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Abstract: Crop planting area and spatial distribution information have important practical signifi-
cance for food security, global change, and sustainable agricultural development. How to efficiently
and accurately identify crops in a timely manner by remote sensing in order to determine the crop
planting area and its temporal–spatial dynamic change information is a core issue of monitoring
crop growth and estimating regional crop yields. Based on hundreds of relevant documents from
the past 25 years, in this paper, we summarize research progress in relation to farmland vegetation
identification and classification by remote sensing. The classification and identification of farmland
vegetation includes classification based on vegetation index, spectral bands, multi-source data fusion,
artificial intelligence learning, and drone remote sensing. Representative studies of remote sensing
methods are collated, the main content of each technology is summarized, and the advantages
and disadvantages of each method are analyzed. Current problems related to crop remote sensing
identification are then identified and future development directions are proposed.
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1. Introduction

Agricultural production represents the foundation of a nation. Furthermore, it is a
major issue that is related to a country’s national economy, individual livelihood, and all
levels of government. Moreover, food security is the most important goal of all countries’
agricultural policies. Cultivated land represents the basic resource for human survival
and social development [1,2] and provides most of the products that humans depend
on for survival, such as food, fodder, fiber, and biofuels [3]. Changes in arable land use
patterns will affect grain yield, subsequently affecting food security [1], an important area
of land system scientific research [4,5]. The issue of food security is related to the survival
and development of humankind, and neither developed nor developing countries can
be ignored. Therefore, in recent years, food security has attracted increasing attention
from the international community. Crop planting area and spatial distribution information
have important practical significance for food security, global change, and sustainable
agricultural development. Timely and accurate acquisition of crop spatial distribution
and its temporal and spatial dynamic change information is not only the core data source
for monitoring crop growth, estimating regional crop yields, and studying regional food
balance, but it is also the main basis for crop structure adjustment and layout optimiza-
tion [6,7]. Remote sensing technology has been widely used in Earth observation activities
due to its advantages such as extensive coverage, short detection period, more intuitive,
and low cost, providing new technical means for the rapid and accurate acquisition of
large-scale crop spatial distribution information [8,9].

Spectral reflectance characteristics of crops are the basic physical basis for remote
sensing extraction of crop planting structures. Like other green vegetation, crops have two
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absorption bands in the blue and red wavelengths of visible light, and their reflectivity
is low. There is an obvious reflection peak in the visible green band between the two
absorption bands, close to 1.1 µm. In the infrared band, the reflectance reaches a peak,
forming a unique feature of vegetation. In the mid-infrared band (1.3–2.5 µm), due to
the influence of the water content of green plants, the absorption rate increases greatly,
the reflectance decreases greatly, and a low valley is formed in the water absorption zone.
These crop spectral features are often different due to the type of crop, growing season,
growth conditions, and field management [10,11]. Therefore, the scientific and rational
use of the differences in crop spectral features can achieve remote sensing extraction of
various crops.

Temporal characteristics of crops are the specific theoretical basis for crop remote sens-
ing identification. Affected by the phenomena of “same matter with different spectrum and
foreign matter with same spectrum” and mixed pixel effects, remote sensing recognition
of crops is much more complicated than remote sensing extraction of natural vegetation
(woodland and grassland), and it is difficult to achieve ideal results based solely on spectral
features. Making full use of the typical seasonal rhythm characteristics of crops is the key
theoretical basis for distinguishing different crops from other green vegetation [12]. The
spatial characteristics of crops are an important theoretical basis for crop remote sensing
identification. Moreover, with the rapid development of image processing technology,
spatial features have become an important source of auxiliary spectral features and tem-
poral features for crop remote sensing extraction, especially for the suppression of the
phenomenon of “same matter with different spectrum” [13,14].

Agricultural production has obvious seasonality and periodicity. The phenological
phase refers to the response of the growth, development, activity, and other plant laws
and biological changes to climatic conditions. By observing and recording the growth
and decline of plants over a year, comparing their temporal and spatial distribution dif-
ferences, exploring the periodicity of plant development and activity processes, and their
dependence on surrounding environmental conditions, then, we can understand the effects
of climate change and its effect on agricultural production. Information on the temporal
and spatial distribution of crops reflects the utilization of human agricultural resources in
space. It is an important foundation for studying the pattern of agricultural ecosystems,
terrestrial ecosystems, and the impact of global changes on agriculture. It is also important
for national food security and agricultural resources and environmental research [15,16].
There are currently three main methods for obtaining regional-scale crop spatiotemporal
distribution information, which are based on statistical data, remote sensing information
extraction, and multi-source information fusion.

In addition, with the rapid development of remote sensing technology and computer
technology, remote sensing images have shown a trend toward high spatial resolution, high
spectral resolution, and high temporal resolution, and the available information provided
is becoming increasingly abundant. Spatial resolution refers to the minimum distance
between two adjacent features that can be identified in a remote sensing image. The higher
the spatial resolution, the richer the feature information contained in the remote sensing
image and the smaller the target that can be identified. Spectral resolution refers to the
recording width of the detector in the wavelength direction. A higher spectral resolution
means that an imaging spectrometer can obtain ground object radiation information in
more spectral channels. Time resolution refers to the minimum time interval between two
adjacent remote sensing observations in the same area. The smaller the interval, the higher
the time resolution.

