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Abstract: In the near future, fully autonomous vehicles may revolutionise mobility and contribute
to the development of the smart city concept. In this work, we assume that vehicles are not only
fully autonomous but also centrally controlled by a single operator, who can also define the traffic
light control parameters at intersections. With the aim of optimising the system to achieve a global
optimum, the operator can define both the routes of the fleet of vehicles and the traffic light control
parameters. This paper proposes a model for the joint optimisation of traffic light control parameters
and autonomous vehicle routes to achieve the system optimum. The model, which is solved using a
gradient algorithm, is tested on networks of different sizes. The results obtained show the validity of
the proposed approach and the advantages of centralised management of vehicles and intersection
control parameters.
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1. Introduction

Smart mobility [1–3], a fundamental component of the smart city, will receive a strong
impulse with the spread of autonomous vehicles [4–9]. Advances in automation will lead
to fully autonomous driving; the user will lose the role of driver and become a passenger.
In urban areas, it is also possible to add centralised management of the vehicle fleet to full
driving automation; it is assumed that a control centre plans the routes of all vehicles on the
road network to optimise the total travel time to obtain the system optimum. A simulation
of this type of approach was proposed in [10].

Centralised control of the entire fleet of vehicles may be even more greatly favoured
by the trend towards abandoning the concept of car ownership and moving towards the
use of shared vehicles, adopting the perspective of Mobility as a Service (MaaS).

A further step towards smart mobility could be the integration of traffic light control
into fleet management. This work assumes that a control centre manages both the routes of
the autonomous vehicles and the traffic light control parameters, with the aim of achieving
system optimality.

The network-based optimisation of traffic light control parameters in the case of
human-driven vehicles is a topic widely covered in the literature. Two possible approaches
to the problem can be identified: a local approach and a global approach. The first optimises
the signal settings of each intersection considering the traffic flows arriving at the same
intersection; in this case, the problem can be formulated as an asymmetric assignment
problem. The second, on the other hand, is a real network design problem, in which the
decision variables are the signal settings of all intersections, and these are optimised to
minimise the total travel time of users. A distinction between the two approaches and some
solution methods can be found in [11]. In our case, the global approach must be considered,
as the local approach does not make sense if we assume that the traffic consists only of
autonomous vehicles. In the case of mixed traffic, between autonomous and human-driven
vehicles, the local approach could also be valid.

Simulating a fleet of autonomous vehicles in real use requires a dynamic approach;
indeed, the routes followed by the vehicles may be changed in real time depending on
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traffic conditions. In this work, a static approach is adopted because the aim is to assess
the impact of the system on overall network performance. The transition to dynamic is
possible, however, and will be the subject of further research developments.

This paper is organised as follows: Section 2 examines the background; the model for-
mulation is reported in Section 3; the solution approach is described in Section 4; numerical
results on some test networks are summarised in Section 5; and Section 6 concludes and
draws the further research activities.

2. Background

The literature has dealt extensively with the problem of designing traffic light control
parameters from different perspectives. A complete review would require a dedicated
paper. Here, in the first part, we limit our analysis to reviewing the main contributions
focused on the design of a traffic light network, neglecting the extensive literature related to
isolated or coordinated intersections. In the second part, we will instead focus our review
on autonomous vehicles, a more recent but already widely studied topic.

2.1. Optimisation of Signal Settings on a Network

The problem of designing signal settings in a network consists of calculating the traffic
light parameters that optimise the network performance, given a topological configuration
that is considered known and invariant, taking into account the traffic flows. This problem,
also known in the literature as the signal setting design problem (SSDP) [11], can be seen as
a special case of the more general equilibrium network design problem (ENDP), in which
the signal settings play the role of decision variables, while the topological characteristics
of the transport network (road directions, number and width of lanes, etc.) are assumed to
be invariant.

The optimisation problem searches for the vector of parameters and the corresponding
vector of traffic flows in equilibrium that minimises an objective function, usually the total
travel time on the network. A continuous network design problem is thus formulated [12],
in which the role of decision variables is assumed by the signal settings. In this case,
the decision variables are usually only the effective green times or the ratios between
effective green times and cycle times, and a single objective function is optimised in which
both traffic flows (descriptive variables) and signal settings are variables. In this case, the
problem of optimising traffic light control parameters is tackled with a global approach,
also known as global optimisation of signal settings (GOSS) [11].

In the case of flow-responsive traffic lights, the control parameters are adapted to the
flows arriving at the intersections; in this second case, the problem consists of determining
a vector of traffic flows in equilibrium that is self-reproducing once a local control policy
has been defined. This second problem is also known as the combined assignment and
control problem and represents the local approach to solving the problem, also known in
the literature as local optimisation of signal settings (LOSS) [11,13].

The general formulation of the problem and the distinction between global and local
design approaches can be found in [11,13–16]. A dynamic approach to solving the problem
has been proposed by Abdelfatah and Mahmassani [17].

In the remainder of this analysis, we will only refer to the GOSS problem, as it is
the one that will be used in this study, modified to take into account the presence of
autonomous vehicles.

The GOSS problem must be formulated as a non-linear constrained optimisation prob-
lem. The constraints are as follows: (a) the assignment constraint, which forces traffic flows
to be in equilibrium and includes the continuity and non-negativity of flow constraints;
(b) technical constraints, which express the physical (and practical) admissibility for the
values of the traffic signal parameters, such as lower and upper bounds on the green/cycle
ratios. The objective function is usually the total travel time on the network; other objective
functions may be used, such as minimising the total delay at intersections, or the total
pollution caused by the flows on the network.
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This problem has been studied in a static environment in [11,18–24]. Global optimisa-
tion that also considers traffic light coordination parameters as variables has been studied
in [25–27]. Group-based methods were proposed in [28,29]; joint optimisation of signal
settings and road pricing was studied by Smith et al. [30]. A dynamic approach has been
proposed in [31], and solution methods based on artificial neural networks have been
proposed in [32,33].

Solution algorithms for solving the problem in a static environment are based on
feasible direction or projected gradient methods. Projected gradient methods have been
proposed in [18,34], while Cascetta et al. [11] proposed and compared some feasible direc-
tion algorithms.

Al-Sharman et al. [35] proposed a hierarchical reinforcement learning approach to
manage autonomous vehicles at unsignalised intersections.

2.2. Autonomous Vehicles

According to the SAE J3016 standard [36], there are six levels of vehicle automation,
from Level 0 ‘no automation’ to Level 5 ‘full automation’. In this paper, we will refer
to Level 5, assuming that the vehicles are self-driving; hereafter, we will refer to them
as autonomous vehicles (AVs). Indeed, we consider a further, non-standardised level of
automation, which we can name ‘Level 6′, which provides not only full automation but also
centralised route management of all vehicles on the network. Centralised route selection
for fleet vehicles can be based on different strategies; on the one hand, one could tend to
minimise the routes for individual users, falling into a situation analogous to a deterministic
equilibrium assignment; the other hypothesis, which is the one assumed in this work, is
that the operator wants to optimise the total cost of the system by routing vehicles in such
a way as to minimise the total travel time for all users.

