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Abstract: Fermentative digestion by ruminant livestock is one of the main ways enteric methane
enters the atmosphere, although recent studies have identified that including red macroalgae as
a feed ingredient can drastically reduce methane produced by cattle. Here, we utilize ecological
modelling to identify suitable sites for establishing aquaculture development to support sustainable
agriculture and Sustainable Development Goals 1 and 2. We used species distributions models (SDMs)
parameterized using an ensemble of multiple statistical and machine learning methods, accounting
for novel methodological and ecological artefacts that arise from using such approaches on non-native
and cultivated species. We predicted the current distribution of two Asparagopsis species to high
accuracy around the coast of Ireland. The environmental drivers of each species differed depending
on where the response data was sourced from (i.e., native vs. non-native), suggesting that the length
of time A. armata has been present in Ireland may mean it has undergone a niche shift. Subsequently,
researchers looking to adopt SDMs to support aquaculture development need to acknowledge
emerging conceptual issues, and here we provide the code needed to implement such research, which
should support efforts to effectively choose suitable sites for aquaculture development that account
for the unique methodological steps identified in this research.
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1. Introduction

Globally, agriculture contributes ~11% of total anthropogenic Green House Gas (GHG)
emissions [1], with the production systems of cattle and sheep responsible for up to 18%
of this [2]. Around 43% of GHG emissions are made up of enteric methane (CH4) [3],
which has a higher global warming potential than carbon dioxide (CO2—approximately
28-fold [4]), meaning targets for reducing global warming will prove difficult if reductions
in methane emissions are not as actively addressed as CO2 emissions [5]. Fermentative
digestion by ruminant livestock is one of the main ways enteric methane is produced as
a by-product of anaerobic fermentation of organic feed matter [6,7]. Multiple challenges
therefore exist to facilitate feeding an increasing global population in a more sustain-
able manner, with agriculture needing to identify methods to improve efficiencies [8], as
well as aligning with Sustainable Development Goals (SDG) 1 and 2. Decreasing enteric
CH4 from ruminants consequently poses a unique opportunity to support resilience in
response to climate change, with several strategies currently being explored to reduce CH4
emissions [9–11].

Natural feed ingredients, notably those that sustainably decrease the environmental
impact of food production, are increasingly becoming more important to consumers and
producers [7]. The seaweed genus Asparagopsis is emerging as an active, innovative, and
regenerative cleaner production feed for the wider agriculture sector [12]. Recent studies
have shown that enteric CH4 could be virtually eliminated using this genus as a feed
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ingredient [7,13–15]. For example, Kinley et al. [7], investigated the effects of including
Asparagopsis in feedlot beef cattle, demonstrating that when included in the high grain diet
at 0.05%, 0.10%, and 0.20%, there was a decrease of CH4 production of 9%, 38%, and 98%,
respectively. Moreover, its inclusion enhanced growth rate in the steers, did not affect meat
quality, and the anti-methanogenic compound bromoform was not detected in meat, fat,
organs, or faeces of any of the steers.

This is particularly pertinent in the Republic of Ireland, where the agriculture sector is
the most significant contributor to overall GHG emissions at 33.9% (~60.93 million tonnes
carbon dioxide equivalent—MtCO2 eq), with methane being the largest contributor of that
figure at 64.5% [16]. When coupled with responses to recent fodder crises, the Republic of
Ireland has seen an increase of dairy cow numbers by 27% and milk production by 40%
in the last five years alone [16]. This increasing herd size can increase GHG emissions,
notably, the release of significant amounts of CH4. Subsequently, the value of Asparagopsis
additions to cattle feed is increasingly being explored by policy experts, land managers,
and government agencies, meaning research into identifying sustainable and suitable sites
for aquaculture development is needed to support any climate change mitigation efforts.

