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Abstract: Our work aims to monitor wheat crop using a variety-based approach by taking into con-
sideration four different phenological stages of wheat crop development. In addition to highlighting
the contribution of Red-Edge vegetation indices in mapping wheat dry matter and nitrogen content
dynamics, as well as using Random Forest regressor in the estimation of wheat yield, dry matter and
nitrogen uptake relying on UAV (Unmanned Aerial Vehicle) multispectral imagery. The study was
conducted on an experimental platform with 12 wheat varieties located in Sidi Slimane (Morocco).
Several flight missions were conducted using eBee UAV with MultiSpec4C camera according to
phenological growth stages of wheat. The proposed methodology is subdivided into two approaches,
the first aims to find the most suitable vegetation index for wheat’s biophysical parameters estimation
and the second to establish a global model regardless of the varieties to estimate the biophysical pa-
rameters of wheat: Dry matter and nitrogen uptake. The two approaches were conducted according
to six main steps: (1) UAV flight missions and in-situ data acquisition during four phenological stages
of wheat development, (2) Processing of UAV multispectral images which enabled us to elaborate
the vegetation indices maps (RTVI, MTVI2, NDVI, NDRE, GNDVI, GNDRE, SR-RE et SR-NIR),
(3) Automatic extraction of plots by Object-based image analysis approach and creating a spatial
database combining the spectral information and wheat’s biophysical parameters, (4) Monitoring
wheat growth by generating dry biomass and wheat’s nitrogen uptake model using exponential,
polynomial and linear regression for each variety this step resumes the varietal approach, (5) Engen-
dering a global model employing both linear regression and Random Forest technique, (6) Wheat
yield estimation. The proposed method has allowed to predict from 1 up to 21% difference between
actual and estimated yield when using both RTVI index and Random Forest technique as well as
mapping wheat’s dry biomass and nitrogen uptake along with the nitrogen nutrition index (NNI)
and therefore facilitate a careful monitoring of the health and the growth of wheat crop. Nevertheless,
some wheat varieties have shown a significant difference in yield between 2.6 and 3.3 t/ha.

Keywords: wheat yield; unmanned aerial vehicle (UAV); multispectral imagery; RTVI; regression,
random forest; NNI; red-edge; dry biomass; nitrogen nutrition

1. Introduction

Precision agriculture has demonstrated its potential by englobing advanced technolo-
gies to ensure efficiency gains and to alleviate food security allowing the implementation of
modern management and decision tools [1]. As an ever-evolving discipline, precision agri-
culture has proven its efficiency when it comes to overcoming the major limits of research
aiming to tackle climate variations along with excessive consumption. Therefore, analysts
foresee an agro-technological revolution, where precision agriculture is believed to play a
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key role as an innovative production system, which relies on input management in a field
based on actual crop needs while optimizing deployed resources [2,3]. For this purpose,
it aims to control the production chain and the factors that influence it by exploiting new
technologies such as GNSS (Global Navigation Satellite System) and remote sensing to
manage crops and reduce the use of fertilizers, pesticides and water [4].

A recent study by Hexa Reports suggests that precision agriculture is expected to
reach 43.4 billion dollars by 2025 [5]. Hence, it is viewed as a promising field in continued
expansion, including the use of the remote sensing approach, which offers a viable alterna-
tive for determining crop status due to its ability to capture large areas at the same time [6]
Especially with the widespread of the use of UAV technology allowing a low-altitude
remote sensing and the ability to use various sensors thermal, hyperspectral and opti-
cal [7,8]. This discipline is ubiquitous in Morocco because of its predominantly agricultural
economy, where the national production of cereals is highly exposed to climate fluctuations
because it is concentrated mainly in arid and semi-arid areas with limited land and water
resources [9].