Remote sensing image processing and classification methods have also become more
accurate over time, from traditional unsupervised classification and parameter supervised
classification to neural network classification, genetic algorithms, machine learning classifi-
cation algorithms, and other non-parametric supervised classifications, as well as a variety
of classifier combination integration algorithms.
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The emergence and development of UAV remote sensing technology provide new
ideas for planting information collection [17–19]. On small and medium scales, UAV remote
sensing can play a important role and obtain more accurate crop planting information,
which is of great significance to the development and application of crop monitoring
technology [20,21]. UAV remote sensing has the characteristics of high resolution, simple
operation, fast data acquisition, and low cost. It can quickly collect images of a certain
area and combine these with ground measurement data to fulfill crop planting information
monitoring tasks in the area. Large-scale remote sensing provides accuracy verification
and is a useful sment to satellite remote sensing and aerial remote sensing. UAV survey
information has the characteristics of timeliness, objectivity, and large coverage, and has
become an indispensable remote sensing monitoring resource [22,23].

This article is based on locally and internationally published crop remote sensing
extraction literature over the past 25 years (1985–2019). See Table 1. Through in-depth
analysis and refinement of the literature, it is concluded that the classification of farmland
vegetation can be divided into farmland vegetation classification based on (1) vegetation
index and spectral band, (2) multi-source data fusion, (3) artificial intelligence learning,
and (4) drone remote sensing.

Table 1. Summary of remote sensing classification methods for farmland vegetation.

Remote Sensing Classification of Farmland
Vegetation Classification

Farmland vegetation classification based on
vegetation index

Normalized difference vegetation index, enhanced
vegetation index, surface temperature, etc.

Farmland vegetation classification based on
spectral band

Remote sensing recognition of crops based on
single image

Remote sensing recognition of crops based on
multi-temporal remote sensing images

Single feature parameter recognition

Multiple feature parameter recognition

Multi-feature parameter statistical model

Farmland vegetation classification based on
multi-source data fusion

Data consistency scoring

Regression analysis

Farmland vegetation classification based on
machine learning

Support vector machine algorithm

Neural network algorithm

Decision tree algorithm

Object-oriented machine learning algorithms

Deep learning algorithm

Crop classification based on drone remote
sensing

2. Farmland Vegetation Classification Based on Vegetation Index

The classification of farmland vegetation based on vegetation index comprises the
Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI).
Chang et al. (2007) introduced land surface temperature (LST), combined with MODIS
7 time series single-band and time-series NDVI, as the final input feature quantity, based
on a regression tree classifier to extract the spatial distribution area of corn and soybeans
in the main producing areas of the United States [24]. Zhang et al. (2008) used fast
Fourier transform to process the MODIS NDVI time-series curve, and selected the average
value of the curve, the initial phase of the 1–3 harmonics, and the amplitude ratio as the
parameters for crop identification, and realized the corn, cotton, and crop rotation in North
China [25]. Zhang et al. (2008) determined four key phenological variables based on the
phenological law as shown by the MODIS enhanced vegetation index (EVI) time-series
curve of maize and wheat; namely, the initial growth time of the crop (Tonset), peak growth
time (Tpeak), EVI maximum time (EVIpeak), and growth termination time (Tend). This
information was combined with expert knowledge to determine the threshold of critical
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period variables, and the spatial distribution and rotation of winter wheat and corn in the
North China Plain were successfully identified [26]. Xiong et al. (2009) selected summer
and autumn crop rotation periods and MODIS NDVI average values as standards, used
a layered method to distinguish autumn harvest crop areas from other areas, and used
the BP (back propagation) neural network method to classify and effectively extract three
crop types of middle rice, late rice, and cotton in Jiangling District, Hubei Province [27].
Cai et al. (2009) also fused ETM+ images with time series MODIS NDVI images and used
the fused 24-scene time-series NDVI data to better extract rice, rape, wheat, and their crop
rotation in Zhanghe Irrigation Area [28]. He (2010) used a wavelet transform to fuseMODIS
NDVI and TM NDVI. The fused NDVI not only guarantees the spectral characteristics
of the original time series, but also increases the spatial resolution from 250 m to 30 m,
which improves the single NDVI. Moreover, the feature quantity extracts the accuracy of
the planting structure [29,30]. Huang (2010) analyzed the phenological characteristics of
crops and the NDVI time series change characteristics and found the key period for the
identification of the main crop types in three provinces in Northeast China. Through the
phenological calendar and the agricultural field, the monitoring data iteratively revise and
adjust the crop recognition threshold and build a remote sensing extraction model of crop
planting structure. Hao (2011) obtained the spatial distribution of crop planting structures
in three northeastern provinces by analyzing time-series MODIS NDVI images, using the
ISODATA unsupervised classification algorithm and spectral coupling technology [31].
Peña-Barragán et al. (2011) performed object-oriented segmentation on Aster images and
constructed the time-series vegetation index of the object (VIgreen), NDVI, etc., and another
336 feature quantities, and finally used a decision tree to realize the automatic extraction of
the planting structure composed of 13 crops in Yolo County, California [32]. Zhang et al.
(2012) compared the maximum, minimum, and average values of each time-series point in
the MODIS EVI curve of each crop to find the critical period for each crop identification and
the corresponding threshold, combined with the results of TM supervised classification,
the crop planting structure in Heilong Port area was extracted [33]. Foerster et al. (2012)
collaborated with 35 Landsat TM/ETM+ images of different seasons from 1986 to 2002 to
construct crop NDVI time-series curves and set a reasonable range values by analyzing the
difference in spectral standard deviation values of different crops at various time-series
points. The spatial distribution map of 12 crops in northeastern Germany was drawn [34].
Zhong et al. (2014) used the phenological parameters EVI, phenological index, normalized
difference decay index (NDSVI), normalized tillage index (NDTI), and other characteristic
quantities, as well as their combinations, for testing. It was found that the participation of
phenological parameters in classification can reduce the requirements of crop mapping for
ground data, and the participation of four types of feature quantities in classification can
obtain the highest overall classification accuracy [35].

