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Abstract: Dryland pastures provide the basis for animal sustenance in extensive production systems
in Iberian Peninsula. These systems have temporal and spatial variability of pasture quality resulting
from the diversity of soil fertility and pasture floristic composition, the interaction with trees, animal
grazing, and a Mediterranean climate characterized by accentuated seasonality and interannual
irregularity. Grazing management decisions are dependent on assessing pasture availability and
quality. Conventional analytical determination of crude protein (CP) and fiber (neutral detergent
fiber, NDF) by reference laboratory methods require laborious and expensive procedures and, thus,
do not meet the needs of the current animal production systems. The aim of this study was to
evaluate two alternative approaches to estimate pasture CP and NDF, namely one based on near-
infrared spectroscopy (NIRS) combined with multivariate data analysis and the other based on the
Normalized Difference Vegetation Index (NDVI) measured in the field by a proximal active optical
sensor (AOS). A total of 232 pasture samples were collected from January to June 2020 in eight fields.
Of these, 96 samples were processed in fresh form using NIRS. All 232 samples were dried and
subjected to reference laboratory and NIRS analysis. For NIRS, fresh and dry samples were split in
two sets: a calibration set with half of the samples and an external validation set with the remaining
half of the samples. The results of this study showed significant correlation between NIRS calibration
models and reference methods for quantifying pasture quality parameters, with greater accuracy
in dry samples (R2 = 0.936 and RPD = 4.01 for CP and R2 = 0.914 and RPD = 3.48 for NDF) than
fresh samples (R2 = 0.702 and RPD = 1.88 for CP and R2 = 0.720 and RPD = 2.38 for NDF). The NDVI
measured by the AOS shows a similar coefficient of determination to the NIRS approach with pasture
fresh samples (R2 = 0.707 for CP and R2 = 0.648 for NDF). The results demonstrate the potential of
these technologies for estimating CP and NDF in pastures, which can facilitate the farm manager’s
decision making in terms of the dynamic management of animal grazing and supplementation needs.
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1. Introduction

Natural or improved dryland pastures provide the basis of animal sustenance in
extensive production systems in Portugal [1]. The characteristics of the Mediterranean
climate, especially the hot and extremely dry summer, mean that during the summer
months (July, August, and September) it is necessary to supplement the animals with
concentrated feed [2]. The scarcity of pastures and the decrease in their quality may even
extend into the autumn–winter months in dryer years [3]. This temporal (i.e., seasonal)
variability resulting from climatic seasonality is compounded by an important spatial vari-
ability (i.e., within or between fields) [4], which is a consequence of the different fertility
of the soils, the diversity of the floristic composition of the pastures and the influence of
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trees and animal grazing [1], which interact with the climatic irregularity [5]. Understand-
ing seasonal changes in pasture availability and nutrient content can enhance ruminant
production systems and management [6]. However, relatively little is known about the
nature and extent of spatial variability of pasture production in mixed farming systems [7],
where the combination of spatial variability and temporal instability creates a certain level
of unpredictability, making it difficult for farm managers to make decisions, namely in
the timing and optimum grazing intensity [6] or animal supplementation [2]. Farmers
and animal nutritionists require an accurate, precise, rapid, and cost-effective method of
assessing the nutritive value of pastures and feeds [8]. A precise monitoring of pastures
will (i) improve production system sustainability by enhancing feed utilization efficiency,
(ii) improve productivity of livestock and conserved forages, and (iii) reduce the potential
for wasting resources [6]. Timely information on supply and nutrient concentrations of the
pasture and its associated variability will allow farmers to better match the nutrient supply
with animal demand [6].

Understanding the spatial distribution of forage quality is important for addressing
critical research questions in grassland science [9]. Our study focuses on a particular
ecosystem, i.e., the montado, which is characteristic of the Mediterranean region; however,
other studies have been carried out with the same purpose in other ecosystems with
different characteristics, for example, in tropical rangeland [10], in semiarid rangelands [11],
and in tallgrass prairie vegetation [9].

Grazing management decisions are dependent on assessing pasture availability and
quality [1]. Pasture quality can be assessed by indicators such as crude protein (CP) or fiber
(neutral detergent fiber, NDF) [12]. The traditional chemical analyses made using reference
methods [13] for determining these parameters are destructive, requiring the cutting and
collection of pasture samples, followed by an exhaustive set of laboratory procedures that
involve costly material and human resources [14]. Another indirect cost that should not
be overlooked has to do with the time needed to obtain laboratory results, which can
take several weeks, and this reduces their utility for decision making. In this perspective,
several technological proposals, integrated in the concept of precision agriculture (PA) and
based on proximal and remote sensing, have been developed with the aim of providing a
faster response at a lower cost.