Wheat is one of the most highly regarded crops for national monitoring because it
has been an essential food source for the population for centuries [10]. Therefore, the
prediction of its yield is a necessity since it is a tool of great interest for decision-making
and the basis of measured planning [11]. Indeed, in order to ensure food security, yield
prediction makes it possible to prepare for the consequences of an agricultural shortage, by
reducing vulnerability to climatic hazards and to plan in advance aid to farmers and cereal
imports. In the case of agricultural insurance, yield estimation quantifies the impacts of
droughts when they occur to properly determine compensation. It also allows producers
who commit to export their crops to plan their actions and decision based on the results
of the prediction [12]. Thus, several studies have been conducted to predict wheat yield.
We specify the study of Hassan et al. in 2018 [13], which was held in China specifically
in Beijing and its objective is to estimate the agricultural yield of wheat for 32 varieties,
six flight missions that correspond to the following phenological stages: heading, flowering,
seed development (Beginning of the stadium milky, soft pasty stage and hard pasty) were
made with flight heights between 30 m and 40 m in order to reach spatial resolutions of
2.5 cm to 2.8 cm by the Sequoia camera. Moreover, the data acquisition was conducted
over two phases. Firstly, the extraction of the 9 m2 plots allowed obtaining the following
in-situ data: Number of grains per ear and number of ears for each plot. Secondly, the use
of Sequoia multispectral camera and Pix4D Mapper for data post-processing allowed the
use of the following vegetation indices: GNDVI, SR-NIR, RECI and NDRE. A correlation
between the vegetation indices and the in-situ data using R package for linear regression
gave a coefficient of determination R2 greater than 0.80 in the soft pasty stage between the
different vegetation indices and the in-situ collected data [10]. Similarly, and using the
K-means model, Guan et al. in 2019 [14] has explained the use of unmanned aerial vehicle
(UAV) and multispectral imagery in the agricultural field. Their work was to calculate the
agricultural yield of wheat and rice. For wheat cultivation UAV flight missions have been
programmed with a flight height ranging from 30 m to 100 m and using the Parrot Sequoia
camera. 24 plots were collected between flowering and maturity phenological stages and
having an area of 8 m × 14 m. The NDVI (Normalized Difference Vegetation Index) is the
only vegetation index used, which resulted in a coefficient of determination of 0.81 with
wheat yield during the grain development stage [13].

Throughout this study we aim to:

• Monitor wheat crop and estimate its yield using UAV technology multispectral imagery.
• Evaluate the use of the Red-Edge band in agricultural remote sensing applications.
• Use of regression functions and Random Forest as a machine learning technique for

prediction purposes in agriculture.
• Elucidate the ability of different vegetation indices to estimate the biophysical pa-

rameters of wheat crop, namely dry matter and nitrogen uptake considering wheat’s
phenotypical diversity and phenological stages.
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In the following paper, we will discuss three main sections: the first one enumerates
the material and the methods used, the second is a presentation of the obtained results
followed by a discussion. The last section is an overall conclusion and recommendations
allowing a quick overview and confrontation of the present work with those to come.

2. Materials and Methods
2.1. General Methodology

Having a multispectral camera as a payload, the use of UAV allowed the execution
of several flight missions during various stages of wheat development, namely the end
of tillering, two nodes, the flag leaf fully unrolled and during the ripening stage before
and after extraction of the plots. The images resulting from the executed missions were
post-processed and hence permitted the generation of the following outputs: orthomosaic
and vegetation index maps: NDVI, NDRE, GNDVI, GNDRE, SR-RE, SR-NIR, RTVI and
MTVI2. By using both UAV’s multispectral imagery and in-situ data, a database containing
both vegetation index values and the biophysical parameters of wheat crop, dry matter
and nitrogen uptake was created.

The approach adopted in this study (Figure 1) is primarily to analyze the response
of each vegetation index to each wheat variety in order to decide on the hypothesis of
variation of vegetation indices by genotype of wheat and according to the biophysical
characteristics of each variety. After that, a general approach that consists of establishing a
model utilizing firstly the Random Forest technique and secondly a linear regression. For
UAV’s imagery we have used World Geodetic System 1984 or WGS84 before generating
the UAV’s products. Therefore, during this whole study we have used Merchich North
Morocco’s coordinate system for georeferenced orthomosaics, reflectance and vegetation
indices maps.
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2.2. Study Area

This study took place in Morocco at the experimental platform of the agricultural
domain HAMMA located in the province of Sidi Slimane (Figure 2). The experimental
platform used in our study is exploited essentially for durum and bread wheat crop
cultivation. It is composed of 28 micro-platforms of 300 m2 each with different varieties.
The sowing date is 06 of December 2018. The general disposition of microplatforms upon
the experimental platform is presented in Figure 3 where DW stands for durum wheat and
BW stands for bread wheat.
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2.3. UAV and In-Situ Data Acquisition
2.3.1. Acquisition of UAV’s Multispectral Imagery

The used UAV platform was eBee Classic with MultiSPEC 4C camera as a payload
(Figure 4). Table 1 presents some main characteristics of the used UAV platform and
the multispectral camera. Seven flight missions were executed at different dates during
different stages of wheat growth. At each phenological stage, two flights before and after
the sampling are conducted. The objective of having two flights is to be able to find the
location of the experimental plots after postprocessing the images. An individual final
mission was done during the maturity stage. However, planning a UAV flight mission is a
crucial step that conditions the spatial and spectral resolution of the resulting images [14].
And knowing that fixed-wing UAVs are more susceptible to external disturbances, we
have taken into account the following parameters due to their importance in precision
agriculture purposes: Flight altitude, wind speed, longitudinal and lateral overlaps as well
as safe take-off and landing sites using the same ROI (Region of Interest) polygon of the
experimental platform [15,16].
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Table 1. UAV and camera specifications.