The literature on autonomous vehicles is very large and cannot be covered in this paper;
therefore, we refer to the reviews proposed in [37–40], limiting our investigation mainly
to the more recent works. A sociomobility taxonomy was proposed by Kassens-Noor
et al. [41], who reviewed and classified several papers accordingly. Paper [42] reviewed
control techniques for autonomous and connected vehicles. A review of driver behaviour
models was proposed in [43].

Some of the literature has examined the external impacts of this emerging technology.
The potential environmental impacts of autonomous vehicles were studied in [44–46].
The benefits of autonomous vehicles for community-based trip sharing were estimated
by Hasan et al. [47]; the paper examined the potential benefits of autonomous vehicles
in reducing the number of vehicles needed to cover all commuting trips, estimating a
reduction in daily vehicle use of 92% and vehicle km travelled of around 30%. Carrese
et al. [48] studied the potential impact of autonomous vehicles on the choice of residence
in Rome, and Moore et al. [49] the potential effects on home and work relocations. May
et al. [50] studied the potential impacts of autonomous cars on urban transport, while
Harrison et al. [51] evaluated their influence on the liveability of cities. Finally, Rashidi
et al. [52] examined the impact on the value of time (VOT) for autonomous vehicle users.

Tian et al. [53] used a stated choice survey to investigate the propensity of individ-
uals to use autonomous vehicles or shared vehicles; the authors showed that on the one
hand, people prefer to keep their vehicle or buy an autonomous vehicle rather than use
shared vehicles, but on the other hand, they prefer to use autonomous vehicles rather than
traditional shared vehicles.

Wang et al. [54] proposed a cooperative autonomous traffic organisation method for
autonomous and connected vehicles; the method aims to define vehicle routes to max-
imise social and individual benefits (safety, energy consumption, comfort) in a network
of unsignalised intersections. Sun et al. [55] studied the energy and mobility impacts of
connected autonomous vehicles in mixed platoons; they proposed an eco-driving policy
on signalised arterial roads that could also reduce consumption for human-driven vehi-
cles. Zhang et al. [56] proposed an energy saving optimisation and control method for
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autonomous electric vehicles. Intelligent traffic control based on machine learning has been
proposed in [57].

Many papers have focused on mixed traffic, assuming the co-presence of human-
driven vehicles (HDVs) and autonomous vehicles (AVs). Rey and Levin [58] proposed
a new policy for stochastic network traffic control that considers both AVs and HDVs,
assuming that AVs drive in dedicated lanes and have reserved signal phases at intersections.
Lazar et al. [59] studied a problem whereby some vehicles are autonomous and share the
road with normal cars; the AVs are controlled by a planner, while human drivers react
dynamically to traffic conditions. The planner uses an AV control policy that tends to
indirectly influence human drivers to minimise congestion. Wang et al. [60] considered the
problem of uncertain link capacity in mixed-traffic road networks. Guo et al. [61] proposed
a daily route allocation scheme for autonomous vehicles to bring the mixed traffic system
to a desired traffic state. Chen et al. [62] proposed a cellular automation model to simulate
mixed traffic between AVs and HDVs. Other recent work on mixed traffic can be found
in [63–67].

Shared autonomous vehicles have been studied in [68,69], while a laboratory experi-
ment of AVs on roads without lanes has been proposed in [70]. Cooperative movement
of multiple autonomous vehicles was studied in [71], while eco-driving for autonomous
vehicles was studied in [72,73].

Gallo [10] proposed a model and solution methods for optimising the routes of cen-
trally controlled autonomous vehicles in both exclusive and mixed traffic hypotheses.

Other interesting recent studies have been developed by Talebpour and Mahmas-
sani [74], Tettamanti et al. [75], Stern et al. [76], Miglani and Kumar [77], Liard et al. [78],
Kumakoshi et al. [79], Zhao et al. [80], and Ge et al. [81].

2.3. Paper Contribution

This paper contributes to the literature by proposing a model for the network-based
design of traffic light control parameters under the assumption that all vehicles are au-
tonomous and that routes are centrally defined by a single operator. The system operator
optimises not only the routes of the vehicle fleet but also the traffic light control parameters,
with the aim of minimising the total costs to obtain a system optimum.

To the best of our knowledge, the proposed approach is original and has not yet been
proposed in the literature. Compared to the models mentioned in the literature (Section 2.1),
the main difference lies in the approach used to estimate the traffic flows on the network,
which is based on the system optimum, whereas previous work has referred to the user
optimum.

3. Model Formulation

In this work, we assume that the traffic manager, who controls both the signal settings
and the routes of the autonomous vehicles, has the objective of minimising the total gener-
alised travel cost; notations and terminology are summarised in Appendix A (Tables A1
and A2). On each link in the network, i, we denote by fi the traffic flow (veh/h) or the flow
rate if we refer to periods of less than one hour, and by ci the generalised travel cost on the
same link. Traffic flows and generalised link costs can be arranged in two vectors, f and c,
respectively, with a number of elements equal to the number of links. It is assumed that, as
in the case of human-driven vehicles (HDVs), the generalised cost on a link is a function of
the traffic flow:

ci = ci(fi) ∀i, (1)

or, in vectorial form:
c = c(f ). (2)

Transport demand is represented by an origin–destination (OD) matrix, whose dod
cells represent the number of trips originating in zone o and ending in zone d. The dod
elements can be organised into a demand vector, d, which has as many elements as there
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are OD pairs. Each OD pair is connected in the network by one or more paths; in the
following, the generic path connecting the od pair is denoted by k,od. The flow on path k, hk,
can be calculated by the percentage of vehicles using this path, ψk,od, to travel between o
and d, multiplied by the demand dod:

hk = ψk,od · dod. (3)

Path flows can be arranged in a vector, h, which has as many elements as the number
of paths; on the other hand, ψk,od can be arranged in a matrix, ψ, that has as many rows as
the number of paths and as many columns as the number of OD pairs. Using this notation,
we can write the following:

h = ψ d. (4)

Introducing the link-path incidence matrix, A, which has as many rows as the number
of links and as many columns as the number of paths, and whose generic element, ai,k, is
equal to 1 if link i belongs to path k and 0 otherwise, it is possible to calculate the link flows
as follows:

f = A h = A ψ d. (5)

Equation (5) shows the relationship between traffic flows, the supply model, and
demand. In equilibrium traffic assignment models, the path choice percentages are usually
denoted by P and depend on the path costs and then on the link costs, which depend on
the flows; in this case, they are considered as probabilities since they are the result of user
choice behaviour. There is a large literature on equilibrium traffic assignment models, for
which we refer to Cantarella [82]. In this paper, instead, we consider that the path choice
percentages can be decided by the traffic operator, as well as the signal settings; therefore,
in Equation (5), there is no direct dependence between the matrix ψ and the generalised
link costs, c.