3. Farmland Vegetation Classification Based on Spectral Band

Remote sensing recognition methods for crops based on spectral features comprises
visual interpretation, supervised classification, and unsupervised classification based on
image statistical classification, and various integrated classification methods based on
syntactic structure classification [36].

The visual interpretation method is used to directly observe the color, shape, texture,
spatial position, and other characteristics of various features in the image to interpret the
remote sensing image after analysis, reasoning, and inspection based on highly experienced
specialists. The advantage of this method is that it can obtain high classification accuracy,
which is mostly used in early crop yield estimation research based on remote sensing
technology [37], but its disadvantages are also obvious. For example, it requires interpreters
to have rich experience and strong professional knowledge. Moreover, it needs to be based
on a large number of on-site sampling surveys, which requires significant manpower and
material resources, leading to limitations in the method. Lastly, is not suitable for crop
identification research in a large area [38].
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The main difference between supervised and unsupervised classification is whether
there is prior knowledge of the specific classification of images. It is currently the most
basic and generalized, mature, and commonly used feature information extraction tech-
nology. Among these technologies, supervised classification has high accuracy, and the
classification result is in agreement with the actual category, but because it requires certain
prior knowledge, the workload is relatively large. On the other hand, unsupervised classifi-
cation is easier to implement; however, the accuracy of the classification results is relatively
poor [39]. Both methods have their advantages, but also have certain shortcomings. With
the continuous introduction and enhancement of new methods, theories, and technologies,
as well as the continuous development of computer technology, the classification accuracy
of supervised and unsupervised classification has also continued to improve. In order to
improve some of the limitations of traditional algorithms, an increasing number of scholars
are constantly improving classic algorithms and constructing new algorithms to improve
the accuracy of crop recognition. Therefore, various integrated classification methods based
on syntactic structure are gradually being applied [40].

However, due to the limitations in satellite image resolution, it is difficult to avoid the
phenomena of “same matter with different spectrum” and “same spectrum with foreign
matter” in the classification process. Therefore, it is difficult to obtain ideal results for crop
classification with complex planting structures based solely on the spectral characteristics
of ground objects [41].

The classification of farmland vegetation based on spectral bands can also be di-
vided into remote sensing recognition of farmland vegetation based on (1) a single im-
age and (2) multi-temporal remote sensing images. The remote sensing recognition of
farmland vegetation based on multi-temporal remote sensing images can be divided
into (1) single-feature parameter recognition, (2) multi-feature parameter recognition,
and (3) multi-feature parameter statistical models. From the aspects of applicability, data
sources, classification methods, advantages, and disadvantages, the remote sensing recogni-
tion of farmland vegetation based on a single image and on multi-temporal remote sensing
images are compared, as shown in Table 1. In general, crop remote sensing recognition
based on a single image is suitable for areas with relatively simple crop planting struc-
tures. Data sources include SPOT-5, IRS-1D, CBERS-02B, LANDSAT-TM, HJ-1B, HJ-1A,
MODIS(Note, these are the names of sensors or satellites), and other data; classification
methods include decision trees, support vector machines, neural networks, maximum like-
lihood, spectral angle mapping, etc. The characteristics of single-image crop remote sensing
recognition include high efficiency and strong operability, but the disadvantage is that the
revisit period is long, and the the accuracy is poor when key phenological period it is not
obvious. The remote sensing recognition of crops based on multi-temporal remote sensing
images is not only suitable for areas with relatively simple crop planting structures, but
also for areas with complex crop planting structures; data sources include MODIS, AVHRR,
SPOT VGT, ASTER, AWIFS, Landsat, TM/ETM+, HJ-1A/B, ETATION,( Note, these are
the names of sensors) etc. The classification methods are different according to different
parameter recognition. The main classification methods include fast Fourier transform,
unsupervised classification and spectral coupling technology, BP neural network, threshold
method, wavelet transform, minimum distance threshold method, classification regression
tree, See5.0, unsupervised classification, spectral matching technology, image segmenta-
tion, random forest, temporal decomposition model, neural network model, independent
component analysis model, CPPI index model, etc. The characteristics ofremote sensing
recognition based on multi-temporal remote sensing images include simple operation, high
efficiency, and high precision, but the disadvantages are stability, universality, and that the
selection of feature quantities may be subjective. Table 2 lists farmland vegetation remote
sensing recognition methods based on spectral bands.
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Table 2. Comparison of remote sensing identification methods for farmland vegetation based on spectral bands.

