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Abstract: A field area coverage-planning algorithm has been developed for the optimization and
simulation of capacitated field operations such as the organic fertilizer application process. The
proposed model provides an optimal coverage plan, which includes the optimal sequence of the
visited tracks with a designated application rate. The objective of this paper is to present a novel
approach for route planning involving two simultaneous optimization criteria, non-working distance
minimization and the optimization of application rates, for the capacitated field operations such
as organic fertilizer application to improve the overall operational efficiency. The study and the
developed algorithm have shown that it is possible to generate the optimized coverage plan based
on the required defined capacity of the distributer. In this case, the capacity of the distributer is
not considered a limiting factor for the farmers. To validate this new method, a shallow injection
application process was considered, and the results of applying the optimization algorithm were
compared with the conventional methods. The results show that the proposed method increase
operational efficiency by 19.7%. Furthermore, the applicability of the proposed model in robotic
application were demonstrated by way of two defined scenarios.

Keywords: route planning; operational planning; operational efficiency; optimization; simulation;
precision agriculture; area coverage planning; fertilization; robotic application

1. Introduction

Agricultural field area coverage planning enhances the efficiency of commercial auto-
steering or navigation-aid systems on agricultural machines [1–3]. Area coverage plans
provide a path that visits all points of a targeted spatial environment under the criterion
of minimization of unproductive time or traveled distance and avoiding machine maneu-
vering in the already worked area or cropping area [4,5]. The benefits of area coverage
planning include optimized driving patterns, reduced overlaps and skips, reduced soil
compaction, and overall enhanced efficiency of agricultural machines [6,7]. As an example
of area coverage planning, B-patterns [8] algorithmically find the optimal order of field
working areas to minimize the non-working traveled distance by the agricultural vehicle.
Hameed et al., 2011 [9] presented an algorithmic approach to determine the optimal driving
angle and sequence of tracks under the criterion of minimizing the operational time and
the amount of overlapped covered areas.

Agricultural capacitated field operations denote the type of operations that transport
material in and out of the field. Examples of these operations include planting, spraying,
fertilizing, or removing material from the field such as harvesting. In these operations, due
to the limitation of machine load capacities, there are capacity constraints related to the
materials that should be carried by the vehicle. Therefore, in order to complete the task
in capacitated operations, machines need to visit the depot and return to the field several
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times for refilling or unloading. Several coverage planning methods for the agricultural
field have been recently developed [10–12]. However, the case of capacitated operations has
not been explicitly examined due to the complexity of consecutive decision-making related
to the in-field driving actions of these operations. For instance, in the case of a fertilizing
operation, when the distributer is positioned in the middle of a track and a reloading action
is required (e.g., the tanker become empty and it is urgent to revisit the depot for refilling),
then there are various options open to the machine’s operator to either continue in the
same direction in that track to reach to the headland part and then go back to the depot
or the operator can do a U-turn (180-degree turn) and go to an adjacent unworked track
to return to the depot. In these studies [1,4,13,14], the capacitated field operations casted
into the examples of vehicle routing problem (VRP). They showed that the agricultural
fleet management problem could be expressed as the traversal of weighted graphs under
some operational constraints. These papers [15,16] proposed a practical planning approach
for harvesting a field with several capacitated combine harvesters and transport units.
References [17–19] provided a route planning approach for the operations of agricultural
machines in order to reduce the risk of soil compaction in the field. Jensen et al. (2015) [20]
presented an algorithmic method for the optimization of capacitated field operations using
the case of liquid fertilizing. The algorithm consists of two optimization parts. In the first
main part, the optimal sequence of pre-defined driving actions is obtained using a state
space search technique, which minimizes the non-productive traveled distance during the
operation’s interruption for refilling and the corresponding resuming of the operation. In
the second post-processing part, the optimal track sequence is found using the traveling
salesman problem methodology, which minimizes the nonproductive traveled distance
during the headland turnings.

The objective of this paper is to provide a novel approach with two optimization
criteria, distance minimization and the optimization of application rates, for the capacitated
field operations such as organic fertilizer application to improve operational efficiency.
Different elements of the organic fertilization operation were considered in the algorithm
to determine the optimal coverage plan for the agricultural field based on the capacity
of the applied machine. The presented approach has two parts. In the first part, the
field is represented geometrically where the boundary of the field and headland area are
shown as polygons and the main cropping areas are partitioned with straight work areas
(tracks) according to the defined reference line (usually the longest edge of the field). In the
second part, the algorithm will find the optimal sequence of the tracks with a designated
application rate for each track while minimizing the total non-working traveled distance
and optimizing the application rate for all the tracks.