Species distribution models (SDMs) are a powerful spatial analytical tool for study-
ing the geographic distribution of a range of taxa [17,18], providing a methodological
framework for researchers and practitioners to quantitatively assess the relationship be-
tween species distributions and environmental factors. SDMs project relationships in both
environmental and geographic space using a variety of statistical methods and machine
learning algorithms [19], and have been widely used for various applications, including
aquaculture [20–22]. For example, Westmeijer et al. [22] used SDMs to assess the habitat
suitability of nine temperate macroalgae species in Europe, identifying that temperature
made the largest contribution to determining distributions, with the authors concluding
that such analysis can support the selection of target species for seaweed aquaculture and
support optimal growth conditions.

However, a challenge with identifying suitable cultivation sites for Asparagopsis is the
complex and cryptic lineages of the different species, meaning any models developed could
be compounded by uncertainty related to their native and non-native distributions [23].
A central assumption of SDMs is that species are in equilibrium with their environment,
which may be violated for introduced or cultivated species [21]. During model parame-
terisation, it is therefore essential to the consider invasion (or cultivation) stage and the
absence of equilibrium of the species in its new environment [24,25]. Moreover, distribution
projections assume that species retain their niche [26], known as niche conservatism (i.e.,
where a species is only able to invade areas of similar ecological conditions that are found
in their native range [27]). However, many species can shift their niche after introduction
to a new environment. For example, the seaweed Caulerpa taxifola lives at different depths
in its native and invaded areas [28,29]. The rapid evolution in several traits has been
observed in many non-native species, making it possible for their fundamental niche to be
modified [30].

Solutions to modelling the distribution of non-native species are not straightfor-
ward [25], but several methods can be adopted to overcome such limitations to model
the distribution of non-native species more effectively and accurately [31]. For example,
Verbruggen et al. [20] developed an SDM for the highly invasive species Caulerpa cylin-
dracea, using training data from both the native and non-native range, identifying that at a
global scale large parts of the coasts of Australia (native region) and the Mediterranean
Sea (non-native region) had conditions suitable for macroecology, with the models for the
non-native range predicting the species beyond the extension of the presently known range.
To-date, little research has been conducted towards exploring whether the environmental
and subsequent geographic distributions of Asparagopsis differ among their native and non-
native ranges, which could have implications for any aquaculture developments stemming
from such analytical models.
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With the potential for the red algae genus Asparagopsis to be used in the mitigation
of methane across a global agriculture sector, a vital part of any sustainable aquaculture
process will be to identify suitable sites for its distribution for optimal growth, cultivation,
and harvesting, with SDMs a primary analytical tool that can be used to achieve this.
However, such models are complicated by challenges associated with niche conservatism
and an absence of equilibrium in the non-native range, meaning research is needed to
explore robust methods for parameterisation to inform agriculture. Here, we explore
four main research questions with the overall aim of identifying suitable and sustainable
cultivation sites for Asparagopsis for the island of Ireland: (1) What is the current suitable
habitat for Asparagopsis spp.? (2) What are the most important environmental variables
determining Asparagopsis spp. distributions? (3) Are Asparagopsis spp. in equilibrium in
their non-native Irish range? and (4) What are the most suitable cultivation sites?