The use of lab-based near-infrared spectroscopy (NIRS) for the analysis of fresh pas-
ture samples has been commercially available for some years in many European animal
feed analysis laboratories, while the use of satellites for this purpose is relatively new.
The remote sensing (RS) of pasture quality is critical for a better understanding of live-
stock feeding patterns [9,10] and to support management decisions related to resource
allocation [11]. The work of Serrano et al. [15] showed the importance of near-infrared
spectroscopy (NIRS) in combination with satellite images (Sentinel-2) for estimating pas-
ture quality in the Mediterranean montado ecosystem. There are several studies that show
the relevance of NIRS associated with chemometrics methods to estimate the quality of
pastures [16–19]. NIRS can be particularly useful in mixed natural pastures because their
composition changes over time [16]. However, although this does not require chemical
analysis and is normally considered a nondestructive method [8], it requires pasture cutting
and some preprocessing of the samples before the spectroscopy analysis. Studies of NIRS
evaluation conducted without prior sample preprocessing showed less accuracy due to the
heterogeneous nature of the samples and the difficulty in obtaining a regular and suitable
particle size [16,20]. In the case of fresh pasture samples, there is reference to the problem
of water generating strong absorption signals, which overlap and obscure other spectral
features and can cause nonlinear responses [20]. On the other hand, although the use of
satellite imagery is a very promising, low-cost, and nondestructive technique [21,22], it
has its own limitations [23]. The limitations of applying RS systems in farm management
include the following: (a) the gathering and delivery of images in a timely manner; (b) the
shortage of high spatial resolution (10 m × 10 m) images; (c) image interpretation and
data extraction issues; and (d) the combination of these data with agronomic knowledge
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into expert systems [24]. Handcock et al. [25] highlighted the difficulties of RS resulting
from spatial resolution and the presence of clouds, as well as the spatial and temporal
specificity of the associated algorithms. The presence of clouds is common during the
autumn, winter, and spring seasons in temperate and rainy regions [15] which can lead
to a low temporal resolution and make it impossible to obtain reliable information in
critical periods of evolution of the pasture vegetative state. In the Montado, as in other
forestry ecosystems, there is an added limitation due to inaccessibility of areas located
under tree canopies [15].These limitations of RS-based methods create an opportunity for
the use of nondestructive proximal sensing (PS) to monitor the vegetation [26], namely,
through real-time and portable near-infrared spectroscopy [6,27,28] or through proximal
optical sensors [2]. The optic active sensor provides spectral vegetation indices, mainly the
Normalized Difference Vegetation Index (NDVI) calculated by measuring the reflectance
of the radiation emitted by the plants at certain wavelengths (Equation (1)), with values
from −1.0 to +1.0; it is sensitive to changes in plant yield/maturity, drivers of nutrient
concentrations changes and strongly correlated with pasture CP and NDF [2,29,30].

NDVI =
NIR − Red
NIR + Red

(1)

where NIR is near-infrared radiation; and Red is visible red radiation
This study aims to characterize the spatial and temporal variability of the quality

of dryland pastures in several regions of Portugal in the 2020 growing season, and on
the other hand, to evaluate two types of technologies for estimating and monitoring the
evolution of pasture crude protein (CP) and neutral detergent fiber (NDF): (i) near-infrared
spectroscopy (NIRS) combined with a multivariate data analysis applied to fresh and dry
samples and (ii) a proximal active optical sensor (AOS) applied in the field to calculate the
Normalized Difference Vegetation Index (NDVI) (Figure 1).
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Figure 1. Schematic representation of the experimental approach used in this study.
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2. Material and Methods
2.1. Characteristics of the Experimental Sites

The experiments were carried out in 8 fields (Azinhal, Cubillos, Grous, Mitra, Murteiras,
Padres, Quinta França, and Tapada Números farms), each with an area of approximately
25 ha and located in 4 districts of Portugal (Beja, Évora, Portalegre, and Guarda; Figure 2).
These annual or permanent biodiverse pastures (composed of different botanical species,
e.g., legumes, grasses, composites, and other species) are representative of the regional dry-
land pastures, with a common characteristic (such as the Holm oak or Cork oak montado)
and grazing by sheep or cattle in a rotational or permanent system (further details on the
characteristics of these sites are given in Serrano et al. [15]). The location of these fields are
representative of the normal temperature and precipitation gradient in the country, with
higher mean temperatures and smaller amounts of monthly rainfall in the southern dis-
tricts (Beja and Évora in this case) and the reverse in the northern districts (Portalegre and
Guarda in this case). Figure 3 illustrates the thermopluviometric graphs of these 4 districts
between July 2019 and June 2020 (Source: Portuguese Institute of Sea and Atmosphere).
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Figure 3. Thermopluviometric graphs of the Beja, Évora, Portalegre, and Guarda Portuguese districts
between July 2019 and June 2020 (source: Portuguese Institute of Sea and Atmosphere). (a) monthly
mean temperatures (b) monthly rainfall.