2. Materials and Methods

The main task in a manure distributing operation is to cover the crop area of the field
with the required amount of fertilizer according to the agronomical and environmental
norms. Due to the nature of capacitated operations, in order to complete the task, the
depot should be visited several times for refilling, and in manure distributing operations,
usually farmers prefer to visit the depot with an empty tank. Therefore, the capacity
of the distributer is an important factor in generating a coverage plan for a field. The
proposed algorithm in this paper will entail a solution based on the fixed capacity of the
distributer regardless of the size of the field. In cases that the demand of a track is more
than the capacity of the slurry distributer, by considering the extension action (adjusting
the application rate of a track, to be sure that it is possible to cover it by one load) [6], the
algorithm divided those tracks into smaller parts, which can be covered with one load.
Moreover, the optimized application rate for each part is calculated by the algorithm and
all the turnings are limited to the headland part.
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2.1. Division Action

The vehicle’s load capacity, as an important factor, has effects on the operational
efficiency of the capacitated operations. Sometimes, due to the small capacity of the
machine, it is not possible to completely cover a track with one load even by considering
the extension action. Division action is used as a solution in this study to overcome this
problem. In this action, a long track has been divided into smaller parts, which are able
to be covered by the vehicle concerning the extension action. The black lines in Figure 1
refer to the parts where the r maximum extension is equal to the capacity of the tanker. The
following criteria should be considered to generate the list of long tracks:

Track_max_extension = Track’s demand × (1−%P) (1)

Figure 1. Division action.

If the amount of maximum extension for a track is higher than the amount of vehicle’s
load capacity, then that track considered as a long track and then added to a list. Then
the following action is considered for each track in the list of long tracks to determine the
number of divisions:

Number of divisions = Ceil (Track_max_extension/Vehicle Capacity) (2)

2.2. Geometrical Representation Model

The first stage of the proposed method concerns the geometrical representation of the
field to generate predetermined fieldwork tracks by applying geometrical primitives such
as points, lines, and polygons. The outputs of the first stage as showed in Figure 2 are a set
of line segments or polylines representing the fieldwork areas and headland passes that
can be followed by the vehicle [4].
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Figure 2. Geometrical representation model.

2.3. Cost Matrix Generation

After dividing the long tracks into smaller parts, two new nodes are generated for
each part. These new nodes should be added to the field graph and the cost matrix should
be updated based on them. According to Figure 3, the original cost matrix includes the
nodes (0, 1, 6, 7, 12, 13, 16, 17, 20, 21, 24, 25, 26, 27, 28), and it shows the distances of
these nodes from each other. For example, after adding the node 3, the distance from this
node to the others can be determined by adding the length L1 to the values in the column
corresponding to the node 1 in the original cost matrix [6]. The length L2 is not considered
due to this rule that the orange parts are going to be covered at the beginning and in this
study, it is not allowed to reach to a node by crossing a pre-applied area with a full tanker.
Moreover, the distance between two new nodes such as nodes 3 and 9 can be calculated by
adding the length (L1 + L3) to the distance of the nodes 1 and 7 from each other.

Figure 3. The process of updating the original cost matrix; L1: The distance from node 3 to the head
of the first track (node 1); L2: The distance from node 3 to the bottom of the first track (node 6); L3:
The distance from node 9 to the head of the second track (node 7); L4: The distance from node 9 to
the bottom of the second track (node 12).

2.4. Optimization Algorithm

The problem explored in this study is to find the optimal traversal sequence of field-
work tracks with minimum non-working distance together with the adjusted application
rate for each track. Since there is a large discrete search space in this problem, it can be
classified as a well-known VRP NP-hard (non-deterministic polynomial-time) problem
where tracks are covered instead of customers and vehicles could refill at the depot. The
meta-heuristic algorithm Simulated Annealing (SA) is applied to approximate the global
optimum for this problem. A new solution in the SA algorithm is generated by applying
various neighborhood operators on an initial solution [6]. In order to make an initial
solution, in the first step, the algorithm places the orange parts (Figure 3) into groups
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which can be covered by one load. Then the green parts (which can each be covered by one
load) will be added to the initial solution, and at the end, the headland parts are added to
complete the coverage plan. The following flowchart (Figure 4) represents an overview of
the process of generating an initial solution.