UAV Specifications Camera Specifications

UAV type Fixed-wing Sensor type 4 × 1/3” CMOS

Weight (including battery
and payload) 690 g Acquisition bands

Green (550 nm)—Red
(660 nm)—Red-Edge

(735 nm)—NIR (790 nm)
Radio link range 3 km Storage SD card
Piloting Automatic Focal length 4 mm
Speed 40–90 km/h F-number f/1.8
Wind resistance Up to 12 m/s Shutter type Global shutter
Nominal maximal flight time 50 min Degrees of freedom Nadiral acquisition only
Landing Linear (precision of 5 m) Weight 160 g
Absolute horizontal/vertical
precision (using GCP) Up to 3 cm/5 cm Output image 4 Images in tif format with raw

10 bits
Absolute horizontal/vertical
precision (without using GCP) 1–5 m Ground/spatial

resolutions 5–30 cm

The characteristics of each mission by phenological stage are presented in the Table 2.
Before executing the flight missions using the MultiSPEC 4C camera, radiometric

calibration images must be taken. This calibration is performed to obtain reflectance
measurements from the acquired images. It is performed using a calibration target provided
by the manufacturer. To succeed the calibration process, the lighting conditions of the
sensor of multiSPEC 4C camera and the calibration target must be identical to the lighting
conditions encountered by the eBee during its mission (Figure 5). Thus, the target must be
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exposed to the sky and clear of shadows during the calibration procedure. The UAV must
be placed above the target, it must be horizontal, with a minimum distance of 50 cm and
maximum of 1 m (Technical Guide MultiSPEC 4C). Once placed, the camera automatically
takes several calibration images, with a pause of about 3 s between each image.

Table 2. Characteristics of UAV’s flight missions during different stages of wheat growth.

Flight 1 Flight 2 Flight 3 Flight 4 Flight 5 Flight 6 Flight 7

Duration 10 min 10 min 10 min 10 min 10 min 10 min 10 min
Flight
altitude 60 m 60 m 60 m 60 m 60 m 60 m 60 m

GSD 6 cm 6 cm 6 cm 6 cm 6 cm 6 cm 6 cm
Lateral
overlap 70% 70% 70% 70% 70% 70% 70%

Longitudinal
overlap 80% 80% 80% 80% 80% 80% 80%

Covered area 6 ha 6 ha 6 ha 6 ha 6 ha 6 ha 6 ha
Mission date 12 February 2019 22 February 2019 14 March 2019 15 May 2019
Phenological
stage End of tillering Two nodes Flag leaf fully unrolled Ripening
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2.3.2. Collecting In-Situ Data

During plant growth, field samples are taken at the end of tillering stage (BBCH
(Biologische Bundesanstalt bunderssortenamt and CHemical industry) 29–30), two nodes
(BBCH 32) and flag leaf fully unrolled (BBCH 39). These samples count three plots of
0.5 m × 0.5 m each, chosen so that they can reveal the state of the whole microplatform.
Measurements are made on each plot, which enables quantitative and qualitative data
to be collected on the state and development of the crop. The objective of this step is to
quantify the biophysical parameters and nutrient uptake of wheat for each variety. It is
thus enrolled on two phases:

• Field phase:

The data collected directly from the field, at the level of each plot and at each stage are:
Length of the stem, presence of pests, weeds and diseases, state of the plant and weight of
the sample.
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• Laboratory phase:

Samples of 50 to 100 plants are collected and sent to the laboratory to extract the
following results: Fresh matter, dry matter and total nitrogen content. The quantity of fresh
and dry matter is estimated by measuring the weight of the sample of the collected plants
with a balance (fresh weight) then dried for 24 to 48 h at 80 ◦C (constant weight), cooled
and weighed again (weight dry). For the nitrogen content Dumas combustion method was
used [17].