2. Materials and Methods
2.1. Study Species and Area

The genus Asparagopsis contains two accepted species taxonomically, Asparagopsis ar-
mata and Asparagopsis taxiformis. The species are morphologically and ecologically distinct:
A. armata is an epiphyte attaching to other seaweed utilising barbs [32], while A. taxiformis
is associated with sand-covered habitats, having a well-developed rhizomatous system for
anchorage and lack barbs [33]. A. armata and A. taxiformis have a distinct geographical dis-
tribution and can overlap in some areas. A. armata is endemic to the southern hemisphere
in cool-temperate waters. The species consists of two cryptic lineages, one where it is natu-
rally distributed along western and southern Australia and New Zealand and the other
in the north-east Atlantic and Mediterranean coasts where it is non-indigenous [23,34].
A. taxiformis is cosmopolitan in warm-temperate to tropical areas where it is widely dis-
tributed [35]. Within Europe, there are differences in the date of arrival of these species.
A. armata is considered a Lessepsian immigrant, first reported in 1923 on the Algerian
coast [36]. In 1925 it was recorded in France, then arriving in Ireland at Galway in 1941 [32].
It is now well established in open sandy pools of lower intertidal and subtidal zones, found
on rocks or attached to other macroalgae (mainly Ulva spp.) [32]. In contrast, A. taxiformis
is considered a pre-Lessepsian immigrant or native to the Mediterranean [37], since it
was first recorded in the Mediterranean in 1813 in Egypt (Delile, 1813). According to the
phylogeographic study by Andreakis et al. [37], the first lineage of A. taxiformis into the
Mediterranean (Atlantic lineage 3) is confined to the south-east perhaps due to its low
sensitivity to low winter seawater temperatures. The Indo-Pacific lineage 2 expanded the
range of A. taxiformis into the north-eastern part of the Mediterranean during the second
half of the 20th Century due to its lower minimum need of temperature for survival. The
appearance of this lineage, especially on the south coast of Portugal, shows that the lineage
has now been established in the north-eastern Atlantic [34]. A. taxiformis’ fast dispersal
rate and prolific vegetative reproduction, coupled with the effects of climate change, might
result in expansion of its range into areas of the north-east Atlantic where it is currently not
found [38,39].

Ireland is situated in the North Atlantic in north-west Europe (Figure 1), hosting a
temperate maritime climate [40]. Large areas of the western, south-western, and northern
coastlines are dominated by rocks, large bays, and estuaries, while the eastern and south-
eastern coastlines are low-lying and soft sedimentary areas [41–43]. In 1996, a commercial
cultivation farm for A. armata was set up in Ard Bay, Co. Galway. This site was chosen
because A. armata had been found there since 1941. In 1998, a 1 ha farm was constructed
and first cultivation trials took place. On this site, A. armata was cultivated using vegetative
propagation of the gametophyte, where it is cultivated by connecting it to rope made of
discarded twisted monofilament netting [44].
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Figure 1. Map of the study sites (a) the Republic of Ireland situated within Ireland and (b) The Republic of Ireland with
locations mentioned in the text documented.

2.2. Data Collection

Presence data for A. armata and A. taxiformis were obtained from the Global Biodi-
versity Information Facility using the rgbif package [45] in R studio [46]. Following data
cleaning, 53 records of A. armata were obtained in the non-native Irish range and 103 records
in the native New Zealand range [47]. Similarly, 75 records of A. taxiformis were obtained
in the non-native Portuguese (Azores and Madeira) range and 699 records in the native
Australian range [48]. Environmental data were obtained from Bio-ORACLE [49,50] and
MARSPEC [51] databases using the sdmpredictors package [52]. All variables had a spatial
resolution of 5 arc minutes, approximately 9 km. To avoid any potential multicollinearity
problems, a Principal Component Analysis (PCA) was initially carried out on all variables
to visualize the correlation between the environmental variables and identify the main
environmental gradients in the region to be used in the modelling process. Using a PCA,
environmental variables that were not collineated and significantly contributed to the
overall environmental variation were selected. The ade4 package [53] was used to perform
this pre-analysis, and these results are presented in Supplementary Information 1. The
variables used in subsequent data analysis are presented in Table 1, along with ecological
justification for their inclusion.
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Table 1. Information on the geospatial environmental layers used in the modelling framework, along
with justification for their inclusion.

Layer Justification

Mean of diffuse attenuation
Diffuse attenuation, which is an indicator of light

availability [54]; this light availability is important as it
drives photosynthesis and growth of seaweeds [55].

Dissolved oxygen Significant contributor in PCA analysis
(Supplementary Information 1).

Nitrate The nutrient Nitrogen limits seaweed growth [55].

pH Significant contributor in PCA analysis
(Supplementary Information 1).

Phosphate The nutrient phosphorous limits seaweed growth
(Roleda and Hurd, 2019).