Figure 4. Overview of the process of generating an initial solution.
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The geometrical representation model partitioned the field and generated the field-
work tracks with their corresponding demand. Then the algorithm checks if all the tracks
can be covered based on the capacity of the spreader by considering this criterion: (1-
tolerance from target application rate) × track’s demand <= capacity of spreader. If all
the tracks fit in this criterion, then algorithm will generate an initial solution according to
the first paper [6]. Otherwise, it will select a random value for the tolerance from target
application rate from the range (−%P,+%P). Then, based on the selected %P, it will apply
the previous criterion to detect the long tracks. Then, based on the formula number 1, it
will divide the long tracks into some parts. Then, two lists of tracks will be generated. The
first group ‘A’ includes the normal tracks as well as the last part of the detected long tracks
(the orange parts in the Figure 3). The second group ‘B’ includes the other parts of the
long tracks (the green parts in the Figure 3). Then it will randomly select one track, and
then check the following capacity criterion: (Accumulation of track’s demand × (1−%P)
<= spreader’s capacity). If the track’s demand fits into the previous criterion, then it will
check if all the tracks in group ‘A’ is covered or not. This loop is going to continue until the
demand of the added track will not fit in the capacity criterion. Then, the refilling process
(visit to depot) will happen, and after that, the algorithm checks if all the tracks in group ‘A’
are covered or not. After covering all the tracks in group ‘A’, the algorithm takes a random
track from group ‘B’. The same procedure will be applied until all the tracks inside the
group ‘B’ are covered. Then, the headland edges are going to be added to the solution by
considering the same procedure. Then the number of routes (trips) should be equal to the
ceil (the amount of required fertilizer for the field/distributer capacity) to be sure to visit
the depot with empty tanker. Then, the application rate for each track will be calculated
and checked to see if they fit into the range ±%P of the target application rate; otherwise,
the algorithm will start again by choosing a random value for P.

3. Results

In the first part of the results, the proposed algorithm is compared with the conven-
tional method applied by the farmers to show the improvement in operational efficiency
caused by using this algorithm. A trailing hose fertilizing operation was performed and
recorded. The GPS data gathered by the machine were plotted in MATLAB® software
(version R2018b).

Figure 5 geometrically represents the sample field 1, and Figure 6 demonstrates how
farmers performed the slurry application on that field. Based on the recorded data, the
total distance traveled by the machine in the conventional method is 96,009 m, which 8359
m of that are productive and 87,650 is unproductive distance.
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Figure 5. Field representation for sample field 1 with a size of 12 hectares.

Figure 6. Sample field 1 with the conventional method.
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The input parameters applied in the model showed in the Table 1 and by using the
proposed method the optimal coverage plan was generated and the results were showed
in the Table 2.

Table 1. Input parameters to the model for sample field 1.

Parameters Values

Working width (meter) 28
Turning radius (meter) 14

Capacity (liter) 24,000
Working speed (m/s) 1.6

Non-working speed (m/s) 3.82
Target application rate (liter/m2) 3

Tolerance from target application rate (%) ±30

Table 2. Best solution for the sample field 1, capacity 24 m3 (Optimized plan).

Best Solution

<0, 25, 0, 27, 24, 0, 15, 0, 19, 12, 5, 0, 3, 0, 1, 0, 9,
0, 7, 0, 13, 0, 17, 0, 21, 0, ‘69h’, ‘70h’, ‘71h’, ‘72h’,

‘73h’, ‘74h’, 0, ‘63h’, ‘64h’, ‘65h’, ‘66h’, ‘67h’,
‘68h’, 0, ’44h’, ‘45h’, . . . , ’61h’, ‘62h’, 0, ’30h’,

‘31h’, . . . , ’42h’, ‘43h’, 0, ’15h’, ‘16h’, . . . , ’28h’,
‘29h’, 0, ’14h’, ‘13h’, . . . , ’5h’, ‘4h’, ‘3h’, 0>

Non-working traveled distance (meter) 17,644.7
Non-working time (minutes) 76.98

In order to have a complete comparison, the traveled distance and time from the
gate to the depot and back to the gate is calculated equaling 3100 m and 11.7 min. This
distance should be added to the result of the simulation model for the traveled non-working
distance. Figure 7 depicts the optimized coverage plan generated by applying the proposed
method in this study. The output of the optimization algorithm is an optimal coverage
plan that is used to generate a log file by applying the simulation model. At the end, the
total non-working traveled distance and time calculated and presented as the results of the
simulation model.

Figure 7. Sample field 1 with the proposed method applied.
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According to the Table 2, in the optimized coverage plan, there are 17 routes, which
means that the depot should be visited 17 times to complete the operation. Therefore,
to calculate the total non-working distance, 17 should be multiplied to the value of the
distance from the gate to the depot and back to the gate, and then this amount should be
added to the results of the simulation model.

The results of the simulation model for the optimized plan showed that the non-
working traveled distance is about 17,645 m, and by adding the amount 52,700 (17* 3100 m)
to that, the total non-working distance for the optimized plan is 70,345 m. Based on the pre-
sented comparison between the optimized and conventional plan in the Table 3, applying
the proposed algorithm increases the operational efficiency for the farmers by 19.7%.

Table 3. Comparison between conventional and optimized plan.