2.4. Multispectral UAV Images Processing

First, the acquired images were preprocessed and geolocated using the trajectory data
contained in the EXIF and Log files. The radiometric calibration of the images was also per-
formed while automatically selecting the coefficients resulting from the calibration targets
(Airinov Aircalib used in our case is included among the targets detected automatically by
Pix4D) performed using the calibration images acquired before each flight and for each
multispectral band [18]. The use of a radiometric calibration target makes it possible to
calibrate and correct the radiance values of the pixels according to the values given by the
calibration target by taking into account the lighting conditions on the date, at the same
time and location of the image capture [19].

The processing of acquired UAV images was conducted for each flight mission. We
used Pix4D [20] solution for this purpose. The workflow consists of three main steps: Initial
processing, generating dense point clouds and generating digital surface models (DSM),
orthomosaics and reflectance maps [21]. During the initial processing, the position of the
matching points is calculated. These points are used to consolidate the correspondence
between images. Subsequently, an AAT (Automatic Aerial Triangulation) and a bundle
block adjustment (BBA) are executed which allow the calculation of the 3D position of the
camera at each capture as well as the coordinates of the matching points. Finally, automatic
matching points are created and thus constituting the basis for the next processing steps
(Pix4D support). The next step is the generation of a dense point cloud where additional
tie points are created based on the automatic connection points that result in a dense point
cloud and a 3D textured mesh which can be created using the dense point cloud. The final
step aims to create a digital surface model (DSM) that allows the generation of orthomosaic
and reflectance maps.

2.5. Automatic Extraction of Plots

The objective of this step is to extract the field plots during each phenological stage
from the corresponding UAV imagery (Figure 6). First, the orthomosaics of each band (NIR,
Red, Green and Red-Edge) were readjusted before and after sampling using calibration
points. In order to eliminate soil surrounding the experimental plots, one mask of each
microplatform was then created per multispectral band for the flag leaf fully unrolled stage
orthomosaic. And in order to automatically extract the experimental plots, we used an
object-based image analysis approach (eCognition [22]). We first conducted a chessboard
segmentation to create objects which size is equal to that of pixels, followed by a spectral
difference segmentation based on a merging algorithm in which neighboring objects
where the spectral average is below a given threshold (maximum spectrum difference in
our case 13) will be merged to produce the final objects. To use the latter algorithm, a
prior segmentation was necessary [23]. After which multiresolution segmentation was
performed having as parameters a scale of 100, 0.9 for shape and 0.9 for compactness. We
finally performed a classification step enabling the extraction of the plots’ positions and
their reflectance values.
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2.6. Generation of Vegetation Index Maps

We then calculated the vegetation indices maps in which the value of each pixel is
calculated using a formula combining different bands of reflectance maps. Throughout
this study, we used eight vegetation indices. We chose indices that used different spectral
bands to evaluate the effect of integrating the Red-Edge band. Other criteria upon which
we built our choice is the nature of the combination and the number of bands used by the
index. Table 3 presents the indices used in this study.

Table 3. Vegetation indices formulas and references.

Index Formula Reference

Simple Ratio RNIR/RRed Birth et al. (1968)
Simple Ratio Red Edge RNIR/RRedEdge Zacro-Teiada et al. (1999)

NDVI (RNIR − RRed)/(RNIR + RRed) Rouse et al. (1974)
NDRE

(
RNIR − RRedEdge)/(RNIR + RRedEdge) Fitzgerald et al. (2010)

GNDVI (RNIR − RGreen)/(RNIR + RGreen) Gitelson et al. (1996)
GNDRE (RRedEdge− RGreen)/(RRedEdge+ RGreen) Cao et al. (2013)
MTVI2 1.5×(1.2×(RNIR − RGreen) − 2.5×(RRed − RGreen))√

(((2×RNIR + 1)̂2) − (6×RNIR − 5×
√

(RRed) − 0.5))
Haboudane et al. (2004)

RTVI 100(RNIR − RRedEdge)− 10(RNIR − RGreen) Chen et al. (2010)

2.7. Building a Spatial Database for the Experimental Platform

The extraction of experimental plots during each flight allowed the attribution of in-
situ data by establishing a database combining both the geographic information contained
in the result of the extraction and the biophysical parameters of each plot using an attribute
table. Moreover, the extraction of spectral information of each plot was performed using
vegetation index maps and added to the attribute table. Similarly, extracting microplatforms
was necessary so as to quantify dry biomass and nitrogen content and prevent the soil
component from being considered during the modeling phase. A rule set was implemented
on eCognition for each stage of wheat development and using the selected vegetation
index from the varietal approach using both segmentation and classification methods. The
obtained mask was subsequently exported in .tif format and then applied (Figure 7).
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2.8. Monitoring Wheat Growth

Monitoring wheat growth was performed using two biophysical parameters of wheat:
the nitrogen uptake and the amount of dry matter. This step consists of determining the
statistical models that will allow the calculation of the two biophysical parameters of wheat
from the vegetation indices mentioned previously. To do this, we adopted two approaches:
Varietal approach and general approach.