2.2. Pasture Sampling and Laboratory Processing

Pasture sampling in each location was carried out at eight georeferenced areas mea-
suring 10 m × 10 m. In each of these areas, composite pasture samples were obtained
by collecting five subsamples with an electric shears at 1 to 2 cm above ground in a
0.5 m × 0.5 m area (defined with a metal quadrat). The sampling process was noted with
the day of the year (DOY) and was performed in four different times through the growth
cycle, i.e., between January 2020 (DOY 20) and June 2020 (DOY 161). However, in two
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fields (Cubillos and Quinta França), due to road traffic restrictions imposed as a result of
the COVID-19 pandemic, it was not possible to carry out some of the pasture collections
(two at Cubillos and one at Quinta França). A total of 232 pasture samples were collected
and subjected to reference laboratory analysis and NIRS analysis. These pasture samples
were inserted into numbered plastic bags and transported to the MED-Animal Nutrition
and Metabolism Laboratory at the University of Évora. Once in the laboratory, the pasture
samples were weighed to obtain the fresh mass produced, then dried in an oven (72 h at
65 ◦C) and weighed again to establish the dry matter and pasture moisture content (PMC
wet basis, in %). Next, these samples were ground using a Perten instrument mill equipped
with a 1 mm sieve. The dehydrated samples were analyzed in order to determine the
reference values of crude protein and neutral detergent fiber, expressed in percentage on
a dry weight basis (CP and NDF, respectively, in %) using conventional methods of wet
chemistry according to the Association of Official Analytical Chemists [31]: (i) nitrogen
content was analyzed using the Kjeldhal method, i.e., a colorimetric determination in an
autoanalyzer (Bran+Luebbe) with a factor of conversion to CP of 6.25 (method no. G-188-97
Rev 2, Bran+Luebbe, Analyser Division, Norderstedt, Germany); (ii) the NDF content was
analyzed according to the Goering and Van Soest [13] method in a Fiberted digester (Foss
Tecator AB, Hoganas, Sweden).

On two dates (in March and May), fresh pasture samples were immediately trans-
ported to a NIRS device for spectra acquisition, prior to the drying and screening processes.
After the NIRS analysis, the CP and NDF reference values were determined by following
the abovementioned process using these 96 samples.

2.3. Laboratory Spectra Acquisition and Processing

Spectroscopic measurements were carried out between 800 and 2778 nm on 96 fresh
samples and 232 dry samples using a Bruker Fourier Transformation Near-Infrared (FT-
NIR) spectrometer (MPA, Opus Bruker, Germany; Figure 4a). Fresh samples were placed
in a sphere macrosample rotating channel, allowing for spectra collection from large areas
of the samples, while dry and ground samples were placed in a Petri dish with a flat
bottom and a 9 cm diameter. Spectra were collected in diffuse reflectance mode at a room
temperature of 20 ◦C. Reflectance data (R) were measured as log 1/R (absorbance data) at
1 nm interval, and NIR spectra data were obtained. Five spectra were collected from each
sample with a spectral resolution of 8 cm−1 and an average spectrum was used for further
mathematical processing and chemometrics analysis.
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Figure 4. Near-infrared spectrometer (a) and active optical sensor (b) used in this study.

2.4. Field Optical Sensor Measurement

All pasture sampling areas were evaluated with an active optical sensor (AOS, OptRx,
Ag Leader, Ames, IA, USA; Figure 4b) before cutting. The sensor (equipped with a
small portable battery as the power source, which makes it independent of ambient light
conditions) is placed 0.5 m above the pasture, and it measures simultaneously three visible
and infrared bands: (i) red (670 nm), (ii) red edge (728 nm), and (iii) near infrared (NIR,
775 nm). With two of the abovementioned spectral bands, NDVI was calculated using
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Equation (1). The operator stood still at the area of each georeferenced point and performed
measurements for a five-minute period (approximately 300 records). The values of NDVI
were organized in a spreadsheet and were matched with the coordinates of the respective
sampling points to calculate the mean, standard deviation, and range.

2.5. Statistical Analysis

The statistical analysis of the results included a descriptive analysis with a calculation
of the average and standard deviation (SD) of each dataset (PMC, CP, NDF, and NDVI).
These data were organized graphically to show the evolution of pasture parameters over
the pasture vegetative cycle (depending on the day of the year, DOY).

2.5.1. Statistical Analysis of Spectra

The Opus v. 7.5 software (Bruker Optik GmbH, Ettlingen, Germany) was employed
for spectral data collection, and FT-NIR spectra were exported to the Unscrambler software
(version 10.5.1, Camo, ASA, Oslo, Norway) for chemometric analysis; calibration and exter-
nal validation models were obtained. Prediction models were developed using a partial
least square regression (PLSR) algorithm, while considering an independent validation
sample set for the chemometrics analysis [32]. In order to obtain the best predictive model,
for PLSR, fresh and dry samples were split in two sets: a training set (calibration) with half
of the samples and a test set with the remaining half of the samples, used as an external and
independent validation set of the NIRS calibration models [15]. The selection of calibration
and validation samples was based on the premise of a uniform distribution across the
spectral space.