Non-Working Traveled Distance (m)
Optimized Plan 70,345

Conventional Plan 87,650

Operational Efficiency 19.7%

In the second part of the results, to show the benefits of the proposed algorithm in
this study, the method presented by Jensen, Bochtis, and Sørensen (2015) was considered
for comparison. The properties of the distributer that was used in the shallow injection
fertilizing operation (Operation B) were presented in the Table 4.

Table 4. The characteristics of the sample field and the distributer.

Parameters Values

Tank capacity (m3) 25
Working width (m) 7.5

Machine turning radius (m) 7.5
Target application rate (liter/m2) 1

Tolerance from target application rate (%) ±30

The presented data for the fertilizing operation were applied as an input for the
simulation model. The results of the simulation model for covering the sample field with
the mentioned distributer were demonstrated in the Table 5 and Figure 8 presented the
output of the geometrical representation model, (a) for a normal slurry distributer, and
(b) for robotic application. The list of application rates for each edge ID presented in the
Table A1, Appendix A.

Table 5. The optimized field coverage plan with the results of the simulation model for the fertilizing
operation by a distributer with the capacity of 25 m3 in the sample field.

Solution < 0, 16, 13, 20, 21, 24, 25, 28, 29, 32, 17, 0, 12, 5, 4, 1, 8,
9, ‘3h’, ‘4h’, ‘5h’, . . . , ‘135h’, ‘136h’, ‘137h’, 0 >

Non-working distance (meter) 1292
Non-working time (minutes) 5.64

Working distance (meter) 6203
Working time (minutes) 43.3
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Figure 8. (a): The field partitioning for the sample field based on the distributer with the capacity equal to 25 m3. (b): The
field partitioning for the sample field for the robotic application with a small capacity equal to 0.8 m3.

As the benefits of the presented algorithm in this study, it is possible to generate
the optimized coverage plan for the robotic application with very small capacity. Two
scenarios were defined for the robotic application based on either by crossing from the wet
area or by avoiding that. Table 6 shows the generated solution for the first scenario which
avoids passing the robots from the wet parts of the field with full tank. The solution is an
optimized field coverage plan for a fleet of robots (three robots) by considering two depots
for the sample field. The list of application rates for each edge ID presented in the Table A2.

In the second scenario, due to this fact that the weight of the robot is much lighter than
a big slurry distributer, it is possible to cross the wet area with the robots only at the end of
the tracks (the orange parts, demonstrated in Figure 8b) and only one time. Table 7 shows
the generated solution for the second scenario and the outputs of the simulation model.
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Table 6. The optimized field coverage plan with the results of the simulation model for the fertilizing operation by using
three homogenous robots with the capacity of 0.8 m3 in the sample field (1st scenario).

Solution (1st Scenario)

<1, 106, 109, 114, 117, 122, 125, 130, 133, 138, 2, 85, 90, 93, 98, 101, 142, 145, 1, 82, 77, 74, 69, 1, 150,
153, 158, 161, 166, 169, 1, 66, 61, 58, 2, 53, 50, 45, 1, 174, 177, 182, 185, 1, 42, 37, 34, 2, 29, 26, 21, 1, 18,
13, 1, 10, 5, ‘28h’, ‘29h’, . . . , ‘49h’, ‘50h’, 1, 3, 2, 7, 2, 11, 2, 15, 2, 19, 2, 23, 2, 27, 2, 31, 2, 35, 2, 39, 2,
43, 2, 47, 2, 51, 2, 55, 2, 59, 2, 63, 2, 67, 2, 71, 2, 75, 2, 79, 2, 83, 2, 87, 2, 91, 2, 95, 2, 99, 2, 103, 2, 107, 2,
111, 2, 115, 2, 119, 2, 123, 2, 127, 2, 131, 2, 135, 2, 139, 2, 143, 2, 147, 2, 151, 2, 155, 2, 159, 2, 163, 2,

167, 2, 171, 2, 175, 2, 179, 2, 183, 1, ‘86h’, ‘87h’, . . . ,’128h’, ‘129h’, 2, ‘134h’, ‘135h’, . . . ,’154h’, ‘155h’,
‘5h’, ‘6h’, . . . ,’26h’, ‘27h’, 1, ‘130h’, ‘131h’, ‘132h’, ‘133h’, ‘51h’, ‘52h’, . . . ,’84h’, ‘85h’, 1>

Non-Working Distance
(Meter)

Non-Working Time
(Minutes)

Working Distance
(Meter)

Working Time
(Minutes)

18,026 37.55 5475 18.13
14,093 29.35 5536 17.97
14,257 29.7 5465 17.49

46,376 37.55 16,476 18.13

Table 7. The optimized field coverage plan with the results of the simulation model for fertilizing operation by using three
homogenous robots with the capacity of 0.8 m3 in the sample field (2nd scenario).