Models for calculating traffic flows on a network under the assumption that vehicles
cooperate to minimise total cost, rather than minimising the costs perceived by individual
users, are known in the literature as system optimal (SO) assignment models [83] (p. 291).
System optimal assignment can be formulated with an optimisation model as follows:

f SO = Arg f min c(f)T f, (6)

subject to:
f ∈ Sf, (7)

where Equation (7) summarises all feasibility constraints for decision variables f at nodes.
In our study, the objective is the joint optimisation of autonomous vehicle routes and

signal settings; in this case, model (6)–(7) cannot be used and is difficult to adapt. We pro-
pose an optimisation model whereby the decision variables are the path choice percentages,
ψ, and the signal settings, formally summarised in the vector g. The optimisation model is
formulated as follows:

[gˆ, ψˆ] = Arg g,ψ min cT f, (8)

subject to:
f = A ψ d, (9)

c = c(f , g), (10)

ψ ∈ Sψ, (11)

g ∈ Sg, (12)

where Equation (9) is the constraint that relates link flows, f , to demand, d, supply, A,
and path choice percentage, ψ. Equation (10) expresses the relationship between costs,
flows, and signal settings; Equations (11) and (12) constrain the decision variables to their
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feasibility sets. Substituting Equation (9) into Equation (10) and then into Equation (8), the
model can be written as follows:

[gˆ, ψˆ] = Arg g,ψ min c(A ψ d, g)T (A ψ d), (13)

subject to:
ψ ∈ Sψ,

g ∈ Sg,

where the objective function depends only on the decision variables, including the first two
constraints; formally, we can also write the objective function more generally as follows:

w(ψ, g) = c(A ψ d, g)T (A ψ d), (14)

formulating the following optimisation model:

[gˆ, ψˆ] = Arg g,ψ min w(ψ, g), (15)

subject to:
ψ ∈ Sψ,

g ∈ Sg.

This is a non-linear optimisation model with linear constraints, assuming that the
feasibility constraints (11) and (12) are linear, being the limits of route percentages and
signal settings (minimum and maximum value of effective greens and cycle times). From a
theoretical point of view, the existence of an optimal solution is easy to prove: all solutions
satisfying constraints (11) and (12) are feasible and, among them, the optimum is the
solution corresponding to the best value of the objective function. Since the constraints
are in a closed and continuous interval and the variables are independent of each other
(constraints on signal settings, if well designed, can be considered as such), some solutions
respect all constraints. Regarding the properties of the objective function, it is, generally, not
convex; thus, a feasible direction algorithm can lead to a local optimum (see also Section 5).

The general model can be specialised in several ways by defining the constraints of
the problem, in particular variables g and constraint (12), while constraint (11) is implicitly
defined by the characteristics of the percentages. We propose to specialise the constraints
as follows and to consider as signal settings the effective cycle duration of each intersection,
assumed to have two phases, and the effective green/effective cycle ratio of one of the
two phases (the complement for one gives the ratio for the other phase). The variables are
therefore as follows:

g = {C, µ},

where:

C is the vector of the effective cycle times (s) at each intersection j, Cj;
µ is the vector of the ratios, µj, between the effective green time of a phase (conventionally,
phase 1) at intersection j, egj

1, and the effective cycle time, Cj: µj = egj
1/ Cj. So, at intersection

j, the ratio for phase 1 is µj and for phase 2 is 1 − µj.

Under these assumptions, the number of g variables is two times the number of
signalised intersections. The constraints are then as follows:

0 ≤ ψk,od ≤ 1 ∀k, ∀od, (16)

∑k∈Sod ψk,od =1 ∀od, (17)

Cmin ≤ Cj ≤ Cmax ∀j, (18)

µmin ≤ µj ≤ µmax ∀j. (19)
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Constraint (16) imposes that the percentage of path choice must be in the closed
interval [0,1]. Constraint (17) imposes that, for each od pair, the sum of the path choice
percentages must be equal to 1. Constraints (18) and (19) impose limits on the values of the
signal settings, e.g., cycle length between 30 and 120 s and ratios between 0.2 and 0.8.

4. Solution Algorithm

Any feasible descent direction algorithm can be used to solve the optimisation problem
(15)–(19). Since the objective function is not convex, this algorithm would lead to a local
optimum. To overcome this problem, a multi-start approach can be used [84], which uses
admissible but distant values of the initial solutions, to explore the solution set.

As a descent algorithm, a projected gradient algorithm is proposed, where the partial
derivatives of the objective function are computed numerically. For the multi-start approach,
some initial solutions are generated assuming fixed variables ψk,od and Cj, operating only
on the µj ratios, as follows:

Base solution:
ψk,od = 1/npod ∀od,

where npod is the number of feasible paths connecting the od pair;

Cj = (Cmin + Cmax)/2 ∀j;

Mj = 0.5 ∀j.

Distant solutions:

Ψk,od = 1/npod ∀od;

Cj = (Cmin + Cmax)/2 ∀j;

(1) µj = µmin ∀j;

(2) µj = µmax ∀j;

(3) µj = µmin ∀j even number and

µj = µmax ∀j odd number;

(4) µj = µmax ∀j even number and

µj = µmin ∀j odd number.

Random solutions:

ψk,od = 1/npod ∀od;

Cj = Random.Between(Cmin, Cmax) ∀j;

µj = Random.Between(µmin, µmax) ∀j.

The number of random solutions to be generated can be set according to the complexity
of the network and the number of decision variables.
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5. Numerical Results

We have tested the proposed approach on three networks. The first is very simple,
with only one signalised intersection, and is useful for exploring some features of the
problem (for example, the non-convexity of the objective function). The second has only
one OD pair but four signalised intersections and was used to test and refine the solution
algorithm. Finally, the third is the Sioux Falls network, widely used for testing this type of
problem, which is used to verify the applicability of the model to a large case study.

5.1. Toy Network

The toy network has four links, four nodes, one OD pair, and one signalised junction
(see Figure 1). The network parameters are given in Table A3 in Appendix B. In this test,
there are only two paths available, and we assume that the cycle length is fixed and equal
to 90 s. The demand is assumed to be 800 veh/h. The effective green-to-cycle ratio, µ, is
constrained between a minimum value of 0.2 and a maximum value of 0.8. Under these
assumptions, the problem has only two decision variables: µ and ψ1 (the percentage of
path 2 is ψ2 = 1 − ψ1).

On each link i, the generalised link cost, ci, is the sum of the running time, rti, and the
expected delay, edi, both depending on the flow, fi:

ci(fi) = rti(fi) + edi(fi) ∀i.