Method Applicability Data Source Classification Advantages Disadvantage

Remote sensing
recognition of
crops based on

single image

Suitable for
areas with
relatively

simple crop
planting
structure

SPOT-5 Decision tree

High efficiency
and strong
operability

Long revisit
period and poor
accuracy when

the “critical
phenological
period” is not

obvious

IRS-1D Support vector machines

CBERS-02B Neural networks

Maximum likelihood

LANDSAT-TM Spectral angle mapping

HJ-1B

HJ-1A

MODIS

Remote sensing
recognition of
crops based on
multi-temporal
remote sensing

images

Single feature
parameter
recognition

Suitable for
areas with
relatively

simple crop
planting
structure

MODIS Fast Fourier transform

Simple
operation and
high efficiency

Feature selection
is subjective and
has limitations in

areas with
complex and
diverse crop

types

TM/ETM+
Unsupervised

classification and spectral
coupling technology

BP neural network

Threshold method

Wavelet transform

Shortest distance

Multiple
feature

parameter
recognition

Suitable for
areas with

complex crop
planting

structures

MODIS Threshold method

Use multiple
spectral time
series feature
quantities to

better capture
the

characteristics
of each type of

crop that is
different from

other crops

Reduce the
efficiency of data
processing and
calculation and

increase the
accumulation of

errors

AVHRR Classification
regression tree

SPOT VGT See5.0

ASTER Unsupervised
classification

AWIFS Spectral matching
technology

Landsat Image segmentation

TM/ETM+ Random forest

HJ-1A/B

Multi-feature
parameter
statistical

model

Suitable for
areas with land
consolidation,
diverse terrain,
and complex

planting
structure

MODIS Temporal
decomposition model

Higher
extraction

accuracy of
crop planting

area

Stability and
universality need

to be further
strengthened and

improved

VHRR Neural network model

SPOT-VEG Independent component
analysis model

CPPI index model

ETATION

4. Farmland Vegetation Classification Based on Multi-Source Data Fusion

The remote sensing identification methods for crops based on multi-source data
comprises multi-source remote sensing data fusion crop identification methods and crop
identification methods that integrate remote sensing information and non-remote sensing
information. Data from different sensors vary in space, time, spectrum, direction, and
polarization. Therefore, for the same area, multiple sources of remote sensing data can
be obtained. In the process of crop identification, a single datado not provide enough
information to meet the needs of crop identification. Therefore, the use of multi-source data
can fuse remote sensing information of different types of images to compensate for the lack
of instantaneous remote sensing information and reduce the ambiguity of understanding,
thereby improving the accuracy of crop recognition [42,43].

Crop recognition based on multi-source data fusion is applicable to a wide range of
areas. The main data sources are radar SAR remote sensing, high score data, drone remote
sensing, ground remote sensing, cultivated land data, statistical data, agricultural climate
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suitability data, population density, etc. The main classification methods are Principal
Component Analysis (PCA) transformation method, HIS (hue, intensity, and saturation)
transformation method, Brovey transformation method, Gram–Schmidt transformation
fusion, NNDiffuse fusion method, SPAM (set pair analysis method) model, MIRCA2000
(global monthly irrigated and rainfed crop areas), GAEZ (global agro-ecological zones),
etc. The advantages of multi-source data are high precision, high time-effectiveness and
wide application range, which can compensate for the lack of instantaneous remote sensing
information. The disadvantages include a large workload, difficult data acquisition, poor
regional suitability of the data, and a lack of long-term sequence data sets.

Since crop area statistical data are irreplaceable and crucial in the fields of climate
change, national food security, etc., scholars have integrated statistical data and natural
factors such as temperature, precipitation, soil, and topography, as well as farmers’ planting
habits. Moreover, socio-economic factors such as population density and agricultural
product prices are integrated as non-remote sensing information and remote sensing
information to establish a crop spatial distribution model [16,44,45], In this way, the spatial
distribution information of crops in a large range can be extracted. Distribution grid maps
provide reliable basic crop spatial distribution data for global change and food security
research [46,47]. For example, Leff et al. (2004) used remote sensing information to obtain
agricultural land cover data, fused crop statistics at the national scale and some provincial
scales, and extracted the spatial distribution results of 18 major crops around the world
with a spatial resolution of 10 km [48]. Ramankutty et al. (2008) and Monfreda et al.
(2008) used linear regression models to use crop statistics at different spatial scales and
distributed them to farmland pixels with a resolution of 10 km around the world and
obtained the spatial distribution information of 11 major crops. Some scholars—based on
the cross-entropy principle of crop spatial distribution model (SPAM)—fused remotely
sensed information with agricultural statistical data and obtained high-precision crop
spatial distribution results on the global and regional scales [49,50]. Fischer et al. (2012),
using the latest GAEZ model, comprehensively used the global cultivated land distribution
map, crop suitability, population density, market distance, and other information based
on the same cross-entropy theory and method to assign crop statistical information to the
5-point grid-scale pixels to obtain the spatial distribution of 23 types of crops in the world.

However, most of the current crop spatial distribution mapping technologies that
integrate remote sensing information and non-remote sensing information use remote
sensing to obtain land use, agricultural irrigation, and arable land suitability as auxiliary
information and consider the growth mechanism and change laws of the research target
crops. The crop’s own remote sensing information (especially time-series remote sensing
information) is not fully applied directly, which hinders the accuracy improvement of
the crop spatial distribution mapping. In recent years, some scholars have shown that
the introduction of remote sensing feature parameters such as NDVI into the crop spatial
distribution mapping of remote sensing information and non-remote sensing information
(such as statistical data) reduces the dependence of classification rules on training samples.
This method is easy to understand and easy to operate. The operation can effectively
improve the accuracy and efficiency of crop spatial distribution mapping [51,52].

Multi-source remote sensing data fusion is based on combining remote sensing data
sets from different sources through a certain mathematical algorithm to complement and
synthesize the temporal and spatial resolution and accuracy of the multi-source data to
obtain a new data set. Multi-source remote sensing data usually comprise a variety of
global- and regional-scale remote sensing data sets from different countries and organi-
zations, such as the MODIS Collection 5 product developed by Boston University [53],
China’s land use remote sensing monitoring data developed by the Institute of Geography
of the Chinese Academy of Sciences [54], and the GlobeLand30 data set developed by the
National Basic Geographic Information Center [55]. These data sets come from different
sensors, different spatial resolutions, and different classification algorithms, and there are
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large inconsistencies in space [56]. Multi-source data fusion can effectively solve the above
problems and obtain data products with higher accuracy [57].