Solution (2nd Scenario)

<1, 106, 109, 114, 117, 122, 125, 130, 133, 138, 2, 85, 90, 93, 98, 101, 142, 145, 1, 82, 77, 74, 69, 1, 150,
153, 158, 161, 166, 169, 1, 66, 61, 58, 2, 53, 50, 45, 1, 174, 177, 182, 185, 1, 42, 37, 34, 2, 29, 26, 21, 1, 18,
13, 1, 10, 5, ‘28h’, ‘29h’, . . . , ‘49h’, ‘50h’, 1, 4, 2, 7, 1, 12, 2, 15, 1, 20, 2, 23, 1, 28, 2, 31, 1, 36, 2, 39, 1,
44, 2, 47, 1, 52, 2, 55, 1, 60, 2, 63, 1, 68, 2, 71, 1, 76, 2, 79, 1, 84, 2, 87, 1, 92, 2, 95, 1, 100, 2, 103, 1, 108,
2, 111, 1, 116, 2, 119, 1, 124, 2, 127, 1, 132, 2, 135, 1, 140, 2, 143, 1, 148, 2, 151, 1, 156, 2, 159, 1, 164, 2,
167, 1, 172, 2, 175, 1, 180, 2, 183, 1, ‘86h’, ‘87h’, . . . ,’128h’, ‘129h’, 2, ‘134h’, ‘135h’, . . . ,’154h’, ‘155h’,

‘5h’, ‘6h’, . . . ,’26h’, ‘27h’, 1, ‘51h’, ‘52h’, . . . ,’84h’, ‘85h’,‘130h’, ‘131h’, ‘132h’, ‘133h’, 2>

Non-Working Distance
(Meter)

Non-Working Time
(Minutes)

Working Distance
(Meter)

Working Time
(Minutes)

9640 20.08 5529 18.3
6704 13.97 5362 17.61
6586 13.72 5585 17.67

22,930 20.08 16,476 18.3

In order to calculate the total time of the fertilizing process, the travel time should
be added to the working time. Due to this fact that three robots work simultaneously,
therefore, the total time for the process can be determine as the maximum operation time
between robots. The total operation time for the normal slurry distributer is 48.94 min
(43.3 + 5.64). For the robotic solution in the first scenario, the total operational time is equal
to 55.68 min (37.55 + 18.13) and for the second scenario it is equal to 38.38 min (20.08 + 18.3).

Figure 9 demonstrates the comparison between robotic solutions with a normal slurry
distributer. The comparison of the total working and non-working distance shows that the
big slurry distributer has less total working and non-working distance in comparison with
robotic solutions due to the fact that the working width of the normal distributer machine is
2.6 times bigger than the working width of the robots. Moreover, the comparison of the total
operation time between the normal slurry distributer and the robotic application shows
that the big slurry distributer can complete the operation faster than the first scenario of the
robotic application (6.74 min earlier). However, by considering the second scenario (robotic
solution), it is possible to finish the operation faster than the normal slurry distributer
(10.56 min earlier).
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4. Discussion

The proposed algorithm in this paper will entail a solution based on the fixed capacity
of the distributer regardless of the size of the field. The algorithm avoids the turnings in
the main cropping area of the field and by limiting all the turnings to the headland part
it can reduces the amount of soil compaction in the field. As presented in the result part,
the proposed algorithm results in 19.7% efficiency, which means that in the optimized
solution, the amount of traveled distance is 17,305 (m) less than the conventional method.
By assuming the amount of fuel consumption and the working speed for the distributer
equal to 30 (liter/hour) and 6 (km/hour) respectively, it is possible so save 86.5 L of fuel
during the operation. Consequently, as the benefit of this saving in the fuel consumption,
there are less Greenhouse Gases (GHG) emissions during the operation. Moreover, it is
possible to generate the optimized coverage plan for the robotic application with very
small capacity.

Robotic application as a solution can significantly increase the efficiency of conven-
tional farming activities where operations are manually conducted by farmers. They can
reduce the requirements for manpower and workload, including skilled machine operators,
by performing the tasks automatically [21]. The application of robots in precision fertilizing
operations can provide the optimal amount of nutrients to the crops at a proper time and
position, which consequently can reduce the percentage of agricultural inputs and the
environmental impacts [22].

The capacity of a distributer is an important factor that can affect the amount of
traveled non-working time and distance in the field. Distributers with bigger tanks can
cover more tracks in one load and they can complete the field tasks in a smaller number
of trips to the depot for refilling. However, bigger distributers are heavier than a small
robot and they can increase the risk of soil compaction in the covered parts of the field [18].
Moreover, autonomous robots have less operations cost due to this fact that they need
less supervision.