Sea surface temperature range Temperature is a primary range limiting factor [33].
Temperature of warmest month Temperature is a primary range limiting factor [33].

Mean sea surface salinity Significant contributor in PCA analysis
(Supplementary Information 1).

Distance from shore Distance to shore as A.armata is mainly found in the
sublittoral zone [44].

Bathymetry Bathymetry as A.armata is mainly found in the
sublittoral zone [44].

Ulva lactuca species distribution A.armata is an epiphyte that attaches to other seaweeds
utilising its barbs [32].

2.3. Data Analysis

All code is presented in Supplementary Information 2. Two models for each species
were built, one that accounted for presence data from the non-native range only and
one that accounted for presence data from both the native and non-native ranges. As no
absence data were available for the species, 10,000 pseudo-absences were randomly drawn
(following [31]). For models using data from only the non-native range, pseudo-absences
were also drawn only from the non-native range, whereas for models parameterised on both
the native and non-native occurrence data, 5000 pseudo-absences were drawn from both
the native and non-native ranges, totalling 10,000, with equal weighting given regardless
of location. Table 2 summarises these different models. The choice of pseudo-absence has
been found to impact the results of SDM projections [31,56], so we decided to replicate data
analysis three times with different pseudo-absences selections.

Table 2. Information on the models with source of the response data and pseudo-absence data.

Model Presence Pseudo-Absence

A. armata (non-native only) Ireland Ireland (10,000)

A. armata (native and non-native) Ireland
New Zealand

Ireland (5000)
New Zealand (5000)

A. taxiformis (non-native only) Portugal Portugal (10,000)

A. taxiformis (native and non-native) Portugal
Australia

Portugal (5000)
Australia (5000)

PCA was again undertaken for the variables presented in Table 1 prior to fitting the
analytical models. We implemented two models for A. armata, one that included a proxy
for biotic interactions and one that did not. The former would allow for identification of
sites that could be harvested naturally, while the latter would allow for identification of
sites for vegetative propagation of the gametophyte. The species distribution of A armata
and A. taxiformis were modelled by running six different SDM methodologies implemented
within the biomod2 package [57]. The six SDM methodologies included one regression
method: Generalized Linear Model (GLM); two classification methods: Classification Tree
Analyses (CTA) and Flexible Discriminant Analysis (FDA); and three machine learning
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methods: Generalized Boosting Model (GBM), Random Forest (RF) and Artificial Neural
Networks (ANN). Studies have shown that different modelling techniques can produce
different results for the same species and datasets [58,59], meaning to obtain a consensus
distribution, an ensemble forecast distribution was calculated as the average of all distribu-
tions across all modelling techniques and pseudo-absences replicates. The predictions from
individual models were ensembled in four ways: the mean, median, confidence interval
(upper) and confidence interval (lower) of habitat suitability.

Models were evaluated after parameterisation to justify the acceptance of projections
for their intended purpose [60], in this case identifying suitable cultivation sites. We
performed 3-fold cross-validation of the data by splitting the occurrence records 70:30 into
training and testing data following best practice in the species distribution literature
when independent test data are not available [18,61,62]. The model’s discriminatory
power between presence and absence was assessed using two different metrics to provide
an accurate assessment of the models. The area under the curve (AUC) statistic of a
receiver operating characteristic (ROC) [63] is a threshold-independent metric and widely
used in SDM research [17]. It has a value range between 0 and 1, with a value below
0.5 deemed no better than a random selection and a value of 1 representing a highly
accurate model. True Skill Statistic (TSS) measures the performance of models generating
presence-absence predictions, with values of 0 indicating no agreement and 1 indicating
perfect agreement [64].