Multi-source remote sensing data fusion methods are divided into data consistency
scoring methods and regression analysis methods [56]. The former are used to build a scor-
ing table, based on the consistency of the input data set, and select high-confidence pixels
for fusion. For example, Jung et al. (2006) developed a fuzzy consistency scoring method to
generate a new 1 km spatial resolution global land cover product [58]. Following Jung et al.
(2006), Fritz et al. (2015) used an optimized fuzzy consistency scoring method to generate
a global cultivated land distribution map [59]. Lu et al. (2017) used a new hierarchical
optimization method to generate China’s integrated cultivated land distribution map [60].
The second method: first of all, establish the regression relationship between the training
sample and the input data set, and then use it to predict the probability of cultivated
land in the sample-free area. Regression models are usually based on a large number of
training samples. Regression analysis has been widely used in global- and regional-scale
fusion mapping. Kinoshita et al. (2014) integrated six remote sensing data products and
established a global land coverage and percentage map through logistic regression [61].
See et al. (2015) used the logistic geographically weighted regression (GWR) method to
establish a global model and produced a global land cover product with a spatial resolution
of 1 km [57]. In addition, Schepaschenko et al. (2015) used the GWR model to generate
a global forest cover map [62]. Table 3 lists representative papers of multi-source remote
sensing data fusion methods.

Table 3. Multi-source remote sensing data set synergy methods.

Fusion Method Data Source Research Area Spatial Resolution Fusion Process Literature Source

Data consistency
scoring

GLC2000, MODIS,
IGBP DISCover Global 1 km Calculate affinity index for multi-source

data set fusion mapping [58]

GLC-2000, MODIS VCF, GIS
data, statistical data Russia 1 km Establish a fusion information system

for multi-source data set fusion mapping [62]

GLC-2000, MODIS,
GlobCover2005,

GEOCOVER, cropland
probability layer

Global 1 km
Analyze the consistency of remote

sensing data products, set weights, and
establish fusion rules

[59,63]

FROM-GLC, GlobCover2009
et al. regional data set (Corine

Land Cover et al.), national
data set

Global 250 m Multi-index analysis, scoring different
data sets, setting weights, and fusion [64]

Regression
analysis

USGS-Hydro1k DEM,
PELCOM, slope, soil data,

meteorological data, land use
ratio data

Belgium 1.1 km

Construct a logistic regression model of
spatial autocorrelation to predict the
spatial distribution of different land

cover types

[65]

GLC2000, MOD12C5,
MOD12C4, GLCNMO, UMD,

GlobCover
Global 5′ Using logistic regression model to

predict types of land cover [62]

GLCC, GlobCover GLC2000,
UMD LC, MODIS LC,

MODIS VCF,
North America 5 km Use regression tree model to integrate

global and regional land cover products [66]

GlobCover, GLC2000, MODIS Global 1 km
Using GWR logistic regression model to

predict the type of land cover in the
sample-free area

[57]

Land cover (MODIS LC,
regional mosaics GLC2000,

GlobeCover, GLCNMO), tree
cover (Hansen’s TC, Landsat

VCF, MODIS VCF)

Global 1 km
Using GWR logistic regression model to
predict the proportion of forest coverage

in the sample-free area
[62]

5. Farmland Vegetation Classification Based on Machine Learning

The extraction of crop remote sensing based on spectral characteristics is based on
the spectral characteristics, spatial pattern characteristics, or other information of each
pixel point or region in the image in different spectral bands, using certain rules to ex-
tract different crops [67]. This method was initially based on visual interpretation, and
subsequently developed into a syntactic analysis method represented by support vector
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machine algorithms and decision tree algorithms. The syntax analysis method is based on
non-parametric classifiers and is widely used. The calculation of automatic classification is
an important direction for remote sensing image classification. Commonly used machine
learning algorithms in remote sensing image classification include neural network classi-
fiers, genetic algorithms, decision trees, and support vector machines. Due to the spatial
resolution of remote sensing data and the size of features, there are problems in remote
sensing image classification, including mixed pixels, which also occur with the same spec-
trum and different spectra of the same matter. In this regard, classification methods such
as sub-pixel decomposition classification, object-oriented classification, and plot-based
classification have gradually developed and solved some problems. Most classifications
belong to pixel-based classifications, such as maximum likelihood classification, decision
tree classification, neural network classification, etc. Sub-pixel classification includes meth-
ods such as fuzzy mean classification and spectral decomposition. Classification based
on land parcels is mainly based on classification methods combining remote sensing (RS)
and geographic information system (GIS) technologies [68]. However, due to differences
in remote sensing image data types, classification features, and study areas, there are still
some differences between remote sensing image classification algorithms. In order to learn
from the strengths of each method, the combined and integrated research of multiple clas-
sification algorithms has been given more attention. The following is a brief introduction
to farmland vegetation classification methods commonly used in remote sensing image
machine learning.