The working width of a distributer is another effective factor that can change the
amount of traveled non-working time and distance in the field. Distributers with wider
working widths can cover bigger areas while operating. Therefore, increasing the working
width of the spreader can reduce the total non-working traveled distance in the field.



AgriEngineering 2021, 3 470

Moreover, the tolerance from target application rate is regulated automatically based on
the velocity of the spreader by the electro-hydraulic control system.

Due to the dynamic and complexity of the agricultural environments, applying a
robotic solution in this unstructured environment requires advanced technology. Au-
tonomous robots are not able to respond to unpredictable events and operating in variable
environments complicates the robotic application [23]. Another challenge in applying
robotic solutions in agriculture is related to the seasonality of agriculture, which makes
it difficult for robotic systems to reach to the same level of deployment in manufacturing.
Limited capacity and working width of agricultural robots required them to travel more
distances to complete their field tasks. Considering a fleet of homogenous robots as well
as locating some buffer tanks (as depots) in different parts of the field can be used as a
solution to overcome those limiting factors and reach to the same efficiency as the normal
agricultural machineries. The amount of fuel/energy consumption is also important to
consider. To compete with big machines, the robots need to be more efficient in fuel or
energy consumption due to this fact that they are small and they need to travel greater
distances in the field. Moreover, some agricultural operations such as ploughing are so
energy demanding that applying robotic solution for these kinds of operations is still
a challenge.

In development of an agricultural robots, several considerations required such as
developing advance algorithms for controlling, planning, and sensing. Moreover, they
need to operate in different conditions such as in wet environments without getting stuck
or destroying the soil structure [22].

In future research, the robotic solution will be considered for other agricultural opera-
tions and their operational efficiency will be compared with the normal machineries in the
field. Moreover, additional studies require to investigate the fuel consumption and GHG
emissions of these robots and compare them with normal agricultural machineries.

5. Conclusions

The proposed model generates a coverage plan, which can be used for capacitated
field operations. The model consists of two parts: optimization and simulation algorithms.
In the optimization algorithm, the Simulated Annealing (SA) is applied to determine
the optimal traversal sequence of fieldwork tracks under the criterion of minimizing the
non-working traveled distance during the headland turnings with appropriate application
rate for each track. Moreover, the simulation algorithm generated the division of the task
time and traveled distance for each element (productive/non-productive) of the operation.
The operations efficiency of the optimized plans generated by the proposed method in
this study was compared with the conventional methods used by farmers. Results show
that applying the proposed model can bring a 19.7% increase in operational efficiency
and reduce the non-working traveled distance and time. The proposed algorithm can be
used as a tool to improve the operational efficiency of the capacitated operations such as
slurry applications. As the benefits of the presented algorithm in this study, it is possible to
generate the optimized coverage plan for the robotic application with a very small capacity.
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Appendix A

Table A1. The list of application rates for covering the sample field with a normal distributer
(capacity 24 m3).

Node/Edge ID Application Rate
(liter/m2) Node/Edge ID Application Rate

(liter/m2)

1,2 1.067 ‘62h’ 0.899

3,4 1.067 ‘63h’ 0.899

5,6 1.067 ‘64h’ 0.899

7,8 1.067 ‘65h’ 0.899

9,10 1.067 ‘66h’ 0.899

11,12 1.067 ‘67h’ 0.899

13,14 0.995 ‘68h’ 0.899

15,16 0.995 ‘69h’ 0.899

17,18 0.995 ‘70h’ 0.899

19,20 0.995 ‘71h’ 0.899

21,22 0.995 ‘72h’ 0.899

23,24 0.995 ‘73h’ 0.899

25,26 0.995 ‘74h’ 0.899

27,28 0.995 ‘75h’ 0.899

29,30 0.995 ‘76h’ 0.899

31,32 0.995 ‘77h’ 0.899

‘3h’ 0.899 ‘78h’ 0.899

‘4h’ 0.899 ‘79h’ 0.899

‘5h’ 0.899 ‘80h’ 0.899

‘6h’ 0.899 ‘81h’ 0.899

‘7h’ 0.899 ‘82h’ 0.899

‘8h’ 0.899 ‘83h’ 0.899

‘9h’ 0.899 ‘84h’ 0.899

‘10h’ 0.899 ‘85h’ 0.899

‘11h’ 0.899 ‘86h’ 0.899

‘12h’ 0.899 ‘87h’ 0.899

‘13h’ 0.899 ‘88h’ 0.899

‘14h’ 0.899 ‘89h’ 0.899

‘15h’ 0.899 ‘90h’ 0.899

‘16h’ 0.899 ‘91h’ 0.899

‘17h’ 0.899 ‘92h’ 0.899

‘18h’ 0.899 ‘93h’ 0.899

‘19h’ 0.899 ‘94h’ 0.899

‘20h’ 0.899 ‘96h’ 0.899

‘21h’ 0.899 ‘97h’ 0.899

‘22h’ 0.899 ‘98h’ 0.899
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Table A1. Cont.