To find the most accurate model to quantify CP and NDF in pastures (and PMC in
fresh samples), the calibration process was performed on the raw spectra data, and after
the application of some preprocessing techniques (mathematical algorithms to remove any
irrelevant information), the best prediction model was selected. Calibration and validation
models were developed based on finding the latent factors on the data in order to maximize
the covariance between the spectra and chemical analysis. The quantitative measure for the
predictive accuracy from each model was evaluated using the coefficient of determination
(R2), root mean square errors (RMSE; Equation (2)), and the residual predictive deviation
(RPD; Equation (3)) [15]. In the current study, in fresh pasture, the selected preprocessing
methods included spectra derivative transformations and a range scaling method. The first
derivative is very effective for removing baseline offset, and the second derivative is very
effective for both baseline offset and for finding linear trends in the original spectra. The
range scaling method used here was the standard normal variate (SNV) followed by the
second derivative. The SNV technique is very useful when the total intensity in the spectra
is sample-dependent [33]. In the absence of substantial adverse effects caused by undesired
variations from light scattering, the original spectra may be used [34]. The original spectra
were used for building the model to estimate the CP in dry pasture samples.

RMSE =

√√√√√ n
∑

i=1
(Ei − Mi)

2

n
(2)

RPD =
SD

RMSE
(3)

where n is the number of observations, and Ei and Mi are the estimated and observed
(measured) values, respectively.

2.5.2. Statistical Analysis of Optical Measuring

The statistical treatment of these results was performed using MSTAT-C software
(MSTAT-C, Michigan State University, MI, USA) with a significance level of 95% (p < 0.05)
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and consisted of an analysis of regression between the pasture reference values (PMC, CP
and NDF) and NDVI measured by OAS.

3. Results and Discussion
3.1. Spatial and Temporal Variability Pattern of the Measured Parameters

Table 1 shows the mean, SD, and range of reference pasture parameters (PMC, CP,
and NDF) and the NDVI obtained by the AOS in the 8 fields and on different dates. These
pastures started their vegetative cycle between September and October 2019, depending
on the rainfall accumulated in the beginning of autumn. Between November and January,
air temperatures reached low values (with a mean of approximately 5 ◦C in the Guarda
district and approximately 10 ◦C in the Portalegre, Évora, and Beja districts; Figure 3a),
and so the pasture remained in a dormant phase, with practically no vegetative growth [1].
It is therefore normal for pasture quality to remain relatively high and stable in this period
(high PMC and CP, low NDF), corresponding to a peak in NDVI (near DOY 60). From
March and until the last sampling date (May–June), the rise in temperature and the lower
rainfall (Figure 3a,b, respectively) triggered a decrease in pasture quality, with a significant
decrease in CP (Figure 5a), which is reflected in a clear decrease in NDVI (Figure 5b). This
pattern is similar in the various districts, with higher values of CP and NDVI in the most
northern region (“QF”, Guarda district) and lower values of CP and NDVI in the south
(“AZI” and “GRO”, Beja district), reflecting the evolution of the temperature–rainfall pair.
In Figure 5a,b, it is possible to verify that the trend line resulting from all samples collected
in all locations shows an intermediate behavior between the warmest zone and the least
rainfall zone (Beja district) and the coldest and rainiest zone (Guarda district). In the most
southern areas (Beja district), the period of greatest vegetative vigor of the pasture (greater
NDVI) is shorter, which may reflect the combined effect of high temperatures and decreased
rainfall, both important drivers in dryland crops, as is the case of biodiverse permanent
pastures. The vegetative cycle of pastures in warmer areas can mean anticipating the
animal supplementation needs in extensive grazing. With reference to the maintenance
needs of adult sheep in terms of CP (9.4% DM [2,35]; Figure 5a), it is possible to verify that
in 2020, in the warmer areas (Beja district) the animal supplementation needs in terms of
protein occurred right at the beginning of May (DOY 125; Figure 5a), while in the colder
areas (Guarda district) these needs occurred only in early June (DOY 155; Figure 5a).

In addition to the seasonality or temporal variability that these data reflect, which is
characteristic of climatic influence, there is also an important spatial variability, especially
at the CP level, which is required for the development FT-NIR calibration models. The
average CV across the four dates and eight sampling sites was 5.1% for PMC (range of
1.7–12.8%), 17.0% for CP (range of 4.0–39.8%), 8.0% for NDF (range of 3.3–20.7%), and 7.9%
for NDVI (range of 2.5–18.8%). This spatial variability, especially CP, reflects the diversity
of species that characterize these pastures (grasses, legumes, composites, and other species)
with their different rates of growth and development in response to the evolution of
temperature and rainfall and also to the spatial variability of soil fertility. Spatial variability
is a good predictor of the suitability of employing differentiated management technologies
and techniques [23], for example, for the differentiated management of pasture, animal
grazing and fertilization, or soil amendment [29], which is an important component of the
PA concept [23].
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Table 1. Mean, standard deviation (SD), and range of pasture parameters in the 8 fields and on different dates for dry (D) and fresh (F) samples.