Running times are calculated using the following function:

rti(fi) = (Li/Vi) · (1 + (fi/Capi)
4), (20)

where:

Li is the length of link i;
Vi is the free flow speed on link i;
Capi is the capacity of link i.
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Delays are calculated using the HCM formula [85], assuming a simulation period, T,
equal to 1, as follows:

edi(fi) = (0.50 · Cj · (1−egi
j/Cj)2)/(1−((min (1, Xi

j) · egi
j /Cj)) +

+ 900 ·T · ((Xi
j −1) + ((Xi

j−1)2 + (4 · Xi
j /(ACapi

j · T))1/2,
(21)

where, in addition to the terms already defined, ACapi
j = µi

j · si
j is the capacity of the

approach at intersection j of link i; si
j is the corresponding saturation flow; and Xi

j =
fi/ACapi

j is the corresponding flow-to-capacity ratio.
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The delay calculated with the HCM formula is considered valid only if the ratio
between flow and approach capacity, ACapi

j, is less than 1.20; solutions giving higher
values are considered infeasible.

As we only have two variables in this problem, µ and ψ1, we have tested all possible
combinations with a step of 0.01. A total of 6161 combinations were tested, some of which
were found to be infeasible due to excessively high values of flow-to-access capacity ratio.
The shape of the objective function, expressed in seconds of total travel time, is shown in
Figure 2.
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It can be seen that the objective function is not convex; in particular, two local minima
are found, far apart, one of which is also the global optimum. This test confirms the need
to use a multi-start approach; although it is not possible to know whether the solution
obtained by the algorithm is the global optimum, the multi-start approach allows for a
wider exploration of the solution space since it is possible to find several local optima from
which the best one can be selected. The local optima are listed in Table 1.

Table 1. Local optima.

Solution µ ψ1 Objective Function [s]

1 0.8 1.00 78,649
2 0.2 0.01 86,121

Clearly, in the simple case study, the optimal solutions involve routing all vehicles on
a single path, which is also given the maximum possible value of the effective green. Other
tests were carried out with different values of mobility demand and, therefore, of network
congestion levels, obtaining the results summarised in Table 2. Only for very high demand
(1600 veh/h) is there only one local optimum (see Figure 3).
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Demand Optimal Local Solutions µ ψ1 Objective Function [s]

200
1 0.80 1.00 18,448
2 0.20 0.00 20,248

400
1 0.80 1.00 37,206
2 0.20 0.00 40,815

600
1 0.80 1.00 56,822
2 0.20 0.00 62,289
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Table 2. Cont.

Demand Optimal Local Solutions µ ψ1 Objective Function [s]

800
1 0.80 1.00 78,649
2 0.20 0.01 86,121

1000
1 0.80 1.00 105,400
2 0.20 0.12 113,747

1200
1 0.80 0.88 138,782
2 0.20 0.17 147,416

1400
1 0.83 0.80 182,350
2 0.20 0.18 192,239

1600
1 0.81 0.80 247,582
2 - - -

5.2. Small Network

We have tested the proposed approach on the small network shown in Figure 4. It has
one OD pair, 14 links, 10 nodes, 4 signalised intersections (all with 2 phases) and 9 possible
paths. The decision variables of the problem are 17: 9 ψk,od, 4 Cj, and 4 µj. Delays were
calculated using the HCM formula already used in the previous test.
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The characteristics of the links are summarised in Table A4 in Appendix B. We also
assume a demand of 1000 veh/h.

We implemented the model in Excel and used the GRG solver to optimise the problem,
starting from 23 different initial solutions, generated as described in Section 4. The results
are summarised in Table 3. These results show that the multistart algorithm found four
different local optima. Solution 2 is the best, with an objective function equal to 171,424 s;
the other solutions have objective function values that are not very different (no more than
2%), but with values of the variables that are nonetheless significantly different.

Two further tests were carried out on the same network by increasing the demand to
1500 veh/h and 2000 veh/h to test what happens under conditions of increased congestion.
In the first case, six local optima were found, with objective function values varying between
302,564 s and 305,958 s (see Table 4), and with a maximum difference of 1.1%. In the second
case, on the other hand, a single optimal solution was found, with an objective function
value of 536,318 s (see Table 5). These results seem to show that as the congestion increases,
the differences between the locally optimal values decrease until they disappear for high
congestion values. Examining the results in Table 5, it can be seen that the same solution is
obtained with different values of the ψk,od percentages; these different percentages lead to
the same traffic flows on the network, representing the system optimal solution.
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Table 3. Results on the small network (demand 1000 veh/h).

Variable 1 2 3 4 5 6 7 8 9 10 11 12

µ1_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.20 0.80 0.20
µ2_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.80 0.20 0.80
µ3_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.20 0.80 0.20
µ4_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.80 0.20 0.80
C1_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C2_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C3_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C4_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
All ψk,od 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Results 1 2 3 4 5 6 7 8 9 10 11 12

µ1_opt 0.20 0.20 0.20 0.37 0.37 0.20 0.37 0.20 0.37 0.20 0.20 0.20
µ2_opt 0.23 0.23 0.23 0.20 0.37 0.21 0.37 0.25 0.37 0.22 0.23 0.24
µ3_opt 0.20 0.20 0.50 0.80 0.37 0.80 0.37 0.80 0.37 0.20 0.20 0.80
µ4_opt 0.20 0.20 0.20 0.20 0.48 0.20 0.52 0.26 0.52 0.20 0.20 0.20
C1_opt 94.7 94.6 94.8 120.0 120.0 94.7 120.0 94.7 120.0 94.7 94.7 94.7
C2_opt 98.6 98.6 98.8 94.9 120.0 95.6 120.0 101.1 120.0 97.6 98.5 99.9
C3_opt 74.9 74.9 51.8 30.0 120.0 30.0 120.0 30.0 120.0 74.9 81.3 30.0
C4_opt 94.7 94.6 94.7 94.7 120.0 94.3 120.0 101.7 120.0 94.7 94.7 94.5
ψ1_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ2_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ3_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ4_opt 0.447 0.447 0.447 0.447 0.389 0.447 0.389 0.447 0.389 0.447 0.447 0.447
ψ5_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ6_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ7_opt 0.000 0.000 0.000 0.000 0.018 0.000 0.018 0.000 0.018 0.000 0.000 0.000
ψ8_opt 0.000 0.000 0.000 0.000 0.514 0.000 0.514 0.000 0.514 0.000 0.000 0.000
ψ9_opt 0.553 0.553 0.553 0.553 0.079 0.553 0.079 0.553 0.079 0.553 0.553 0.553

Objective function [s] 174,924 174,924 174,924 174,924 171,424 174924.3 171,424 174,924 171,424 174,924 174,924 174,924

Solution Sol_1 Sol_1 Sol_1 Sol_1 Sol_2 Sol_1 Sol_2 Sol_1 Sol_2 Sol_1 Sol_1 Sol_1
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Table 3. Cont.