3. Results

We identified large geographic variations in Asparagopsis spp. distributions within
the coastal zone of Ireland (Figures 2 and 3; Table 3; Supplementary Information 3). When
A. armata models were parameterised using the non-native range only and a proxy for biotic
interactions (Figure 2a–d), we identified medium (>0.5) to high (>0.75) habitat suitability
along the west coast of Ireland from Dungloe (co. Donegal) in the north to Cork in the
south; however, when models were parameterised using both the native and non-native
ranges (Figure 2e–h), the suitable environmental conditions were predicted in much smaller
areas. Areas of medium (>0.5) to high (>0.75) suitability were still projected predominantly
in the west of the country, mainly near Galway and in north west Kerry near Tralee, as
well as near the Iveragh peninsula in south west Kerry and Cork. When modelled without
biotic proxies (Supplementary Information 3), distributions of A. armata extended further
out from the coast, suggesting there are suitable abiotic conditions for aquaculture through
vegetative propagation of the gametophyte. No locations were projected as suitable for
A. taxiformis using only the non-native Portuguese range as training data (Figure 3a–d),
and only the median ensemble model using both native and non-native occurrence data
(Figure 3e–h) identified two small areas with low habitat suitability (>0.25) in Galway
Bay and the Shannon estuary near Limerick. Such results suggest that the absence of
A. taxiformis from Irish waters is most likely a factor of limiting environmental conditions
rather than dispersal ability.
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Table 3. Accuracy metrics for the different models. CI = confidence interval. AUC = area under the
curve. TSS = true skill statistics.

Model Metric Mean
Ensemble

CI (Lower)
Ensemble

CI (Upper)
Ensemble

Median
Ensemble

A. armata
(non-native) AUC 0.999 0.999 0.999 0.998

A. armata
(non-native) TSS 0.985 0.985 0.984 0.984

A. armata
(non-native
and native)

AUC 0.998 0.994 0.998 0.995

A. armata
(non-native
and native)

TSS 0.968 0.961 0.971 0.957

A. taxiformis
(non-native) AUC 1.000 1.000 1.000 0.999

A. taxiformis
(non-native) TSS 0.994 0.994 0.994 0.994

A. taxiformis
(non-native
and native)

AUC 0.998 0.979 0.998 0.994

A. taxiformis
(non-native
and native)

TSS 0.978 0.947 0.975 0.918

This is supported when we consider the importance of the environmental variables
to distribution projections (Table 4). PCA identified a range of environmental variables to
include in the different combinations of our final models (Supplementary Information 4).
Temperature was important in determining the distribution of A. taxiformis, with tem-
perature of the warmest month (0.6 ± 0.06) the second highest variable when only the
non-native range was considered, after nitrate (0.74 ± 0.09). However, when A. taxiformis
was parameterised with occurrences from both the native and non-native range, mean
diffuse attenuation (0.47 ± 0.05), nitrate (0.30 ± 0.06) and pH (0.20 ± 0.05) were considered
the most important variables in determining the distribution, with temperature (0.14 ± 0.01)
less important but still retained in final models after PCA. For A. armata, the distribution of
Ulva lactuca (0.61 ± 0.09) was the most important variable in determining habitat suitability,
followed by distance from the shore (0.2 ± 0.08) and bathymetry (0.2 ± 0.07) when models
parameterised only on the non-native occurrence data were utilised. When both native
and non-native occurrences were used, distance from shore (0.62 ± 0.01), bathymetry
(0.33 ± 0.04) and U. lactuca distribution (0.19 ± 0.04) remained important. The varying
importance of environmental variables to the final model suggests that either species in the
non-native ranges are not yet at equilibrium with the environment or that some niche shift
has occurred.
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Table 4. Variable impact on habitat suitability for the Asparagopsis spp. Values refer to mean and standard deviation across
all cross validation runs and difference pseudo-absence combinations. No values are returned when variables were not
included in final model parameterisation. SST = sea surface temperature.