Field Code Date DOY D/F PMC, % CP, %DM NDF, %DM NDVI

(2020) (2020) Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range

“AZI” 21-JAN 21 D 72.1 ± 4.7 62.5–77.3 11.5 ± 1.8 9.2–13.8 58.7 ± 5.3 47.3–62.9 0.636 ± 0.055 0.529–0.708
02-MAR 62 D/F 78.2 ± 3.7 72.7–83.1 15.8 ± 1.1 14.4–17.7 53.2 ± 3.7 48.8–59.9 0.698 ± 0.045 0.607–0.748
21-APR 112 D 83.1 ± 1.9 79.8–86.1 12.4 ± 1.8 8.9–14.4 56.5 ± 3.5 51.8–63.6 0.724 ± 0.035 0.660–0.768
28-MAY 149 D/F 55.7 ± 6.9 46.9–65.8 7.3 ± 1.9 5.2–11.6 62.5 ± 2.3 60.0–67.2 0.310 ± 0.026 0.281–0.358

“CUB” 29-JAN 29 D 87.1 ± 1.5 84.7–88.4 20.4 ± 2.7 16.2–25.3 43.2 ± 4.3 35.0–49.6 0.778 ± 0.058 0.679–0.833
10-MAR 70 D/F 80.9 ± 2.0 78.0–83.1 16.8 ± 1.6 15.4–20.3 41.4 ± 1.9 37.9–44.1 0.740 ± 0.032 0.702–0.789

“GRO” 21-JAN 21 D 75.9 ± 4.6 68.3–80.0 17.6 ± 2.3 15.4–21.7 48.9 ± 4.2 41.5–55.6 0.651 ± 0.072 0.543–0.728
02-MAR 62 D/F 78.2 ± 3.7 73.8–84.1 15.0 ± 0.6 13.8–15.7 45.0 ± 3.3 40.3–50.4 0.738 ± 0.042 0.660–0.788
21-APR 112 D 72.2 ± 2.9 68.1–76.3 7.8 ± 0.9 6.3–9.0 66.2 ± 3.6 59.8–70.6 0.561 ± 0.051 0.453–0.610
28-MAY 149 D/F 53.7 ± 6.9 41.9–64.2 7.0 ± 1.2 5.8–9.6 65.9 ± 3.1 59.8–69.4 0.288 ± 0.019 0.264–0.329

“MIT” 20-JAN 20 D 79.5 ± 5.8 68.5–84.7 17.1 ± 3.1 10.8–21.4 43.9 ± 9.1 32.9–57.5 0.734 ± 0.092 0.628–0.831
03-MAR 63 D 87.6 ± 1.8 85.0–90.1 17.6 ± 2.4 14.8–20.3 45.4 ± 3.3 41.2–50.4 0.793 ± 0.020 0.776–0.837
14-APR 105 D 87.1 ± 2.2 83.6–89.2 15.2 ± 3.5 10.8–19.2 44.7 ± 6.3 36.2–52.9 0.814 ± 0.046 0.731–0.853
26-MAY 147 D/F 67.4 ± 7.4 58.8–75.5 9.5 ± 2.1 6.7–11.8 59.9 ± 5.7 53.2–67.4 0.457 ± 0.086 0.323–0.557

“MUR” 22-JAN 22 D 76.8 ± 3.4 73.1–83.6 11.0 ± 3.1 7.7–17.8 63.9 ± 3.2 59.0–67.2 0.530 ± 0.062 0.422–0.617
09-MAR 69 D/F 79.9 ± 2.8 75.8–83.6 15.7 ± 5.8 8.7–25.8 51.3 ± 3.8 45.0–56.7 0.600 ± 0.046 0.521–0.668
20-APR 111 D 83.2 ± 1.4 81.6–85.8 15.2 ± 3.1 11.2–21.0 54.2 ± 3.7 49.1–59.9 0.649 ± 0.049 0.575–0.713
29-MAY 150 D/F 75.1 ± 4.3 68.3–79.4 8.6 ± 1.2 7.0–10.3 61.8 ± 3.3 57.3–66.0 0.446 ± 0.057 0.366–0.534

“PAD” 20-JAN 20 D 77.7 ± 3.7 70.8–82.3 16.1 ± 2.0 13.3–20.1 50.6 ± 3.7 45.5–56.5 0.690 ± 0.028 0.640–0.733
09-MAR 69 D/F 78.1 ± 2.0 74.9–80.8 16.6 ± 2.2 13.0–19.9 45.2 ± 2.5 40.4–47.7 0.739 ± 0.020 0.716–0.764
20-APR 111 D 86.8 ± 1.5 84.6–89.1 19.0 ± 2.6 13.9–21.9 47.4 ± 1.9 44.5–49.8 0.820 ± 0.029 0.777–0.856
29-MAY 150 D/F 67.6 ± 3.1 63.8–72.8 9.7 ± 1.1 7.2–10.9 60.6 ± 2.0 56.4–62.7 0.488 ± 0.042 0.432–0.550

“QF” 30-JAN 30 D 84.9 ± 2.2 82.0–87.7 20.3 ± 3.1 15.4–26.1 50.1 ± 6.1 40.4–60.4 0.789 ± 0.025 0.760–0.837
23-APR 114 D 80.6 ± 2.2 77.0–83.4 16.7 ± 1.6 15.0–18.9 45.1 ± 1.9 42.7–47.8 0.744 ± 0.065 0.662–0.817
09-JUN 161 D 63.8 ± 3.8 57.9–68.4 9.2 ± 1.6 6.8–11.7 56.4 ± 3.6 52.3–61.8 0.369 ± 0.032 0.328–0.423