Variable 13 14 15 16 17 18 19 20 21 22 23

µ1_start 0.80 0.20 0.80 0.73 0.38 0.40 0.57 0.33 0.39 0.68 0.78
µ2_start 0.20 0.80 0.20 0.42 0.57 0.66 0.28 0.57 0.36 0.55 0.27
µ3_start 0.80 0.20 0.80 0.30 0.69 0.49 0.73 0.53 0.65 0.76 0.26
µ4_start 0.20 0.80 0.20 0.60 0.44 0.24 0.57 0.34 0.24 0.64 0.51
C1_start 30.0 120.0 120.0 59.0 120.0 59.0 80.0 50.0 66.0 98.0 37.0
C2_start 30.0 120.0 120.0 66.0 108.0 62.0 114.0 77.0 95.0 46.0 108.0
C3_start 30.0 120.0 120.0 104.0 42.0 67.0 40.0 88.0 95.0 72.0 120.0
C4_start 30.0 120.0 120.0 102.0 67.0 112.0 95.0 59.0 106.0 43.0 106.0
All ψk,od 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Results 13 14 15 16 17 18 19 20 21 22 23

µ1_opt 0.20 0.37 0.37 0.63 0.37 0.20 0.20 0.20 0.22 0.25 0.74
µ2_opt 0.20 0.37 0.37 0.20 0.30 0.23 0.33 0.30 0.20 0.20 0.37
µ3_opt 0.80 0.37 0.38 0.37 0.40 0.31 0.64 0.20 0.54 0.80 0.37
µ4_opt 0.20 0.52 0.52 0.53 0.20 0.52 0.24 0.20 0.52 0.20 0.53
C1_opt 94.9 120.0 120.0 120.0 120.0 94.8 94.7 94.7 97.2 101.2 101.6
C2_opt 94.4 120.0 120.0 95.1 108.0 98.7 114.0 108.6 95.0 94.9 120.0
C3_opt 30.0 120.0 120.0 120.0 42.0 67.0 40.0 87.9 95.0 72.0 120.0
C4_opt 93.8 120.0 120.0 120.0 94.7 120.0 99.4 94.6 120.0 94.7 120.0
ψ1_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ2_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ3_opt 0.000 0.000 0.000 0.398 0.000 0.000 0.000 0.000 0.000 0.000 0.398
ψ4_opt 0.447 0.389 0.389 0.000 0.447 0.401 0.447 0.447 0.401 0.447 0.000
ψ5_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ6_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ7_opt 0.000 0.018 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ8_opt 0.000 0.514 0.514 0.517 0.000 0.516 0.000 0.000 0.516 0.000 0.517
ψ9_opt 0.553 0.079 0.079 0.085 0.553 0.083 0.553 0.553 0.083 0.553 0.085

Objective function [s] 174,927 171,424 171,424 171,58 174,924 171,432 174,924 174,924 171,432 174,924 171,58

Solution Sol_1 Sol_2 Sol_2 Sol_3 Sol_1 Sol_4 Sol_1 Sol_1 Sol_4 Sol_1 Sol_3
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Table 4. Results on the small network (demand 1500 veh/h).

Variable 1 2 3 4 5 6 7 8 9 10 11 12

µ1_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.20 0.80 0.20
µ2_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.80 0.20 0.80
µ3_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.20 0.80 0.20
µ4_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.80 0.20 0.80
C1_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C2_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C3_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C4_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
All ψk,od 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Results 1 2 3 4 5 6 7 8 9 10 11 12

µ1_opt 0.22 0.46 0.49 0.20 0.47 0.36 0.47 0.47 0.47 0.22 0.47 0.20
µ2_opt 0.40 0.38 0.20 0.24 0.37 0.21 0.37 0.37 0.37 0.40 0.37 0.36
µ3_opt 0.20 0.20 0.23 0.80 0.37 0.80 0.37 0.20 0.37 0.20 0.23 0.80
µ4_opt 0.20 0.21 0.43 0.44 0.42 0.44 0.42 0.42 0.42 0.21 0.42 0.44
C1_opt 97.7 120.0 120.0 95.3 120.0 120.0 120.0 120.0 120.0 97.3 120.0 95.5
C2_opt 120.0 120.0 95.8 100.2 120.0 96.8 120.0 120.0 120.0 120.0 120.0 120.0
C3_opt 94.0 94.6 98.1 30.0 120.0 30.0 120.0 94.4 120.0 94.1 98.5 30.0
C4_opt 95.6 97.2 120.0 120.0 120.0 120.0 120.0 120.0 120.0 97.0 120.0 120.0
ψ1_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ2_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ3_opt 0.000 0.176 0.226 0.000 0.184 0.000 0.184 0.184 0.184 0.000 0.184 0.000
ψ4_opt 0.381 0.273 0.258 0.453 0.266 0.453 0.266 0.266 0.266 0.381 0.266 0.453
ψ5_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ6_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ7_opt 0.134 0.064 0.000 0.000 0.044 0.000 0.044 0.044 0.044 0.134 0.044 0.000
ψ8_opt 0.000 0.003 0.225 0.251 0.218 0.251 0.218 0.218 0.218 0.000 0.218 0.251
ψ9_opt 0.485 0.484 0.290 0.296 0.289 0.296 0.289 0.289 0.289 0.485 0.289 0.296

Objective function [s] 305,748 304,681 302,758 305,958 302,564 305,958 302,564 302,564 302,564 305,748 302,564 305,958

Solution Sol_1 Sol_2 Sol_3 Sol_4 Sol_5 Sol_4 Sol_5 Sol_5 Sol_5 Sol_1 Sol_5 Sol_4
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Table 4. Cont.

Variable 13 14 15 16 17 18 19 20 21 22 23

µ1_start 0.80 0.20 0.80 0.73 0.38 0.40 0.57 0.33 0.39 0.68 0.78
µ2_start 0.20 0.80 0.20 0.42 0.57 0.66 0.28 0.57 0.36 0.55 0.27
µ3_start 0.80 0.20 0.80 0.30 0.69 0.49 0.73 0.53 0.65 0.76 0.26
µ4_start 0.20 0.80 0.20 0.60 0.44 0.24 0.57 0.34 0.24 0.64 0.51
C1_start 30.0 120.0 120.0 59.0 120.0 59.0 80.0 50.0 66.0 98.0 37.0
C2_start 30.0 120.0 120.0 66.0 108.0 62.0 114.0 77.0 95.0 46.0 108.0
C3_start 30.0 120.0 120.0 104.0 42.0 67.0 40.0 88.0 95.0 72.0 120.0
C4_start 30.0 120.0 120.0 102.0 67.0 112.0 95.0 59.0 106.0 43.0 106.0
All ψk,od 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Results 13 14 15 16 17 18 19 20 21 22 23