Node/Edge ID Application Rate
(liter/m2) Node/Edge ID Application Rate

(liter/m2)

‘23h’ 0.899 ‘99h’ 0.899

‘24h’ 0.899 ‘100h’ 0.899

‘25h’ 0.899 ‘101h’ 0.899

‘26h’ 0.899 ‘102h’ 0.899

‘27h’ 0.899 ‘103h’ 0.899

‘28h’ 0.899 ‘104h’ 0.899

‘29h’ 0.899 ‘105h’ 0.899

‘30h’ 0.899 ‘106h’ 0.899

‘31h’ 0.899 ‘107h’ 0.899

‘32h’ 0.899 ‘108h’ 0.899

‘33h’ 0.899 ‘109h’ 0.899

‘34h’ 0.899 ‘110h’ 0.899

‘35h’ 0.899 ‘111h’ 0.899

‘36h’ 0.899 ‘112h’ 0.899

‘37h’ 0.899 ‘113h’ 0.899

‘38h’ 0.899 ‘114h’ 0.899

‘39h’ 0.899 ‘115h’ 0.899

‘40h’ 0.899 ‘116h’ 0.899

‘41h’ 0.899 ‘117h’ 0.899

‘42h’ 0.899 ‘118h’ 0.899

‘43h’ 0.899 ‘119h’ 0.899

‘44h’ 0.899 ‘120h’ 0.899

‘45h’ 0.899 ‘121h’ 0.899

‘46h’ 0.899 ‘122h’ 0.899

‘47h’ 0.899 ‘123h’ 0.899

‘48h’ 0.899 ‘124h’ 0.899

‘49h’ 0.899 ‘125h’ 0.899

‘50h’ 0.899 ‘126h’ 0.899

‘51h’ 0.899 ‘127h’ 0.899

‘52h’ 0.899 ‘128h’ 0.899

‘53h’ 0.899 ‘129h’ 0.899

‘54h’ 0.899 ‘130h’ 0.899

‘55h’ 0.899 ‘131h’ 0.899

‘56h’ 0.899 ‘132h’ 0.899

‘57h’ 0.899 ‘133h’ 0.899

‘58h’ 0.899 ‘134h’ 0.899

‘59h’ 0.899 ‘135h’ 0.899

‘60h’ 0.899 ‘136h’ 0.899

‘61h’ 0.899 ‘137h’ 0.899



AgriEngineering 2021, 3 473

Table A2. The list of application rates for covering the sample field with a homogeneous fleet of
robots (capacity 0.8 m3).

Node/Edge ID Application Rate
(liter/m2) Node/Edge ID Application Rate

(liter/m2)

3,4 1.020 ‘35h’ 0.708

5,6 0.912 ‘36h’ 0.708

7,8 1.020 ‘37h’ 0.708

9,10 0.912 ‘38h’ 0.708

11,12 1.020 ‘39h’ 0.708

13,14 1.271 ‘40h’ 0.708

15,16 1.020 ‘41h’ 0.708

17,18 1.271 ‘42h’ 0.708

19,20 1.020 ‘43h’ 0.708

21,22 0.892 ‘44h’ 0.708

23,24 1.020 ‘45h’ 0.708

25,26 0.892 ‘46h’ 0.708

27,28 1.020 ‘47h’ 0.708

29,30 0.892 ‘48h’ 0.708

31,32 1.020 ‘49h’ 0.708

33,34 0.953 ‘50h’ 0.708

35,36 1.020 ‘51h’ 1.063

37,38 0.953 ‘52h’ 1.063

39,40 1.020 ‘53h’ 1.063

41,42 0.953 ‘54h’ 1.063

43,44 1.020 ‘55h’ 1.063

45,46 1.023 ‘56h’ 1.063

47,48 1.020 ‘57h’ 1.063

49,50 1.023 ‘58h’ 1.063

51,52 1.020 ‘59h’ 1.063

53,54 1.023 ‘60h’ 1.063

55,56 1.020 ‘61h’ 1.063

57,58 1.102 ‘62h’ 1.063

59,60 1.020 ‘63h’ 1.063

61,62 1.102 ‘64h’ 1.063

63,64 1.020 ‘65h’ 1.063

65,66 1.102 ‘66h’ 1.063

67,68 1.020 ‘67h’ 1.063

69,70 0.910 ‘68h’ 1.063

71,72 1.020 ‘69h’ 1.063
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Table A2. Cont.