“TAP” 22-JAN 22 D 74.5 ± 7.5 62.4–83.1 10.8 ± 4.3 6.2–17.8 56.2 ± 9.4 41.4–66.1 0.620 ± 0.058 0.552–0.733
10-MAR 70 D/F 76.1 ± 4.6 68.5–81.4 15.0 ± 3.3 11.8–22.1 45.8 ± 4.0 41.7–53.1 0.640 ± 0.053 0.548–0.700
24-APR 115 D 79.4 ± 2.2 75.7–82.5 9.0 ± 1.1 7.5–11.2 56.7 ± 5.5 49.2–63.7 0.656 ± 0.055 0.594–0.754
01-JUN 153 D/F 70.0 ± 6.5 55.7–76.3 8.0 ± 1.4 5.7–10.0 58.7 ± 7.0 48.4–71.1 0.431 ± 0.051 0.360–0.504

Note: Pasture moisture content, PMC; crude protein, CP; neutral detergent fiber, NDF; and Normalized Difference Vegetation Index, NDVI.
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Figure 5. Crude protein (CP; (a)) and normalized difference vegetation index (NDVI; (b)) patterns of
the pasture by districts, between January and June 2020.

3.2. Evaluation of Near-Infrared Spectroscopy (NIRS)

Statistics regarding calibration and external validation of prediction models developed
using PLSR to correlate the NIRS absorbance spectra with the quality parameters obtained
by chemical reference processing are presented in Table 2 for fresh pasture samples (PMC,
CP, and NDF) and in Table 3 for dry pasture samples (CP and NDF).

For each parameter, as several preprocessing methods were considered, only the
selected pretreatment is shown based on the criteria presented above; for each parameter,
the pretreatment with higher values of R2 and RPD and with lower values of RMSE and
bias was selected [28,36]. According to Fagan et al. [37], a model is considered good
when the R2 is around 0.90 and the RPD is greater than 3. In this case, the best results
in fresh pasture samples were obtained using (i) the standard normal variate with first
derivative preprocessing for PMC (R2 = 0.834; RPD = 2.72; RMSE = 3.517; bias = 0.101) of the
external validation model (Table 2); (ii) the first derivative preprocessing for CP (R2 = 0.702;
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RPD = 1.88; RMSE = 2.303; bias = −0.049) and NDF (R2 = 0.720; RPD = 2.38; RMSE = 3.241;
bias = −0.045) of the external validation models (Table 2). In dry pasture samples, the best
results were obtained using (i) the “raw data” for CP (R2 = 0.936; RPD = 4.01; RMSE = 1.174;
bias = 0.031) of the external validation (Table 3); (ii) the first derivative preprocessing for
NDF (R2 = 0.914; RPD = 3.48; RMSE = 2.752; bias = −0.048) of the external validation model
(Table 3).

Table 2. Statistics regarding calibration and external validation models of pasture moisture content (PMC), crude protein
(CP) and neutral detergent fiber (NDF) in fresh samples using near-infrared spectroscopy (NIRS) spectra and partial least
squares regression (PLSR).

Pasture Parameter
(Spectral Pre-Processing) LV Slope Intercept R2 RMSE Bias RPD

Calibration Model
PMC (SNV + 2nd derivative) 5 0.948 3.729 0.948 1.975 - -

CP (1st derivative) 7 0.833 2.112 0.833 1.720 - -

NDF (1st derivative) 6 0.824 10.045 0.824 3.020 - -

External Validation Model
PMC (SNV + 2nd derivative) 5 0.849 10.839 0.834 3.517 0.101 2.72

CP (1st derivative) 7 0.745 3.165 0.702 2.303 −0.049 1.88

NDF (1st derivative) 6 0.774 12.905 0.720 3.241 −0.045 2.38

SNV, standard normal variate; LV, latent variables; R2, coefficient of determination; RMSE, root mean square error; Bias, average difference
between predicted and actual values; RPD, residual predictive deviation.

Table 3. Statistics for calibration and external validation models of crude protein (CP) and neutral detergent fiber (NDF) in
pasture dry samples using near-infrared spectroscopy (NIRS) spectra and partial least squares regression (PLSR).

Pasture Parameter
(Spectral Pre-Processing) LV Slope Intercept R2 RMSE Bias RPD

Calibration Model
CP (raw data) 6 0.941 0.855 0.941 1.250 - -

NDF (1st derivative) 6 0.948 2.662 0.948 2.293 - -

External Validation Model
CP (raw data) 6 0.983 0.260 0.936 1.174 0.031 4.01

NDF (1st derivative) 6 0.951 2.094 0.914 2.752 −0.438 3.48

LV, latent variables; R2, coefficient of determination; RMSE, root mean square error; Bias, average difference between predicted and actual
values; RPD, residual predictive deviation.