µ1_opt 0.20 0.47 0.47 0.47 0.47 0.47 0.21 0.22 0.22 0.47 0.47
µ2_opt 0.20 0.37 0.37 0.37 0.37 0.37 0.39 0.40 0.39 0.37 0.37
µ3_opt 0.80 0.37 0.37 0.27 0.24 0.26 0.26 0.20 0.21 0.37 0.37
µ4_opt 0.44 0.42 0.42 0.42 0.42 0.42 0.42 0.20 0.42 0.42 0.42
C1_opt 95.3 120.0 120.0 120.0 120.0 120.0 96.6 96.9 96.9 120.0 120.0
C2_opt 95.7 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C3_opt 30.0 120.0 120.0 103.9 99.9 102.7 101.2 94.1 95.5 120.0 120.0
C4_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 96.1 120.0 120.0 120.0
ψ1_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ2_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ3_opt 0.000 0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.000 0.184 0.184
ψ4_opt 0.453 0.266 0.266 0.266 0.266 0.266 0.380 0.381 0.380 0.266 0.266
ψ5_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ6_opt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ψ7_opt 0.000 0.044 0.044 0.044 0.044 0.044 0.114 0.134 0.114 0.044 0.044
ψ8_opt 0.251 0.218 0.218 0.218 0.218 0.218 0.217 0.000 0.217 0.218 0.218
ψ9_opt 0.296 0.289 0.289 0.289 0.289 0.289 0.289 0.485 0.289 0.289 0.289

Objective function [s] 305,958 302,564 302,564 302,564 302,564 302,564 303,662 305,748 303,662 302,564 302,564

Solution Sol_4 Sol_5 Sol_5 Sol_5 Sol_5 Sol_5 Sol_6 Sol_1 Sol_6 Sol_5 Sol_5
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Table 5. Results on the small network (demand 2000 veh/h).

Variable 1 2 3 4 5 6 7 8 9 10 11 12

µ1_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.20 0.80 0.20
µ2_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.80 0.20 0.80
µ3_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.20 0.80 0.20
µ4_start 0.50 0.20 0.80 0.50 0.50 0.20 0.20 0.80 0.80 0.80 0.20 0.80
C1_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C2_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C3_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
C4_start 75.0 75.0 75.0 30.0 120.0 30.0 120.0 30.0 120.0 75.0 75.0 30.0
All ψk,od 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Results 1 2 3 4 5 6 7 8 9 10 11 12

µ1_opt 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
µ2_opt 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
µ3_opt 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
µ4_opt 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44
C1_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C2_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C3_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C4_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
ψ1_opt 0.085 0.071 0.101 0.081 0.071 0.054 0.034 0.071 0.059 0.074 0.071 0.071
ψ2_opt 0.071 0.064 0.027 0.060 0.063 0.044 0.099 0.063 0.067 0.060 0.063 0.063
ψ3_opt 0.054 0.074 0.082 0.068 0.076 0.112 0.076 0.076 0.083 0.076 0.076 0.076
ψ4_opt 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
ψ5_opt 0.018 0.047 0.016 0.060 0.051 0.100 0.031 0.050 0.041 0.047 0.051 0.050
ψ6_opt 0.041 0.032 0.070 0.012 0.030 0.017 0.050 0.031 0.047 0.033 0.030 0.030
ψ7_opt 0.085 0.064 0.057 0.070 0.062 0.027 0.062 0.063 0.055 0.063 0.062 0.063
ψ8_opt 0.126 0.111 0.111 0.087 0.107 0.075 0.163 0.108 0.128 0.107 0.107 0.108
ψ9_opt 0.271 0.286 0.286 0.310 0.290 0.322 0.234 0.289 0.269 0.290 0.290 0.289

Objective function [s] 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318

Solution Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1
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Table 5. Cont.

Variable 13 14 15 16 17 18 19 20 21 22 23

µ1_start 0.80 0.20 0.80 0.73 0.38 0.40 0.57 0.33 0.39 0.68 0.78
µ2_start 0.20 0.80 0.20 0.42 0.57 0.66 0.28 0.57 0.36 0.55 0.27
µ3_start 0.80 0.20 0.80 0.30 0.69 0.49 0.73 0.53 0.65 0.76 0.26
µ4_start 0.20 0.80 0.20 0.60 0.44 0.24 0.57 0.34 0.24 0.64 0.51
C1_start 30.0 120.0 120.0 59.0 120.0 59.0 80.0 50.0 66.0 98.0 37.0
C2_start 30.0 120.0 120.0 66.0 108.0 62.0 114.0 77.0 95.0 46.0 108.0
C3_start 30.0 120.0 120.0 104.0 42.0 67.0 40.0 88.0 95.0 72.0 120.0
C4_start 30.0 120.0 120.0 102.0 67.0 112.0 95.0 59.0 106.0 43.0 106.0
All ψk,od 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Results 13 14 15 16 17 18 19 20 21 22 23

µ1_opt 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
µ2_opt 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41
µ3_opt 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54
µ4_opt 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44
C1_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C2_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C3_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
C4_opt 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
ψ1_opt 0.070 0.054 0.068 0.019 0.026 0.073 0.048 0.025 0.004 0.118 0.069
ψ2_opt 0.063 0.016 0.069 0.084 0.097 0.063 0.035 0.060 0.165 0.003 0.063
ψ3_opt 0.077 0.140 0.073 0.107 0.087 0.074 0.127 0.125 0.041 0.089 0.077
ψ4_opt 0.250 0.249 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.250
ψ5_opt 0.051 0.133 0.077 0.043 0.000 0.049 0.008 0.129 0.023 0.058 0.050
ψ6_opt 0.030 0.010 0.000 0.068 0.092 0.030 0.124 0.000 0.023 0.035 0.032
ψ7_opt 0.062 0.000 0.066 0.032 0.052 0.065 0.011 0.014 0.098 0.050 0.061
ψ8_opt 0.107 0.041 0.084 0.166 0.203 0.107 0.173 0.074 0.202 0.052 0.109
ψ9_opt 0.290 0.356 0.313 0.231 0.194 0.290 0.224 0.323 0.195 0.345 0.288

Objective function [s] 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318 536,318

Solution Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1 Sol_1
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5.3. Sioux Falls Network

Sioux Falls is one of the most widely used networks for testing transport systems [86,87];
it has 76 links (38 road segments) and 24 nodes (see Figure 5). We have assumed that the
network has 8 centroid nodes (56 OD pairs, eliminating those of the main diagonal) and
12 signalised junctions. We have also assumed that the saturation flows at intersections
are equal to the capacities of the road links (a valid assumption if there is no widening of
approaches to intersections). Table A5 in Appendix B summarises the features of the links.
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The running times on the links are calculated using Equation (20), while the delays are
calculated using Equation (21).

The origin–destination matrix is given in Table A6 in Appendix B, while the number
of paths connecting each OD pair is given in Table A7; the average flow/capacity ratio on
the network is about 0.3. For each OD pair, all Dial efficient [88] paths were considered.
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On this network too, we have implemented the model in Excel and used the GRG
solver for its solution. The computation times are acceptable, remaining below 30 s in all
the tests carried out. In this case, the multistart approach used 25 initial solutions; the
solutions differ in the values of the signal settings, while the initial path choice percentages
are always the equiprobable ones for each OD pair. Table A8 in Appendix B shows the
values of the signal settings for each initial solution.

The optimisation results have highlighted the following points:

• For this level of demand, the duration of the traffic light cycle is an insignificant
parameter; in fact, the optimisation procedure leaves it practically unchanged in all
the tests carried out, unlike the µ terms, which vary significantly with respect to the
initial points.