Node/Edge ID Application Rate
(liter/m2) Node/Edge ID Application Rate

(liter/m2)

73,74 0.910 ‘70h’ 1.063

75,76 1.020 ‘71h’ 1.063

77,78 0.910 ‘72h’ 1.063

79,80 1.020 ‘73h’ 1.063

81,82 0.910 ‘74h’ 1.063

83,84 1.020 ‘75h’ 1.063

85,86 0.994 ‘76h’ 1.063

87,88 1.020 ‘77h’ 1.063

89,90 0.994 ‘78h’ 1.063

91,92 1.020 ‘79h’ 1.063

93,94 0.994 ‘80h’ 1.063

95,96 1.020 ‘81h’ 1.063

97,98 0.994 ‘82h’ 1.063

99,100 1.020 ‘83h’ 1.063

101,102 0.994 ‘84h’ 1.063

103,104 1.020 ‘85h’ 1.063

105,106 0.932 ‘86h’ 0.709

107,108 1.020 ‘87h’ 0.709

109,110 0.932 ‘88h’ 0.709

111,112 1.020 ‘89h’ 0.709

113,114 0.932 ‘90h’ 0.709

115,116 1.020 ‘91h’ 0.709

117,118 0.932 ‘92h’ 0.709

119,120 1.020 ‘93h’ 0.709

121,122 0.932 ‘94h’ 0.709

123,124 1.020 ‘95h’ 0.709

125,126 0.932 ‘96h’ 0.709

127,128 1.020 ‘97h’ 0.709

129,130 0.932 ‘98h’ 0.709

131,132 1.020 ‘99h’ 0.709

133,134 0.932 ‘100h’ 0.709

135,136 1.020 ‘101h’ 0.709

137,138 0.932 ‘102h’ 0.709

139,140 1.020 ‘103h’ 0.709

‘141,142 0.994 ‘104h’ 0.709

143,144 1.020 ‘105h’ 0.709

145,146 0.994 ‘106h’ 0.709

147,148 1.020 ‘107h’ 0.709
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Table A2. Cont.

Node/Edge ID Application Rate
(liter/m2) Node/Edge ID Application Rate

(liter/m2)

149,150 0.910 ‘108h’ 0.709

151,152 1.020 ‘109h’ 0.709

153,154 0.910 ‘110h’ 0.709

155,156 1.020 ‘111h’ 0.709

157,158 0.910 ‘112h’ 0.709

159,160 1.020 ‘113h’ 0.709

161,162 0.910 ‘114h’ 0.709

163,164 1.020 ‘115h’ 0.709

165,166 0.910 ‘116h’ 0.709

167,168 1.020 ‘117h’ 0.709

169,170 0.910 ‘118h’ 0.709

171,172 1.020 ‘119h’ 0.709

173,174 1.210 ‘120h’ 0.709

175,176 1.020 ‘121h’ 0.709

177,178 1.210 ‘122h’ 0.709

179,180 1.020 ‘123h’ 0.709

181,182 1.210 ‘124h’ 0.709

183,184 1.020 ‘125h’ 0.709

185,186 1.210 ‘126h’ 0.709

‘5h’ 0.708 ‘127h’ 0.709

‘6h’ 0.708 ‘128h’ 0.709

‘7h’ 0.708 ‘129h’ 0.709

‘8h’ 0.708 ‘130h’ 1.063

‘9h’ 0.708 ‘131h’ 1.063

‘10h’ 0.708 ‘132h’ 1.063

‘11h’ 0.708 ‘133h’ 1.063

‘12h’ 0.708 ‘134h’ 0.708

‘13h’ 0.708 ‘135h’ 0.708

‘14h’ 0.708 ‘136h’ 0.708

‘15h’ 0.708 ‘137h’ 0.708

‘16h’ 0.708 ‘138h’ 0.708

‘17h’ 0.708 ‘139h’ 0.708

‘18h’ 0.708 ‘140h’ 0.708

‘19h’ 0.708 ‘141h’ 0.708

‘20h’ 0.708 ‘142h’ 0.708

‘21h’ 0.708 ‘143h’ 0.708

‘22h’ 0.708 ‘144h’ 0.708

‘23h’ 0.708 ‘145h’ 0.708

‘24h’ 0.708 ‘146h’ 0.708
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Table A2. Cont.

Node/Edge ID Application Rate
(liter/m2) Node/Edge ID Application Rate

(liter/m2)

‘25h’ 0.708 ‘147h’ 0.708

‘26h’ 0.708 ‘148h’ 0.708

‘27h’ 0.708 ‘149h’ 0.708

‘28h’ 0.708 ‘150h’ 0.708

‘29h’ 0.708 ‘151h’ 0.708

‘30h’ 0.708 ‘152h’ 0.708

‘31h’ 0.708 ‘153h’ 0.708

‘32h’ 0.708 ‘154h’ 0.708

‘33h’ 0.708 ‘155h’ 0.708

‘34h’ 0.708
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