2.8.1. Varietal Approach

To take into consideration the genetic difference between the different varieties of
wheat, a modeling exercise was carried out for each of the eight microplatforms where the
in-situ data were taken. The purpose of this approach is to evaluate the response of each
vegetation index to the diversity of wheat varieties and its ability to estimate the dry matter
and nitrogen uptake using the following regression models: linear regression, second order
polynomial regression and exponential regression. The result of this step is the calculation
of the determination parameters (R2 and RMSE) of each regression model that expresses
dry biomass (t/ha) and nitrogen uptake (Unit/ha) as a function of each vegetation index.
This approach also allowed us to select and determine the best-suited vegetation index and
the regression model to express the nitrogen uptake and the dry matter for each variety
using RMSE and R2 metrics.

2.8.2. General Approach

This approach consists in generalizing the statistical modeling for all the varieties of
our experimental platform, in order to be able to estimate wheat yield for the all present
wheat varieties given the absence of in-situ data for these microplatforms. The general-
ization of the model was based on the selected vegetation index using a prior varietal
approach. On the first hand, the model was generalized using regression functions after
which the model presenting a high value of R2 and a low RMSE was maintained. On the
other hand, the estimation of wheat yield and biophysical parameters for plots using the
machine learning method Random Forest (RF) which is an ensemble learning method
that uses multiple decision trees, with the ability to obtain a good fit and reduce noise.
Where the final estimation result is obtained by voting [24]. RF was performed given its
satisfactory results when used to predict biophysical parameters of different plant varieties,
particularly wheat [25,26]. Random Forest was employed using Scikit-Learn library and
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Spyder IDE on Anaconda [27,28]. A python script was developed to model the amount of
dry matter and nitrogen uptake thus estimate these parameters for each microplatform.

One of the important parameters of the RF regression is n_estimators (Number of
estimators) defined as the number of trees in the random forest [29]. We conducted a set
of tests to see how RF works, a sequence of numbers of the estimators has been produced
from 20 up to 500. The final value of the n-estimators parameter was fixed iteratively and
according to the coefficient of determination R2 and RMSE (Maximize the value of R2 and
minimize that of the RMSE) (Figure 8). For each new choice of parameters, the value of the
Random_State parameter is set to 0, which makes the output of the model replicable for
the same inputs. By analyzing the obtained results, we notice that a number of estimators
equal to 150 for the nitrogen uptake shows a high R2 values and a low RMSE from which a
stagnation of R2 as well as a stationary variation of the RMSE are observed. Similarly, the
R2 curve peaks at the value 150 of the number of dry matter estimators, which justifies the
adoption of this value for the training of the random forest regression model.
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2.9. Mapping Critical Nitrogen, Dry Biomass and Nitrogen Nutrition Index

The difference between critical nitrogen and nitrogen uptake maps indicates the
required nitrogen need to be added for the plant to ensure its normal development and
maximize dry matter production. The values of the map of the difference between critical
nitrogen and nitrogen uptake are in units of nitrogen per hectare. Whereas the model used
to quantify the critical nitrogen value is the one of Justes et al. (1995) [30], which states:{

if DM > 1.5 t/ha then N % = 5.35DM−0.442

if DM < 1.5 t/ha then N % = 4.4
(1)

where DM is the dry matter expressed in t/ha and N (%) the total concentration of nitrogen.
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For mapping the nitrogen nutrition index (NNI), we used following model [31]:

NNI =
N(%)

Ncritical(%)
(2)

where:
N (%): the total concentration of nitrogen
Ncritical (%): The critical concentration of nitrogen
The NNI values are comprised between 0 and 1, from which a wheat’s nitrogen

nutrition diagnostic can be deduced:
NNI < 1 : Deficient nutrition
NNI = 1 : Optimal nutrition
NNI < 1 : Excess nutrition

(3)

2.10. Wheat Yield Estimation Model

Several models of yield estimation have been addressed by several authors, namely
Raun et al. in 2001 and readjusted annually [32], particularly in 2018, the model developed
by Rehman et al. in 2018 [10], Zhang et al. in 2012 [33] as well as French & Schultz model
in 2008 [34]. Given the unavailability of certain data such as the number of grains per
ear, the soil moisture and the water use efficiency calculated as the rate of assimilation of
CO2 divided by the rate of plant transpiration, the indirect estimation of wheat yield was
adopted using dry matter and vegetation indices.

