.19 0.17 0.85 0.12

Spectral
Bands

MLR

1 11 a 0.12 0.81 0.10 0.12 0.81 0.10 0.12 0.81 0.10

2 11 a 0.17 0.88 0.13 0.17 0.88 0.14 0.17 0.88 0.14

3 11 a 0.16 0.86 0.13 0.16 0.86 0.13 0.16 0.86 0.13

NDVI

1
11 a 0.14 0.77 0.11 0.14 0.77 0.11 0.14 0.77 0.11
2 b 0.20 0.49 0.17 0.20 0.50 0.16 0.20 0.50 0.17

2
11 a 0.19 0.86 0.15 0.19 0.86 0.15 0.19 0.86 0.15
2 b 0.21 0.83 0.16 0.21 0.82 0.17 0.21 0.82 0.16

3
11 a 0.21 0.77 0.17 0.21 0.76 0.16 0.21 0.76 0.17
2 b 0.24 0.70 0.19 0.23 0.70 0.19 0.24 0.70 0.19

GNDVI

1
11 a 0.14 0.74 0.11 0.14 0.74 0.12 0.14 0.74 0.11
2 b 0.20 0.51 0.16 0.20 0.52 0.16 0.20 0.51 0.16

2
11 a 0.18 0.87 0.14 0.19 0.86 0.15 0.18 0.86 0.15
2 b 0.21 0.82 0.17 0.21 0.82 0.17 0.21 0.82 0.17

3
11 a 0.22 0.75 0.17 0.22 0.75 0.17 0.22 0.75 0.17
2 b 0.24 0.70 0.19 0.23 0.70 0.19 0.24 0.70 0.19

Hs = Harvest; Mt = Months; RF = Random Forest regression; MLR = Multiple linear regression; a: satellite-imagery
data from January, February, March, April, May, June, July, August, September, October and December were
considered; b: satellite-imagery data from July and August were considered.
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general, with similar spatial patterns, which can be used not only as a method to estimate 
yield, but also to indicate the spatial variability as high- and low-yielding zones. 

The use of VIs in this work allowed us to identify potential management zones qual-
itatively as they present strong linear correlations with yield (Figure 3) due to their estab-
lished importance for coffee physiology, since the images are acquired in the ideal crop 
phenological phase. Thus, NDVI/GNDVI data collection after harvesting (dry season—
July and August—dormancy phase) allow us to improve management decisions regard-
ing the crop to ensure it expresses their yield potential as much as possible. It is also pos-
sible to infer qualitatively about high- and low-yielding zones one year prior to the harvest 
season, valuable data that are able to be used by the decision maker to enhance crop man-
agement considering the crop variability. 

Figure 4. Coffee yield (Mg ha−1) maps generate for harvest 1 (2018–2019) from (A) Coffee monitor
data/2019; (B) RF regression model based on spectral bands/2018/2019, (C) RF regression based
on NDVI/2018/2019, (D) RF regression based on GNDVI/2018/2019, (E) MLR based on spectral
bands/2018/2019, (F) MLR based on NDVI/2018/2019, (G) MLR based on GNDVI/2018/2019, (H)
RF regression based on NDVI obtained in July (jul) and August (ago)/2018, (I) RF regression based
on GNDVI obtained from July and August/2018, (J) MLR based on NDVI obtained from July and
August/2018; and (K) MLR based on GNDVI obtained from July and August/2018.

Considering Figures 4–6 it is inferred that RF regression models present smoother
results when compared to MLR, regardless of the database. However, it can be seen that
the larger the number of available variables (spectral bands), the smoother the results. The
results from VIs and MLR are also worth using, but be aware of the computing power for
processing data; the use of spectral bands to fit coffee yield-prediction models are of primary
importance, as shown in other studies with different crops: carrot [53], sugarcane [34],
corn [58] and soybean [58,59].
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Note that the strategy described in this study, using NDVI/GNDVI data obtained 
during the dormancy phase of coffee plants that allow one to identify the qualitative yield-
potential zones before the flowering occurs, can be critical to decision making in coffee 
production systems. Irrigation planning can be developed based on this information to 
match the crucial moment to enhance coffee quality [60,61]. Additionally, the optimal soil 
correctives and fertilizer application can be planned using zone prediction, following the 
principles of PA [62]. The high spatial density in which the qualitative zones can be pre-
dicted using this strategy can guide the prescription of coffee management across the sea-
son before blossoming and coffee-fruit development. 