Tables 2 and 3 show that the PLSR models selected for CP and NDF quantification in
dry pasture samples (Table 3), compared to those of the fresh pasture samples (Table 2),
exhibited (i) a small difference in R2 and RMSE between calibration and external valida-
tion models; and (ii) a higher R2 and RPD and lower RMSE, both indicators of model
accuracy [36]. Alomar et al. [20] and Parrini et al. [16] justified this advantage of dried
samples for two reasons: Samples subjected to laboratory physical preprocessing (drying,
grinding) are more homogeneous in terms of particle size, and they do not have water
interference, which generates strong absorption signals that overlap and obscure other
spectral features. According to Alomar et al. [20], dehydration extends the conservation
of samples that cannot be immediately analyzed in the laboratory. It also standardizes
the water content of tissues of variable moisture content and facilitates grinding, thus
improving homogenization and decreasing sampling errors.

The optimized spectra of NIRS (with several preprocessing methods considered) for
PMC, CP, and NDF in fresh pasture samples, and for CP and NDF in dry pasture samples
are presented in Figures 6 and 7, respectively.
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Figure 6. Optimized near-infrared (NIR) spectra in fresh pasture samples: (a) for pasture moisture
content (PMC) using SNV with 2nd derivative spectral preprocessing; and (b) for crude protein (CP)
and near detergent fiber (NDF) using 1st derivative spectral preprocessing.

In fresh pasture samples (Figure 6), as was expected, the best correlations happened
with PMC. NIRS spectroscopy is well-established technology used for moisture test-
ing in many food products, as water display characteristic absorption peaks in a NIR
spectrum. The raw spectra region selected was defined within the wavenumber range
3795–9157 cm−1 (2635–1092 nm), with absorbance peaks (critical spectra zones) in the
region of 5100–5700 cm−1 (1960–1750 nm).

In dry pasture samples (Figure 7), the raw spectra region selected was defined within
the wavenumber range 3865–9000 cm−1 (2600–1110 nm), with successive absorbance peaks
in the region of 3865–5550 cm−1 (2600–1800 nm) for CP and in the region of 4070–6000 cm−1

(2450–1670 nm) for NDF. According to Souza et al. [19], this behavior is due to the interfer-
ence of the functional groups’ connections between hydrogen atoms and carbon, nitrogen,
and oxygen atoms (C-H, N-H, and O-H, respectively).
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Figures 8 and 9 show the measured versus predicted values for PMC, CP, and NDF
in calibration and validation phases in fresh pasture samples (Figure 8), and for CP and
NDF in dry pasture samples (Figure 9). These results show that the range of the calibration
and validation sets was similar for all parameters, which contributed to a good representa-
tiveness of the whole group of samples. The coefficient of determination obtained with
dry pasture samples (0.936 to CP and 0.914 to NDF; p < 0.01) suggests the potential of
NIRS to estimate these two parameters, which are important indicators of pasture quality.
This excellent potential as a predictor is confirmed by RPD values (4.01 to CP and 3.48 to
NDF) [38–40] and can even be used as routine analysis [41]. These values also indicate a
greater accuracy of predictor model for CP than for NDF, which is in agreement with other
studies [15,42].
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Figure 8. Reference values versus predicted values for calibration and validation phases in fresh pasture samples: (a) pasture
moisture content (PMC), (b) crude protein (CP), and (c) neutral detergent fiber (NDF).
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Figure 9. Reference values versus predicted values for calibration and validation phases in dry pasture samples: (a) crude
protein (CP) and (b) neutral detergent fiber (NDF).

The results obtained with fresh pasture samples (without sample preparation and
homogenization) gave us some reservations regarding the use of real-time, portable, and
nondestructive spectrometers to monitor the vegetation quality due to the variability of
external environmental factors, such as the moisture content, which is one of the most
critical factors that degrade the prediction accuracy [6,26–28]. In view of the small number
of publications on the use of fresh samples and on the effect of sample preparation on
the accuracy of the pasture quality estimate through NIR spectroscopy [16], the results
obtained in this work confirm the importance of this type of studies.

3.3. Evaluation of Field Optical Sensor

The limitations revealed by NIR spectroscopy combined with the PLS regression
approach for determining fresh pasture quality parameters (CP and NDF) led to the field
testing of the optical sensor (OptRx). The analysis of regression between the average
pasture reference values of PMC, CP, and NDF, provided by traditional laboratory methods
at each of the eight experimental fields and each of the four sampling dates, and the
nondestructive and in-field NDVI measurements carried out by the proximal optical
sensor result in calibration models with significant (p < 0.05) and similar coefficient of
determination (R2 = 0.836 for PMC, R2 = 0.707 for CP and R2 = 0.648 for NDF; Figure 10)
to those obtained by NIRS combined with the PLS regression in fresh pasture samples.
According to Jackson and Ash [43] and Gu et al. [44], higher NDVI values are indicative
of greater vigor and photosynthetic activity; this is directly connected to the presence of
chlorophyll in the leaves. The significant and positive correlation between NDVI and PMC
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or CP, and the significant and negative correlation between NDVI and NDF was confirmed
in previous studies [2,15,29].
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Figure 10. Reference values of pasture moisture content (PMC), crude protein (CP) and neutral
detergent fiber (NDF) obtained in laboratory versus normalized difference vegetation index (NDVI)
measurements carried out by the optical sensor OptRx.