Therefore, the prediction of yield for wheat (WY) was based essentially on the model
of Zhang et al. (2012):

WY = ABG × HINDVI (4)

HINDVI = HIMax −HIRange × (1 −
∑post NDVI

∑Pre NDVI
) (5)

where:
HI: Harvest index
ABG: Aboveground biomass
∑post NDVI: Accumulated NDVI value from heading until maturity stage.
∑pre NDVI: Accumulated NDVI value from leaf development until heading.
The Equations (4) and (5) were then readjusted to fit our experimental platform

specifications. While taking into consideration that the harvest index of modernized
cereal crops is between 0.63 and 0.75 [35] and therefore the values HI_Max and HI_Range
have been chosen as follows: HI_Max = 0.82 And HI _Range = 0.12. Considering the
results of our varietal and general approaches, we were interested in replacing NDVI
by the RTVI index in the formula, since the RTVI vegetation index showed a maximum
coefficient of determination with biomass throughout the stages of wheat development.
The adjusted model when taking into account available data and UAV’s missions timing is
then expressed as:

HIRTVI = HIMax −HIRange × (1 −
RTVIMaturity

RTVIFlag leaf fully unrolled
) (6)

Thus, wheat yield is expressed using RTVI as follows:

WY = ABG × HIRTVI (7)
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3. Results and Discussion
3.1. Vegetation Indices Maps and Reflectance Maps

Figure 9 illustrates the generated vegetation index maps for NDVI, NDRE, GNDVI,
GNDRE, SR-RE, SR-NIR, MTVI2 and RTVI during the last leaf stage before plots are
collected. The indices NDVI, SR-NIR and MTVI2 allowed to follow the growth and the
evolution of the dry matter but with a nonlinear rate which leads to a saturation of index
starting from a certain value of dry matter (Figure 10). As a result, it is found that they take
almost equal values for different values of the dry matter so these indices are insensitive to
the variation of the dry matter from a certain value. This insensitivity is mainly due to the
nature of the combinations of the bands used in the formula of the vegetation index which
does not allow a variation of the indices adapted to the variation of the dry matter.

The integration of the red-edge band makes it possible to linearize the relation between
the index and the characteristics of the vegetation such as the dry matter. The RTVI, SR-
RE and NDRE indices showed an improved correlation compared to other indices that
do not integrate the red-edge band. This improvement strongly depends on the type of
combination and the number of used bands. For NDRE the red-edge band did not add
any improvement to the correlation contrary to the SR-RE and RTVI indices for which
the correlation with the dry matter is strong. We have noticed that the use of the green
band instead of the red one for the GNDVI and GNDRE indices did not satisfy the needs
and objectives of the current study. The GNDVI and GNDRE indices did not allow the
monitoring of the biophysical parameters of wheat crop in our case of study. This will also
be shown in the results of R2 and RMSE.

The vegetation indices tested in this study were selected to assess the contribution of
the RedEdge band and the influence of number of bands and nature of the combination
used by the index on its performance, by evaluating its correlation with the biophysical
parameters of the wheat crop and plotting dry matter by each vegetation index.
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Figure 10. Variation of dry matter by each vegetation index.

3.2. Statistical Modeling and Wheat’s Biophysical Parameters Mapping

Using the selected models of the varietal approach, maps of dry biomass, nitrogen
uptake, the NNI and the difference between critical and nitrogen uptake were generated for
each of the following varieties: ACHTAR, RESULTON, NAJIA, RAHMA, GUADALETTE,
FAIZA, BANDERA, REMAX. Table 4 summarizes the results of modeling determinants for
each variety to estimate dry matter and nitrogen uptake by all three types of models. It
represents the average of the R2 and RMSE coefficients, at the level of each variety and for
each index. In terms of dry matter and nitrogen uptake modeling, the RTVI index presents
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the best average values of R2 and RMSE compared to the results of the other indices. This
is interpreted by the fact that the RTVI is the more suitable index for the dry matter and
nitrogen modeling operation for all the studied varieties. Therefore, RTVI is the index
selected to establish the models for estimating wheat biophysical parameters studied at
this project. Maps of dry matter, nitrogen uptake, NNI and the difference between critical
nitrogen and nitrogen uptake were established using the vegetation index and a model
selected based on R2 and RMSE metrics RMSE (Figure 11).