The dormancy phase is critical to the coffee plant, as it is waiting for the first rains to 
bloom [61]. Aware that blossoming occurs unevenly within the field, efforts should be 
made to optimize the planning and use of site-specific irrigation systems, since they can 
be improved by means of vegetative index data (NDVI/GNDVI) obtained in the dry sea-
son and related to yield. 

Figure 5. Coffee yield (Mg ha−1) maps generate for harvest 2 (2019–2020) from (A) Coffee monitor
data/2020; (B) RF regression model based on spectral bands/2019/2020, (C) RF regression based
on NDVI/2019/2020, (D) RF regression based on GNDVI/2019/2020, (E) MLR based on spectral
bands/2019/2020, (F) MLR based on NDVI/2019/2020, (G) MLR based on GNDVI/2019/2020, (H)
RF regression based on NDVI obtained in July (jul) and August (ago)/2019, (I) RF regression based
on GNDVI obtained from July and August/2019, (J) MLR based on NDVI obtained from July and
August/2019; and (K) MLR based on GNDVI obtained from July and August/2019.

In addition, it is highlighted that regardless of the regression model used to fit predic-
tive models, they all present similar data, allowing one to reproduce yield maps, in general,
with similar spatial patterns, which can be used not only as a method to estimate yield, but
also to indicate the spatial variability as high- and low-yielding zones.

The use of VIs in this work allowed us to identify potential management zones
qualitatively as they present strong linear correlations with yield (Figure 3) due to their
established importance for coffee physiology, since the images are acquired in the ideal crop
phenological phase. Thus, NDVI/GNDVI data collection after harvesting (dry season—July
and August—dormancy phase) allow us to improve management decisions regarding the
crop to ensure it expresses their yield potential as much as possible. It is also possible to
infer qualitatively about high- and low-yielding zones one year prior to the harvest season,
valuable data that are able to be used by the decision maker to enhance crop management
considering the crop variability.
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regression based on NDVI obtained in July (jul) and August (ago)/2020, (I) RF regression based on 
GNDVI obtained from July and August/2020, (J) MLR based on NDVI obtained from July and Au-
gust/2020; and (K) MLR based on GNDVI obtained from July and August/2020. 

Several studies have been conducted evaluating irrigation and coffee attributes qual-
itatively and quantitatively. For example, Rodrigues et al. [60] found that better coffee 
quality is found in irrigated areas, but the watering time is crucial. In addition, several 
morphological structures are also enhanced, which can be expressed in yield increment. 
Damatta et al. [63] also found that irrigated areas may produce coffee with better quality, 
but they highlighted that the timing of water provision can negatively affect the quality. 
Therefore, irrigation can improve the yield expression in terms of quality and quantity; if 
irrigation occurs at the correct time, an additional data layer (yield potential) could also 
be used to guarantee that yield expression follows the principles of PA. 

Fertilization management can also be guided by the yield map [29]. Therefore, ferti-
lizer application should be distributed unevenly according to yield potential based on the 
NDVI/GNDVI map. 