5.1. Support Vector Machine Algorithm

Support vector machine (SVM) is a machine learning method that was developed
by Vapnik et al. in the mid to late 20th century on the basis of statistical theory [69]. The
support vector machine algorithm is essentially a linear classifier but can deal with non-
linear problems; that is, it is based on the principle of a linear classifier and evolved after
the principle of structural risk minimization and the kernel theory were introduced [70].
Nowadays, support vector machine theory has been widely used in the study of land use
type classification and crop area extraction and its spatial pattern dynamic changes [71,72].
Breunig et al. used SVM, maximum likelihood (ML), spectral angle mapper (SAM), and
spectral information divergence (SID) methods to extract different soybean varieties in
Brazil. Among them, SVM and ML showed the best classification accuracy, 81.76% and
89.90%, respectively; the accuracy of the other two classification methods was less than
75%. However, because precipitation and irrigation increase the soil moisture content,
which interferes with the extraction of soybeans, corn, rice, and wheat to a certain extent,
the extraction of crops close to water sources and irrigation areas poses new challenges
to classification by support vector machines [73]. Based on multi-temporal HJ-1A/B
data, Jin et al. used the support vector machine algorithm to study the classification and
mapping of irrigation and dry-farming wheat. The results showed that the support vector
machine algorithm can be used in the spatial pattern mapping of irrigation and dry farming
wheat, effectively avoiding the subjective influence of actual experience threshold setting
in supervised classification [74]. The advantages of the support vector machine are its
simple structure, global optimization, sufficient adaptability and generalization ability,
strong robustness, ability to solve high-dimensional nonlinear features, and the avoidance
of problems such as over-learning [75–78]. Compared with neural networks and decision
classifiers, support vector machines have the advantage of effectively processing limited
sample data. Moreover, support vector machines use different kernel functions to solve
nonlinear problems. Therefore, the support vector classifier has favorable promotion ability.
Furthermore, it is widely used in land use and land cover classification for specific feature
information extraction (such as crops, forests, buildings, impervious layers), and to change
monitoring research [76].

The further development and application of non-parametric classifiers have created a
new development direction for the improvement and stability of classification accuracy.
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Therefore, in order to overcome the shortcomings caused by a single classifier, the develop-
ment and application of combined classifiers in recent years have become another popular
direction in this field; however, improvements in both the original and new algorithms
need to be further studied. In addition, the problem of remote sensing extraction of crop
spatial pattern information, how to select the appropriate classification algorithm, and the
setting of the classifier parameters are also urgent problems to be solved [79].

5.2. Neural Network Algorithm

The neural network algorithm is a non-parametric supervised classification method
that simulates the learning process of the human brain [80–82] and was the earliest machine
learning algorithm. Compared with the parameter classifier, the neural network classifier
does not require the assumption of statistical distribution characteristics, so it is suitable
for the classification of remote sensing images with any distribution characteristics. The
neural network algorithm is also suitable for the classification of multi-source remote
sensing image data. Neural network classification is widely used in land use and land
cover classification and specific feature information extraction [82–85]. Furthermore, neural
network algorithms have wavelet neural networks, radial basis neural networks, three-
dimensional Hopfield neural networks, and back-propagation neural networks. Currently,
the BP neural network is the most widely used; however, the neural network algorithm
is based on the principle of minimizing empirical risk. When the samples tend to be
infinite, the model obtains the optimal result. In reality, it is impossible to collect infinite
samples. Moreover, the neural network algorithm requires a large number of samples to
repeatedly train the model. Lastly, the calculation speed is slow and the efficiency is low,
so its generalization is also limited [86].

5.3. Decision Tree Algorithm

Decision tree classification is a statistical-based non-parametric supervised classifica-
tion method that uses the structure of the tree, hierarchical classification as the guiding idea,
and a certain segmentation threshold principle to classify each pixel of the remote sensing
image into different types [86,87]. It first builds a discriminant function based on the train-
ing sample and builds a branching tree based on the value obtained by the discriminant
function. Then, it builds the next branch of the tree repeatedly on each branch of the tree
until all types are classified [79]. The decision tree algorithm has the advantages of clear
structure, fast calculation speed, appropriate robustness and flexibility, suitability for using
multiple features, high classification accuracy, and easy understanding of classification
principles [88]. Moreover, pixel-based classification and object-oriented classification can be
realized. In order to solve different problems in decision tree classification, different types
of decision tree algorithms have also been developed. However, the decision tree algorithm
requires a large number of training samples. Moreover, there is a lot of uncertainty in the
determination of the threshold of split nodes, and its universality needs to be improved.

Random forest is a typical method in decision trees. The random forest (RF) algorithm
is a new machine learning method that was proposed by Leo Breiman and Adele Cutler in
2001 [89]. It has a high tolerance for outliers and noise and is not prone to overfitting. It uses
the bootstrap re-sampling method to extract multiple samples from the given prediction
data, models each bootstrap sample separately, and finally synthesizes the prediction
results of multiple decision trees and votes to determine the final result [90]. In recent
years, the random forest algorithm has been widely used in remote sensing monitoring of
crop spatial pattern information. Schultz et al. combined image segmentation technology
with random forest classification technology to establish a set of object-oriented automatic
classification processes and applied it to the classification of staple crops in São Paulo,
Brazil. The mapping accuracy and user accuracy for soybeans reached 92.5% and 85.3%,
respectively [91]. In the absence of yearly training samples, Zhong et al. used phenological
indicators to classify soybeans and corn based on the random forest algorithm. The results
showed that when the training sample data are consistent with the mapping year, the
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overall classification accuracy can exceed 88%; however, when the training sample data are
inconsistent with the mapping year, the input phenological index can lead to an overall
classification accuracy within an acceptable 80% [35]. Song Qian used the random forest
algorithm to learn and train spectrum-texture high-dimensional feature space. Under the
GF-1 (GF-1 is a high-resolution Chinese satellite) remote sensing image, the introduction of
texture features reduced the misclassification rate for soybeans and corn and increased the
extraction accuracy by 3.57% and 2.86%, respectively [92].