Table 4. Average of the R2 and RMSE coefficients, at the level of each variety and for each index.

Vegetation
Index

Linear Model 2nd Order Polynomial Model Exponential Model

Dry Matter Nitrogen Uptake Dry Matter Nitrogen Uptake DRY Matter Nitrogen Uptake

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

NDVI 0.229 1.182 0.240 18.795 0.511 1.012 0.478 17.479 0.337 1.115 0.172 20.899
NDRE 0.554 1.175 0.520 14.566 0.760 0.710 0.581 16.097 0.666 0.761 0.538 13.911

GNDVI 0.398 1.000 0.268 16.849 0.552 1.092 0.489 16.639 0.482 0.959 0.325 17.104
GNDRE 0.225 3.940 0.219 20.416 0.308 4.111 0.391 21.129 0.351 3.966 0.215 19.645

MTVI 0.185 1.244 0.147 20.914 0.364 1.191 0.258 19.981 0.103 1.348 0.133 18.648
RTVI 0.774 0.625 0.687 11.581 0.824 0.655 0.700 13.755 0.795 0.614 0.585 13.742

SR_NIR 0.189 1.514 0.162 20.560 0.444 1.172 0.435 18.543 0.167 1.327 0.239 19.893
SR_RE 0.736 0.661 0.619 13.055 0.794 0.651 0.702 12.349 0.763 0.659 0.600 12.138

By considering the general approach, the dry matter and nitrogen uptake models for
all the varieties of the platform were estimated using linear, 2nd order polynomial and
exponential regression functions considering the RTVI index. The following table (Table 5)
shows the R2 and RMSE determination parameters for each regression model. The linear
model provides the highest correlation value between the RTVI index and the dry matter
as well as for the nitrogen uptake variable. Based on these models (Table 6), the dry matter
and nitrogen uptake maps were generated for all varieties at the platform and from this the
Nitrogen Nutrition Index and the difference between nitrogen uptake and critical nitrogen
have been established (Figure 11). When using Random Forest technique at each stage of
development of wheat, we were able to retrieve R2 and RMSE for the test set described in
Table 7. Dry matter and nitrogen uptake maps were generated for the whole platform the
Nitrogen Nutrition Index and the difference between nitrogen uptake and critical nitrogen
were thus calculated (Figure 12).

Table 5. Values of R2 and RMSE by general approach using linear and non-linear regression.

Dependent
Variables

Linear Model 2nd Order Polynomial Model Exponential Model

R2 RMSE R2 RMSE R2 RMSE

Dry matter 0.761 0.63 0.741 0.67 0.690 0.67
Nitrogen
uptake 0.638 12.86 0.635 12.81 0.576 14.00

Table 6. Mathematical linear models of dry matter and nitrogen uptake and values of R2 and RMSE
by general approach.

Dependent Variables Model R2 RMSE

Dry matter 0.33× RTVI− 0.352 0.761 0.63
Nitrogen uptake 5.126× RTVI + 22.202 0.638 12.86
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Table 7. Values of R2 and RMSE by general approach using Random Forest.

Dependent
Variables

End of Tillering Two Nodes Last Leaf Flag Unrolled

R2 RMSE R2 RMSE R2 RMSE

Dry matter 0.717 0.136 0.779 0.600 0.781 0.789
Nitrogen
uptake 0.632 7.284 0.742 15.148 0.669 17.329
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3.3. Wheat Yield Prediction

One of the preliminary results for yield prediction is the harvest index for all the
plots (Equation (6)). Thus, Figure 13 presents a diagram that compares the values of
predicted yield according to both varietal and general approaches and allows to examine
the differences from the harvested yield. By considering the varieties, the model allowed
to estimate the yield up to 32% of the difference between the actual yield and a minimum
difference of 7%. Furthermore, when using the general approach, Random Forest allowed
a minimum difference of 1% and a maximum of 21% compared to the linear regression
where a minimum gap of 0.2% and maximum of 29% are reached. Whereas Tables 8 and 9
represent the values of predicted yield of wheat using both varietal and general approach
as well as the actual harvested yield in t/ha.