• All the solutions have different values of the objective function, as can be seen in
Figure 6, although some have very similar values; the best solution is the one obtained
from the initial solution 12 (2332 h), while the worst is the one obtained from the initial
solution 15 (2500 h). The difference is about 7%.

• The traffic flows on the links are different for the different solutions, as can be seen from
Figure 7. On some links, the differences are significant (up to 739 veh/h), while on
other links, the difference between the traffic flows is less evident (minimum difference
7 veh/h).
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The multistart algorithm leads to different solutions depending on the number of
initial solutions and how these solutions were generated. Indeed, the non-convex objective
function can have many local optima corresponding to even very different solutions. In
the experiment shown in detail, the initial solutions were generated as in Table A6, using
both defined and randomly generated solutions. Further tests were carried out using the
GRG multistart algorithm proposed by Excel to check how much the number of initial
solutions could influence the quality of the final solution. Table 6 summarises the objective
function values obtained by the GRG multistart algorithm as the number of initial solutions
varies, which, in this case, are all randomly generated by the algorithm. The results show
that there is, on average, an improvement in the value of the objective function as the
number of initial solutions of the multistart procedure increases. This confirms that the
objective function is far from being convex. The difference between the local optima found,
although not high, is significant; indeed, the maximum variation between the values of
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the objective function is 1.7%, which is not a negligible value in the context of transport
network design problems.
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Table 6. Values of the objective function for varying the number of initial solutions of the GRG
multistart algorithm.

Initial Solutions [#] Objective Function [h]

5 2326
10 2336
25 2312
50 2314

100 2310
250 2297
500 2295

6. Conclusions

Technological innovations are at the heart of the smart city concept, and mobility
is one of the fundamental components influencing the quality of life and socioeconomic
conditions of citizens. Thanks to the development of green mobility and new technologies,
mobility is undergoing profound transformations that can influence lifestyles and the
development of the city to increase sustainability.

Autonomous driving is one such technological innovation, together with the concept
of MaaS (Mobility as a Service), that has a strong acceleration and can produce significant
effects on urban mobility. In this context, this work proposes a methodology for the joint
optimisation of traffic light control parameters and autonomous vehicle routes, assuming
that both are managed and optimised by a single operator. The proposed approach has
been tested on several test networks, showing that the proposed model and algorithm
work efficiently and that, since the objective function is not convex, it is necessary to use
heuristic algorithms to explore the space of solutions.

There are some practical implications of the centralised control system for both vehicle
routes and signal settings. First, the use of a joint optimisation system allows the traffic light
control parameters and corresponding vehicle flows to be updated in real time; in practice,
this is like solving a continuous network design problem each time, using transport demand
as input. This type of approach can have many benefits, first for the community and second
for the operator, through reductions in energy and emissions. Users also benefit, as lower
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costs for the operator (whether public or private) can be matched by lower costs for the
trips of users using the system.

This work provides a building block for the construction and implementation of a
smart city, with a clear reference to mobility, which is a fundamental and indispensable
component. There are two main contributions: (a) the basic idea of being able to jointly
manage the routes of autonomous vehicles and the parameters of traffic light regulation,
with the aim of achieving a system optimum; (b) the modelling approach that allows the
problem to be solved in a time frame compatible with the management of both the transport
service and the regulation of intersections.

The limitations of the work should also be mentioned. First, the approach taken is
static and therefore useful for assessing the impact of the intervention but not for managing
it in real time. The dynamic approach will be the subject of future developments in this
research. From the point of view of the results, the networks tested allowed the model
and the proposed approach to be evaluated and experimented with, highlighting the need
for multistart procedures, as well as the feasibility of the methodology, but the results
were not generalisable; indeed, on large real networks, the impact could be different (even
better) in terms of system effects, but each network structure could react differently to
the application of the procedure. Another critical point is the assumption that there is a
single manager of both the fleet of all autonomous vehicles and the control parameters
of all traffic lights. This assumption may be valid for small- and medium-sized cities (up
to about 100,000 inhabitants), but if the network is very large, it is more likely that there
will be several operators of different vehicle fleets, perhaps divided by territory, or several
operators competing with each other. These aspects also deserve further investigation in
the next phases of this research.

The research perspectives are manifold. First, other algorithms for solving the same
problem can be tested and compared, or we could formulate more complex problems to
account for different operators. Second, different traffic light control strategies can be
considered, e.g., by including offsets in the decision variables. Finally, similar problems
can be formulated and solved in the case of mixed traffic (flows of autonomous and
conventional vehicles sharing the same network).
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Vehicles (CUP B32C18000240007), co-financed by the European Union, the Italian State, and the Cam-
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and by the University of Sannio (FRA 2023).
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Appendix A

This appendix summarises notation and terminology.

Table A1. List of acronyms.

Acronyms

AV Autonomous Vehicle
ENDP Equilibrium Network Design Problem
GOSS [LOSS] Global [Local] Optimisation of Signal Settings
GRG Generalised Reduced Gradient
HCM Highway Capacity Manual
HDV Human-Driven Vehicle
MaaS Mobility as a Service
OD Origin–Destination
SO System Optimal
SSDP Signal Setting Design Problem
VOT Value Of Time
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Table A2. List of symbols and variables.

Symbols and Variables

A link-path incidence matrix
ACapi

j approach capacity at intersection j of link i
ai,k cells of the link-path incidence matrix
c link cost vector
Capi capacity of link i
ci generalised cost on link i
Cj effective cycle time at intersection j
Cmax [Cmin] maximum [minimum] feasible cycle length
d demand vector
dod demand between origin o and destination d
edi expected delay on link i
egj

1 effective green time for phase 1 at intersection j
f link flow vector
fi flow on link i
f SO system optimum flow vector
g [gˆ] vector of the [optimal] signal setting variables
h path flow vector
hk flow on path k
i index of links
j index of intersections
k,od index of a path k connecting od pair
Li length of link i
npod number of feasible paths connecting od pair
od origin–destination pair
P path choice probability matrix
rti running time on link i
Sψ feasibility set for ψk,od
Sf feasibility set for system optimum flows
Sg feasibility set for the signal setting variables
si

j saturation flow at intersection j of link i
Sod set of feasible paths connecting od pair
T simulation period
Vi free flow speed on link i
Xi

j flow to capacity ratio of the approach at intersection j of link i
µj effective green time/cycle ratio for phase 1 at intersection j
µmax [µmin] maximum [minimum] feasible effective green time/cycle ratio
ψk,od percentage of vehicles using path k to travel between o and d
ψ path percentage matrix
ψˆ matrix of the optimal path percentages

Appendix B

This appendix contains tables showing some data about the test networks.

Table A3. Features of the toy network.

Link Node_in Node_fi Length
[km]

Road
Capacity
[veh/h]

Saturation
Flow

[veh/h]

Free-Flow
Speed
[km/h]

1 1 2 0.5 1800 1800 40
2 1 3 0.4 1800 - 40
3 2 4 0.5 1800 - 40
4 3 2 0.2 1800 1800 40
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Table A4. Features of the small network.