5.4. Object-Oriented Machine Learning Algorithms

With continuous improvements to the spatial resolution of remote sensing images, the
image scenes become increasingly complex, and the phenomena of “the same spectrum of
foreign matter” and “different spectrum of the same matter” are becoming increasingly
important. Pixel-based classification has a serious salt-and-pepper effect, and the accuracy
of image information extraction is limited. For this reason, object-oriented classification
methods that can comprehensively utilize spectral features, texture features, shape fea-
tures, and topological information with image spots, or objects, as the basic unit of image
processing have begun to emerge [93–95]. Compared with pixel-based classification, object-
oriented classification can extract information at multiple scales through the combined
use of geographic information systems and remote sensing technologies, which can better
reduce the salt-and-pepper effect and improve the accuracy of information extraction [96].
Object-oriented classification is widely used in land use and land cover type classifica-
tion [97], specific feature information extraction, and change monitoring [98]. However,
the optimization of scale in object-oriented classification is a difficult problem [94].

5.5. Deep Learning Algorithm

Deep learning began with an article published by Hinton et al. in “Science” in 2006 [99].
It is a machine learning algorithm based on a multilayer neural network. The deep learning
algorithm is completed through four steps: data processing, feature extraction and selection,
forward guidance of the neural network, and tuning of the neural network [100]. At present,
deep learning algorithms are used more in the extraction of hyperspectral remote sensing
image information [101–103].

In general, remote sensing image classification technology and methods are rapidly
developing and there are many types. However, the most effective classification in different
situations is yet to be fully understood. Currently, pixel-based classification methods are
widely used. However, the classification accuracy may be affected by mixed pixels. The
classification method based on sub-pixels was developed to solve the problem regarding the
confusion of pixels. The sub-pixel classification method has a positive effect on improving
the classification accuracy of medium spatial resolution and low spatial resolution data and
only uses spectral information. The classification—based on plots or object-oriented—is
suitable for the use of various features such as spectral information, spatial structure,
contextual features, and shapes. However, object-oriented classification methods are very
suitable for high-resolution spatial data [102]. Comparative analysis studies show that
non-parametric machine learning methods based on multiple features outperform other
methods [68].

6. Crop Classification Based on Drone Remote Sensing

The essence of crop type extraction is remote sensing interpretation. Through the spec-
tral characteristics and texture characteristics of different crops in UAV images, it is possible
to obtain planting information such as crop category and crop spatial distribution [104,105].
In terms of using drones to monitor crops, Rcols et al. used multi-rotor drones equipped
with Pentax A40 cameras to obtain onion images, determine surface cover crops, establish
a simple linear relationship between canopy density and leaf area index, and estimate
onion leaf area index. The main advantages of this method include losslessness, simplicity,
and time saving [20]. Li Bing et al. used unmanned aerial vehicles equipped with ADC
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multi-spectral cameras to monitor field wheat in different phases, providing a reference for
the study of high-resolution image coverage [106]. Tian Zhenkun et al. used the Kyosho
Caliber ZG 260 remote-controlled gasoline helicopter, equipped with the ADCAir canopy
measurement camera (Tetracam, Los Angeles, CA, USA), and used winter wheat as the
research object, PixelWrench2 software (Los angeles, CA, USA, version 1.5) to export the
data and calculate the spectral reflectance and NDVI, and proposed a fast classification
extraction method. This method has high accuracy and universality with characteristics
such as speed and low cost [107]. Xu et al. used polynomial correction on images. After
geometric correction, the accuracy of the obtained field information met the requirements
of precision agriculture [108,109]. Popescu et al. used LBP texture features in RGB and
HSV space to achieve UAV image segmentation [110]. Jin et al. used drone images to
estimate the density of wheat plants, and Milas et al. used drone images for shadow
classification [111,112]. The above research shows that UAV remote sensing has abundant
applications in agriculture.

The texture features of crops are the entry point for crop classification and extraction.
Extracting texture features through image filtering can allow the recognition or classifica-
tion of specific crops in remote sensing images [110,112]. For example, Li et al. established
corresponding texture rule sets to extract tree crowns from UAV images [113]. Zhang
Chao et al. obtained UAV remote sensing image data with high spatial resolution, studied
the calculation scale of the texture characteristics of seed production, and through com-
parative analysis, determined that the most suitable resolution for distinguishing seed
production and field corn is 0.6–0.9 m. Finally, a 0.7 m resolution image was used to verify
the method, and the decision tree method was used to obtain seed production information,
which provided support for the high-spatial-resolution remote sensing management of the
seed production cornfield [114]. Zou Kunlin et al. used drones equipped with visible light
cameras to collect images of cotton fields and surrounding areas. Through the vegetation
index and texture characteristics, the effects of different characteristics on the defoliated cot-
ton field, non-defoliated cotton field, winter wheat field, and bare area were compared and
analyzed. The results showed that the vegetation index feature can effectively distinguish
the non-defoliated cotton field, the texture feature can effectively distinguish bare land and
defoliated cotton fields, and the use of spectral and texture features can effectively extract
the area of cotton fields [115]. Li Ming used UAV remote sensing to obtain images of rice
planting areas, using Agisoft Photoscan software (St. Petersburg, Russia, version 1.7.5) to
stitch the images, and segmented the test area to extract spectral, geometric, and texture
features, establishing a two-class logistic regression model for identifying rice plots.[116].
Dai Jianguo et al. obtained visible light images through remote sensing of drones, extracted
and optimized spectral and texture features, and classified the main crops in northern
Xinjiang. The results showed that the support vector machine classification effect was
the most optimal, and the classification accuracy for α, summer squash, corn, and cotton
crops reached more than 80%, which can provide a reference for the crop information
survey [117]. Xue et al. used drones to obtain orthophoto and terrain data. At a resolution
of 0.5 m, the terraces were segmented and extracted based on the object-oriented method
and the two data sets were combined. The results showed that the use of spectrum, texture,
and terrain information for the classification results obtained by the SVM classification
method is available [118].