In terms of quantitative data, it was demonstrated in this work that the use of field 
data (harvester yield data) with satellite images applying regression models are suitable 
for estimating coffee yield. Future approaches can explore the use of these models to ex-

Figure 6. Coffee yield (Mg ha−1) maps generate for harvest 2 (2020–2021) from (A) Coffee monitor
data/2021; (B) RF regression model based on spectral bands/2020/2021, (C) RF regression based
on NDVI/2020/2021, (D) RF regression based on GNDVI/2020/2021, (E) MLR based on spectral
bands/2019/2020, (F) MLR based on NDVI/2020/2021, (G) MLR based on GNDVI/2020/2021, (H)
RF regression based on NDVI obtained in July (jul) and August (ago)/2020, (I) RF regression based
on GNDVI obtained from July and August/2020, (J) MLR based on NDVI obtained from July and
August/2020; and (K) MLR based on GNDVI obtained from July and August/2020.

Note that the strategy described in this study, using NDVI/GNDVI data obtained
during the dormancy phase of coffee plants that allow one to identify the qualitative yield-
potential zones before the flowering occurs, can be critical to decision making in coffee
production systems. Irrigation planning can be developed based on this information to
match the crucial moment to enhance coffee quality [60,61]. Additionally, the optimal
soil correctives and fertilizer application can be planned using zone prediction, following
the principles of PA [62]. The high spatial density in which the qualitative zones can be
predicted using this strategy can guide the prescription of coffee management across the
season before blossoming and coffee-fruit development.

The dormancy phase is critical to the coffee plant, as it is waiting for the first rains
to bloom [61]. Aware that blossoming occurs unevenly within the field, efforts should be
made to optimize the planning and use of site-specific irrigation systems, since they can be
improved by means of vegetative index data (NDVI/GNDVI) obtained in the dry season
and related to yield.
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Several studies have been conducted evaluating irrigation and coffee attributes qual-
itatively and quantitatively. For example, Rodrigues et al. [60] found that better coffee
quality is found in irrigated areas, but the watering time is crucial. In addition, several
morphological structures are also enhanced, which can be expressed in yield increment.
Damatta et al. [63] also found that irrigated areas may produce coffee with better quality,
but they highlighted that the timing of water provision can negatively affect the quality.
Therefore, irrigation can improve the yield expression in terms of quality and quantity; if
irrigation occurs at the correct time, an additional data layer (yield potential) could also be
used to guarantee that yield expression follows the principles of PA.

Fertilization management can also be guided by the yield map [29]. Therefore, fertilizer
application should be distributed unevenly according to yield potential based on the
NDVI/GNDVI map.

In terms of quantitative data, it was demonstrated in this work that the use of field
data (harvester yield data) with satellite images applying regression models are suitable for
estimating coffee yield. Future approaches can explore the use of these models to extrapo-
late the yield estimate to nearby areas, as well as evaluate the potential of the technique for
applying a model to the next year, as well as testing other models for prediction such as
SVR, NN and other vegetation indices.

4. Conclusions

It was possible to observe with the set of PlanetScope orbital images and the yield
data during three harvests that there is a direct correlation between VIs (NDVI/GNDVI)
and yield zones one year before harvest, especially in the months of July and August
(post-harvest and in the dormancy phase of the plant). The use of the proposed strategy
to delimitate high- and low-yield zones can be a critical guide for crop monitoring and
management practices during the season.

Using regression models (RF and MLR) it was possible to estimate the coffee yield.
The RF regression models showed the highest R2 (0.93) values compared to the MLR (0.88)
in the same period. Comparing the results based on the time series (11 months) and only
on the two best months (July and August), it is noted that the fewer variables used, the
lower the accuracy, independent of the dataset and regression model. However, when it
is not possible to obtain a set of annual images, the results showed that it is possible to
estimate yield with images during the dormancy phase of the plant one year before harvest.
This offers an alternative cost-efficient strategy that enable producers to monitor yield and
estimate profit, and especially guide management practices by the premises of precision
agriculture, taking into account the temporal and spatial variability of the field.

In addition, it is noteworthy that regardless of the regression model used to adjust the
predictive models, they all present similar data, allowing one to reproduce yield maps, in
general, with similar spatial patterns, which can be used not only as a method to estimate
yield, but also to indicate spatial variability with zones of high and low yield, observing the
behavior of productive alternation in the area and indicating the presence of biennial yield.
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