Link Length [km] Capacity [veh/h] Free-Flow Speed [km/h]

1 0.5 1600 60
2 0.5 1400 60
3 0.3 1400 60
4 0.5 1200 50
5 0.8 1200 50
6 0.6 1200 50
7 0.8 1200 50
8 0.8 1200 50
9 0.3 1200 50
10 0.5 1200 50
11 0.7 1800 80
12 0.6 1200 50
13 0.2 1800 80
14 0.6 1800 80

Table A5. Features of the Sioux Falls network.

Link # Node_in Node_fi Length [km] Capacity/Saturation
Flow [veh/h]

Free-Flow Speed
[km/h]

1 [2] 1 [2] 2 [1] 6.0 3500 75
3 [4] 1 [3] 3 [1] 2.0 5400 100
5 [6] 2 [6] 6 [2] 2.0 3500 75
7 [8] 3 [4] 4 [3] 2.0 1600 50

9 [10] 3 [12] 12 [3] 5.0 5400 100
11 [12] 4 [5] 5 [4] 2.0 1600 50
13 [14] 4 [11] 11 [4] 5.0 1600 50
15 [16] 5 [6] 6 [5] 2.0 1600 50
17 [18] 5 [9] 9 [5] 2.5 3500 75
19 [20] 6 [8] 8 [6] 2.5 3500 75
21 [22] 7 [8] 8 [7] 3.0 3500 75
23 [24] 7 [18] 18 [7] 2.5 1600 50
25 [26] 8 [9] 9 [8] 2.0 3500 75
27 [28] 8 [16] 16 [8] 2.5 3500 75
29 [30] 9 [10] 10 [9] 2.5 3500 75
31 [32] 10 [11] 11 [10] 2.0 3500 75
33 [34] 10 [15] 15 [10] 3.0 3500 75
35 [36] 10 [16] 16 [10] 2.0 3500 75
37 [38] 10 [17] 17 [10] 2.5 1600 50
39 [40] 11 [12] 12 [11] 2.0 3500 75
41 [42] 11 [14] 14 [11] 3.0 3500 75
43 [44] 12 [13] 13 [12] 6.0 5400 100
45 [46] 13 [24] 24 [13] 2.0 3500 75
47 [48] 14 [15] 15 [14] 2.0 1600 50
49 [50] 14 [23] 23 [14] 1.5 3500 75
51 [52] 15 [19] 19 [15] 2.0 1600 50
53 [54] 15 [22] 22 [15] 1.5 3500 75
55 [56] 16 [17] 17 [16] 1.5 3500 75
57 [58] 16 [18] 18 [16] 3.0 3500 75
59 [60] 17 [19] 19 [17] 1.5 3500 75
61 [62] 18 [20] 20 [18] 6.7 1600 50
63 [64] 19 [20] 20 [19] 3.0 3500 75
65 [66] 20 [21] 21 [20] 2.0 3500 75
67 [68] 20 [22] 22 [20] 2.5 1600 50
69 [70] 21 [22] 22 [21] 1.5 3500 75
71 [72] 21 [24] 24 [21] 2.0 3500 75
73 [74] 22 [23] 23 [22] 2.0 1600 50
75 [76] 23 [24] 24 [23] 1.5 3500 75
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Table A6. OD matrix for the Sioux Falls network.

O\D 1 5 7 10 12 13 20 23

1 - 92.4 231.0 600.6 92.4 231.0 138.6 138.6

5 92.4 - 92.4 462.0 92.4 92.4 46.2 46.2

7 231.0 92.4 - 877.8 323.4 184.8 231.0 92.4

10 600.6 462.0 877.8 - 924.0 877.8 1155.0 831.6

12 92.4 92.4 323.4 924.0 - 600.6 184.8 323.4

13 231.0 92.4 184.8 877.8 600.6 - 277.2 369.6

20 138.6 46.2 231.0 1155.0 231.0 277.2 - 323.4

23 138.6 46.2 92.4 831.6 323.4 369.6 323.4 -

Table A7. Number of Dial efficient paths for the Sioux Falls network.

O\D 1 5 7 10 12 13 20 23

1 - 2 3 6 1 1 10 2

5 2 - 2 1 3 8 8 4

7 3 2 - 3 3 10 3 9

10 6 1 3 - 1 5 5 3

12 1 3 3 1 - 1 10 1

13 1 8 10 5 1 - 1 1

20 10 8 3 5 10 1 - 3

23 2 4 9 3 1 1 3 -
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Table A8. Signal settings of the initial solutions (Sioux Falls network).

Intersection → 4 6 8 9 11 14 15 16 19 21 22 24

Solution ↓ C µ C µ C µ C µ C µ C µ C µ C µ C µ C µ C µ C µ

1 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50 75 0.50
2 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20 75 0.20
3 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80 75 0.80
4 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50 30 0.50
5 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50 120 0.50
6 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20 30 0.20
7 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20 120 0.20
8 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80 30 0.80
9 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80 120 0.80
10 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80
11 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20 75 0.80 75 0.20
12 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80
13 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20 30 0.80 30 0.20
14 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80
15 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20 120 0.80 120 0.20
16 70 0.53 106 0.34 58 0.45 73 0.54 70 0.72 88 0.71 52 0.78 93 0.29 28 0.56 87 0.34 83 0.53 32 0.67
17 110 0.27 103 0.60 65 0.39 85 0.60 53 0.47 98 0.70 26 0.58 37 0.43 43 0.53 52 0.41 72 0.43 104 0.58
18 78 0.55 118 0.42 75 0.70 93 0.65 106 0.75 63 0.34 47 0.53 65 0.63 62 0.65 30 0.65 108 0.73 117 0.41
19 67 0.60 90 0.35 118 0.55 41 0.27 29 0.46 95 0.22 106 0.46 86 0.78 53 0.65 87 0.56 59 0.44 73 0.35
20 61 0.47 34 0.24 48 0.75 32 0.63 104 0.40 53 0.51 65 0.26 22 0.20 97 0.70 32 0.39 88 0.29 79 0.66
21 40 0.53 27 0.63 84 0.45 82 0.38 103 0.32 111 0.30 115 0.75 65 0.46 48 0.60 60 0.37 86 0.30 77 0.77
22 117 0.38 104 0.54 30 0.77 36 0.52 88 0.72 75 0.60 31 0.50 83 0.51 35 0.55 68 0.40 57 0.37 78 0.28
23 115 0.27 119 0.80 107 0.23 56 0.66 32 0.23 108 0.80 42 0.38 40 0.28 73 0.33 28 0.39 80 0.32 78 0.30
24 27 0.58 28 0.67 98 0.21 46 0.35 93 0.58 49 0.60 64 0.68 120 0.72 67 0.45 50 0.44 113 0.21 90 0.72
25 38 0.29 107 0.56 92 0.36 118 0.33 72 0.59 103 0.36 105 0.54 84 0.42 91 0.74 42 0.70 94 0.38 55 0.73
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