The physical properties of crops can also be used for classification. The canopy
structure of different crops varies significantly, such as height, shape, leaf inclination, etc.
However, traditional remote sensing cannot obtain high-resolution canopy structure data.
With the rapid development of UAV remote sensing and sensor technology, it is possible
to obtain more data types, providing a new development space for crop remote sensing
classification. Extracting the physical properties of crops from human–machine images
has become a new topic of interest [119]. Among these properties, Bendig et al. confirmed
that the plant height extracted from CSMs (crop surface model) has sufficient accuracy
and established an estimation model of barley plant height and biomass [120]. Zhang et al.
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used UAV images and digital surface models to extract spatial information, and extracted
distribution information such as trees, roads, and water bodies [121]. To achieve the classi-
fication of land cover types, Kim et al. generated a TIN (triangulated irregular network)
model by manually collecting ground control points to generate DEM (digital elevation
model) data; calculated the difference between DSM, DEM, and NDSM (normalized DSM);
and selected RGB band, NDSM, and improved NDVI as features [122]. Nevalainen et al.
extracted three-dimensional features from RGB point clouds and combined multi-spectral
features to classify trees [123]. Yang et al. used DSM information to extract rice lodging
information and verified that DSM information is helpful in distinguishing vegetation
lodging [124]. Zisi et al. used multi-spectrum, texture, and height information to monitor
weed distribution [125]. Mao Zhihui et al. used UAV DSM images to extract corn lodging
information and verified that the accuracy of DSM obtained by oblique photography is
better than that obtained by orthophotography [126]. Currently, the use of DSM data as
classification features is divided into two types of processing. The first type is to directly
use DSM as the classification feature for classification; the second type is to collect ground
control points in the research area during crop growth and use interpolation to generate
DEM through the subtraction of DSM and DEM to obtain the relative height characteristics.

The resolution of crops on UAV remote sensing images does not entirely depend on
the spatial resolution. Moreover, the resolution results are related to the types and sizes of
crops and the brightness and structure of the farmland. In different studies, the resolution
of drones used by agricultural researchers varies. For example, Li used drone remote
sensing images with a resolution of 1.7 cm to estimate rice yield [127], Lottes et al. used
drones to obtain a resolution of 1.5 cm for crop and weed classification research [128], and
Yang et al. used images with a resolution of 5.5 cm to evaluate rice lodging [128]. The above
research shows that when conducting crop research, different research objects require
different resolutions of UAV images, and the application prospects of ultra-high-resolution
UAV images are broad.

7. Summary and Outlook

Firstly, medium- and high-resolution image data are mostly concentrated in the study
of crop spatial pattern distribution in a small area, and medium- and low-resolution remote
sensing images are mostly used in large areas. However, there is a lack of information
extraction and spatial distribution data for farmland vegetation in large areas based on
medium- and high-resolution image data. At present, most research is focused on the
remote sensing monitoring of spatial distribution changes in different land use types, and
there is a lack of in-depth analysis of the spatial distribution changes for a single crop.
Current studies on the dynamic changes in crop spatial patterns are mostly based on
factors such as changes in the crop area, crop spatial distribution, and land use types, or
using model methods. The comprehensive use of crop area information and the landscape
pattern index to study the dynamic changes in crop spatial patterns remains insufficient.

Secondly, most of the data sources used to extract the spatial distribution of farm-
land vegetation are relatively limited. Due to differences in satellite sensors, classification
schemes, and classification methods, there are large differences in accuracy and spatial
consistency between the data sources, resulting in relatively large differences in the classifi-
cation results for farmland vegetation. The ability of remote sensing to extract large-scale,
multi-level, high-precision cultivated land use pattern indicators and their changes is weak.
For regional- and global-scale research, the spatial resolution of the data source is low or
sampling statistics are directly used, which are highly subjective, and the displayed culti-
vated land use pattern index is not accurate. Moreover, it can only qualitatively explain the
problem and cannot be used as an aid to carry out the quantitative research. Therefore, the
ability of remote sensing extraction of large-scale, multi-level, high-precision farmland-use
pattern indicators and their changes must be further strengthened.

Third, the selection of crop classification features in UAV remote sensing images must
be expanded, and the extraction accuracy needs to be further improved. The development
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of UAV remote sensing provides a new development space for crop remote sensing classifi-
cation. The construction of new crop remote sensing classification feature variables with
suitable classification effects and the comprehensive utilization of these feature variables
have become the core content of future remote sensing classification methods. Future
developments include the effective extraction of crops’ spatial physical properties from
UAV images, such as height, shape, and surface fluctuations, and texture features to classify
crops, thereby improving classification accuracy.

Finally, in this article, we have demonstrated that the future development direction
of crop remote sensing recognition includes several major developments. It is necessary
to (1) further strengthen the ability of remote sensing recognition of large crop areas
and improve the temporal resolution of remote sensing data [129]; (2) extensively carry
out remote sensing spatial data mining research, collect results from various disciplines
(including machine learning, statistics, artificial intelligence, etc.), and mine the hidden
information in remote sensing images and data; (3) improve the utilization of multi-source
remote sensing information and strengthen the comparative use of multi-source data;
(4) expand the application field and scope of agricultural remote sensing and promote
the interdisciplinary application of agricultural remote sensing; and (5) strengthen the
promotion and use of domestic satellite remote sensing data to promote businesses. (6) Due
to our limited knowledge, this review article inevitably omits many other important
studies, as well as operational land cover products such as Agriculture and Agrifood
Canada Annual Crop Inventory Map (Annual Crop Inventory—Open Government Portal
(canada.ca)).
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