Environmental Variables A. armata
(Non-Native Only)

A. armata
(Native and Non-Native)

A. taxiformis
(Non-Native Only)

A. taxiformis
(Native and Non-Native)

Mean of diffuse
attenuation 0.08(±0.02) 0.16(±0.04) 0.59(±0.06) 0.47(±0.05)

Dissolved oxygen 0.08(±0.02) 0.10(±0.05)

Nitrate 0.05(±0.02) 0.08(±0.04) 0.74(±0.09) 0.30(±0.06)

pH 0.09(±0.05) 0.07(±0.03) 0.21(±0.06) 0.20(±0.05)

Phosphate 0.1(±0.06) 0.13(±0.06)

SST range 0.1(±0.05) 0.03(±0.01) 0.33(±0.03) 0.07(±0.02)

Temperature of
warmest month 0.06(±0.05) 0.06(±0.02) 0.60(±0.06) 0.14(±0.01)

Mean sea surface salinity 0.1(±0.03) 0.07(±0.02) 0.43(±0.06) 0.06(±0.06)

Distance from shore 0.2(±0.07) 0.62(±0.01)

Bathymetry 0.2(±0.08) 0.33(±0.04)

Ulva lactuca species
distribution 0.61(±0.09) 0.19(±0.04)

4. Discussion

The overarching aim of this research was to assess the ability of analytical models to
identify current suitable habitat for Asparagopsis spp. in Ireland for potential cultivation to
support mitigation efforts at reducing enteric CH4. Through this process, we explored how
considerations, such as species equilibrium and non-native ranges, impacted results from
an ecological and methodological perspective. Results indicated a large area of suitable
habitat for A. armata, across all model iterations (Figure 2), but results for A. taxiformis were
more restricted (Figure 3). When the model for A. armata was built with occurrence data
from both native and non-native ranges, smaller areas of suitable habitats were identified
(Figure 2), suggesting that this species is not yet at equilibrium with its environment. More-
over, when modelled without a proxy for biotic interactions, we identified a larger suitable
area for A. armata suggesting the potential for vegetative propagation of the gametophyte
would be suitable (Supplementary Information 3). The impact of methodological decisions
on the overall results had a substantial impact (Figures 2 and 3, Tables 3 and 4), meaning the
results and methodology of this study should be of interest to parties involved in mapping
potential sites to support aquaculture development.

The mean of diffuse attenuation was one of the most important variables in determin-
ing habitat suitability for A. taxiformis (Table 4), with variables associated with temperature
(e.g., SST range and temperature of the warmest month) also being important. This con-
firms the general recognition that temperature is the primary abiotic condition that shapes
the geographic boundaries of seaweeds [65,66] and corroborates the findings of Guiry
and Dawes [33] identifying temperature as a primary range limiting factor of A. armata
distributions. However, we found that the distribution of U. lactuca was the most important
variable in determining the habitat suitability of A. armata (Table 4). This biotic interaction
of facilitation is a positive interaction for A. armata as it is an epiphyte that attaches to
other seaweeds utilising its barbs [32]. This result supports the recent findings by Kraan
and Barrington [44], where they identified A. armata growing on U. lactuca. However,
when the model was parameterised with native and non-native occurrences, distance to
shore was the most important variable in determining habitat suitability not U. lactuca. We
believe that distance to shore is acting as a proxy for biotic interactions with other potential
facilitator species within its native range, as closer to the shore there is a higher abundance
of fast-growing kelp and other macroalgae to attach to [44]. The importance of incorpo-
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rating biotic interactions within SDM is well-established [67–69]; however, abiotic factors
often supersede biotic interactions within SDM due to their influence at a broader spatial
scale [70,71]. Our results suggest there is a need to incorporate biotic interactions when
determining cultivation sites, particularly as vegetative propagation of the gametophyte
is needed, which could be received from wild populations; however, biotic interactions
should be parameterised very differently depending on the source of the response data
(i.e., native vs. non-native ranges).