Random Forest technique helped shorten the gap between the actual yield values and
the predicted ones. The varietal approach for yield prediction did not have a large impact
on the predicted values given the microplatforms size (300 m2) and therefore the limited
number of extracted plots during each period (2 to 3). However, the yield prediction
model can be improved by increasing the number of flights acquired from wheat leaf
development (BBCH1) to heading (BBCH5) and also from heading to maturity (BBCH8).
This will allow the use of the cumulative RTVI values from each flight [33]. Moreover, the
HImax parameter of the model adjusted to our experimental platform can be readjusted
by generalizing the extraction of the plots in order to consider the platforms having a
maximum yield among all the platforms present and not only those where plots were
extracted. As a result, some late varieties have a gap of up to 2.4 t/ha and others are
affected by the dry year confirmed by the Ministry of Agriculture [36].

The flight schedule was related to the phenological stages of wheat development that
correspond to the BBCH scale at stages 29–30, 32 and 39, respectively. These stages make
it possible to monitor the accumulation of wheat’s dry matter and to ensure convenable
nitrogen nutrition. Moreover, the late tillering is the stage for which the plant is able to
produce tillers and therefore it can play an important role in the survival of wheat. During
this stage, a strong relationship between the vegetation indices and the crop concerned is
observed [37]. Additionally, flights during the two-node, last leaf flag unrolled stages allow
estimation of wheat yield and dry matter [38]. However, the use of a fixed-wing drone
requires a terrain with adequate take-off and landing sites. If there are obstacles in the area
of the flight, safety measures must be taken to properly identify the landing locations.
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Table 8. Predicted wheat yield using varietal approach.

Variety Predicted Yield (t/ha)

ACHTAR 2.934
REMAX 2.887

BANDERA 2.262
FAIZA 2.316

GUADALETTE 3.351
RAHMA 2.612
NAJIA 2.373

RESULTON 3.175

Table 9. Predicted wheat yield using general approach.

Variety Harvested Yield
(t/ha)

Predicted Yield (t/ha)

Random Forest Linear Regression

3A GHARIME BD 3.400 2.866 2.495
ACHTAR 2.754 2.828 2.248
ALBIANO 0.782 2.684 2.756
ALMANER 3.570 2.773 2.657

ATLAS 2.720 2.595 1.958
BANDERA 3.264 2.901 2.541

BT V2 4.114 3.170 2.849
BT V3 4.488 3.040 2.704
FAIZA 3.400 2.923 2.586

FARRAGE BD 3.230 3.493 3.174
FARRAS 4.624 3.281 2.946
FEELIN 1.292 2.970 2.577

GUADALETTE 2.822 2.730 2.286
GUADALIQ BD 3.740 3.011 2.667
ICAVERVE BD 3.366 3.574 3.233

IDAN 39 4.658 3.104 2.767
MARGHARITA 3.230 2.948 2.583

NACHIT BD 4.658 3.129 2.802
NAJIA 3.944 3.479 3.149

RAHMA 3.672 2.918 2.555
REMAX 3.400 2.944 2.606

RESULTON 3.570 2.869 2.500
TERBOL 2.856 2.674 2.147
TESFA 2.890 2.637 2.076

4. Conclusions

The current study presents an example of the contribution of geospatial technologies
in precision agriculture where UAV’s multispectral imagery is considered as an impor-
tant component in monitoring and estimating crop yield. Data acquisition phase can
be described as an important step within our approach based essentially on the use of
UAV’s multitemporal and multispectral images as well as in-situ data, during five different
phenological stages of wheat growth.

The proposed methodology aims to predict wheat’s biophysical parameters namely,
dry matter, nitrogen uptake and wheat yield. By establishing statistical models, using
regression and Random Forest along with RTVI vegetation index. RTVI was selected based
on the results of a varietal analysis considering 12 wheat varieties and 8 vegetation indices
in which it presented better results in terms of RMSE and R2 values and had a better
correlation with wheat biophysical parameters. Furthermore, the current methodology has
enabled us to estimate a difference between actual and predicted yield of about 1 to 21%
for some varieties using Random Forest technique. The difference depends mainly on both
variety and the used modeling technique. However, some wheat varieties have shown a
significant difference in yield between 2.6 and 3.3 t/ha.
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We highlighted the role of Red-Edge band and Machine Learning techniques in the
estimation of agronomic parameters of different varieties of wheat. However, certain
technical and general aspects regarding the above methodology need to be considered as
recommendations for future works and studies. Namely, the integration of soil parameters
such as soil type, runoff, drainage and meteorological parameters such as temperature,
precipitation, humidity and evapotranspiration in the estimation model in order to refine
its results. We also recommend to explore and compare alternative models for direct yield
estimation to increase the precision of the model in terms of difference between ground-
truth yield and estimated yield values as well as to generate a model adapted to the context
of national agriculture.
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