Table 4 shows (a) for each one of the eight experimental fields and (b) for two seasons
(winter and spring), the linear correlation coefficients (r) obtained between NDVI, measured
by active optical sensor in each sampling point in four dates (three in “QF” and two in
“CUB”), and the correspondent reference values of PMC, CP and NDF. These results
show that the correlation between NDVI and different pasture quality parameters is
significant in all locations and in both seasons. This is a good indicator in view of the
spatial (location) and temporal (season) variability. However, some locations have lower
correlation coefficients (for example, “TAP” or “MUR”). Figure 11 shows this model
variability for CP prediction, taking as an example the experimental fields with higher
(“PAD”) and lower (“TAP”) correlation coefficients (Table 4). A comparison of the reference
values versus predicted values (based in the general model of Figure 10) presents a very
good coefficient of determination (R2; approximately 0.80) in the “PAD” field and very low
(approximately 0.30) in the “TAP” field. These spatial variability raises the need to include
in future works other variables that help to characterize the specificity of each field, namely
in relation to the pasture floristic composition. The difference in spatial versus temporal
variation in structural attributes of key plant functional groups appears to be the primary
driver of differences among regression models [11], specifically, for example, in dryland
pastures, legumes with prostrate canopies versus grasses with more vertically canopies [1].
This general model (Figure 10) also includes, in each location (except “CUB” and “QF”),
four dates throughout pasture vegetative cycle (between January and June), which may
have an effect on its reliability [11]. Table 4 confirms, for all parameters, better correlation
coefficients in spring than in winter, which helps to explain part of the error associated
with the proposed general model (Figure 10). These results suggest that more investigation
is required to assess the capabilities of this proximal sensor in the field, in a context of great
spatial and temporal variability
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Table 4. Linear correlation coefficients (r) obtained in each field and season between NDVI, measured
by active optical sensor in each sampling point and four dates (three in “QF” and two in “CUB”),
and the correspondent reference values of pasture moisture content (PMC), crude protein (CP) and
neutral detergent fiber (NDF).

Experimental Field/Season NDVI vs. PMC NDVI vs. CP NDVI vs. NDF

Field (n)
“AZI” (32) 0.9095 * 0.7823 * −0.6672 *
“CUB” (16) 0.5785 * 0.7460 * −0.7667 *
“GRO” (32) 0.8887 * 0.7342 * −0.7376 *
“MIT” (32) 0.9411 * 0.8012 * −0.8662 *
“MUR” (32) 0.6353 * 0.6406 * −0.6055 *
“PAD” (32) 0.9444 * 0.8712 * −0.8777 *
“QF” (24) 0.9718 * 0.8534 * −0.6246 *

“TAP” (32) 0.7090 * 0.6275 * −0.6513 *

Season (n)
Winter (120) 0.6264 * 0.6072 * −0.6735 *
Spring (112) 0.9008 * 0.7830 * −0.7390 *

Note: n = Number of samples; * = Statistically significant at the 95% confidence level (p < 0.05).
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Figure 11. Reference values versus predicted values of pasture crude protein (CP) in two experimental
fields (“PAD” and “TAP”).

The advantage of measurements with optical sensor relative to laboratory NIRS
approach is that it is nondestructive, and it reads directly in the field without disturbing
the sample, which allows the farmer to collect a much higher sampling density in less
time. Although measuring NDVI from optical sensors installed on satellites is also a
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very interesting alternative [15] due to the ease of obtaining the data, it does have some
limitations in comparison with proximal optical sensors, as is the case with the OptRx
sensor, namely, a lower spatial resolution (pixel of 10 m × 10 m), intermittent temporal
availability (aggravated by the presence of clouds), and the inaccessibility of the areas
under tree canopy, a which is a preponderant element in the montado ecosystem. For this
reason, the current trend is towards the use of proximal, portable, and mobile sensors as a
complementary tool for remote sensing [29].

4. Conclusions

Grazing management decisions in extensive livestock systems are based on the eval-
uation of pasture availability and quality. The results of this study showed a significant
correlation between NIRS calibration models or NDVI obtained by optical proximal sensing
and reference methods for quantifying pasture crude protein and fiber. The most accurate
indicators were obtained with NIRS models applied to pasture samples that had undergone
a drying and screening process (R2 = 0.936 for CP and R2 = 0.914 for NDF). The excellent
potential of NIRS spectra as a predictor is confirmed by RPD values (4.01 for CP and 3.48
for NDF). Nevertheless, the NIRS approach applied to fresh pasture samples shows lower
accuracy (R2 = 0.702 for CP and R2 = 0.720 for NDF), similar to the NDVI measured in the
field by optical proximal sensing (R2 = 0.707 for CP and R2 = 0.648 for NDF). These issues
justify carrying out more studies to evaluate the effect of pasture sample preparation on
their spectral response. On the other hand, the use of proximal sensors (portable spectrom-
eters or optical sensors) to estimate the quality of pasture throughout the growing season
can be very interesting as a complement to remote sensing from satellite images. This
complementarity is essential in the montado ecosystem for accessing the pasture under
tree canopy, and in general for resolving the negative effect of clouds on the information
supplied by satellite images.
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