To our knowledge, this is the first instance of Asparagopsis spp. being modelled using
SDM. We found large areas of potentially suitable habitat (Figures 1 and 2); however, as
these species are non-native to the study area, they may not be in equilibrium with the
environment and subsequently violating key algorithm and modelling assumptions. The
incorporation of occurrence records from both the native and non-native range simultane-
ously to build the model is one possible solution [25]. This process incorporates records that
are likely to be in equilibrium with the environment in the native range while also including
samples from the non-native range, which provides information about the expansion of
the realised niche and the non-native area, which may provide valuable information about
the species tolerance to climatic conditions that may not be present in the native range [21].
When both native and non-native data were used, projections were smaller for A. armata
but larger for A. taxiformis. The rule of parsimony suggests that for habitat suitability
models, a good projection will predict a potential area that is as small as possible [72],
suggesting that the incorporation of native data in projecting A. armata was central to an
effective modelling procedure. Subsequently, we identified three potential cultivation sites
for A. armata, off the west coast of Galway, the north-west Kerry coast near Tralee and the
south-west coast of the Iveragh peninsula (Figure 2). One of these smaller areas identified
is the area near Ard Bay in Galway, which was identified by Kraan and Barrington [44] as a
possible source pool for A. armata in Ireland, corroborating their study that highlighted
the role the seaweed aquaculture facility may play, acting as a possible local source pool
maintaining the gametophytic populations on the west coast of vegetative reproduction.

We noted the opposite relationship with A. taxiformis, with a larger predicted range
when both non-native and native data were used (Figure 3). Currently, there are no
occurrences of this species in Ireland, meaning we chose occurrences from Portugal because
the occurrences found there have a lower minimum need of temperature and are the only
occurrences that have been established in the north-eastern Atlantic [34]. There is an
argument that A. taxiformis is considered either a pre-Lessepsian immigrant or native to
the Mediterranean [37], so therefore occurrences from a southern hemisphere lineage were
used where it may be native. When the model was built for A. taxiformis with occurrences
from Portugal and Australia, the results for this model show that there are small areas of
low habitat suitability identified in the Galway Bay and the Shannon estuary area near
Limerick. When coupled with the abiotic drivers presented in Table 4, we posit that such
results suggest that the absence of A. taxiformis from Irish waters is most likely a factor of
limiting environmental conditions rather than dispersal ability.

All the models for A. armata, when accounting for the non-native data, had a broader
predicted range compared to using both native and non-native data (Figure 2). This could
suggest a niche shift. The rapid evolution in several traits has been observed in intro-
duced species, which makes it possible for their fundamental niche to be modified [30].
The possible shift of niche can be seen when looking at the importance of environmental
variables for determining habitat suitability (Table 4). For example, for the models looking
at possible cultivation areas, those fit with non-native data infer that Ulva lactuca, pH,
diffuse attenuation and dissolved oxygen were the most important in determining habitat
suitability compared to the model fit with native and non-native data, where the distance
to the shore, bathymetry, diffuse attenuation and phosphate were more important. Our
findings suggest that future research is warranted to explicitly test the niche conservatism
and shifts in this species, particularly as A. armata has been present in Irish waters for
almost a century.
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5. Conclusions

It is estimated that if just 10% of global ruminant producers adopted Asparagopsis
as an additive to feed their livestock, it would have the same impact for the climate as
removing 50 million cars from the world’s roads [14]. Therefore, there is a pressing need to
investigate new methods and analytical tools to support agriculture in line with carbon
mitigation strategies, as well as supporting SDGs 1 and 2 to support feeding a growing
population. Here, we utilised SDM to assess the habitat suitability of Asparagopsis spp. We
parameterised models using both data from the native and non-native ranges to control for
ecological artefacts that may occur when projecting species distributions in a non-native
range. We found a large geographic area of suitable habitat for A. armata (Figure 2), but
notably less for A. taxiformis (Figure 3). For all species, our models had good validation
statistics (Table 3), but the environmental drivers of each species differed depending
on where the response data was sourced from (i.e., native v non-native—Table 4). This
suggests that the length of time A. armata has been present in Ireland may mean it has
undergone a niche shift. Finally, we provide all the source code needed to undertake such
research, which should support efforts to effectively choose suitable sites for aquaculture
that account for the unique methodological steps identified in this research.
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