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Abstract: Wireless communication infrastructure is a key enabling technology for smart cities. This
paper investigates a novel technique to enhance the performance of 5G base stations by addressing
the compensation of nonlinear distortions caused by radiofrequency power amplifiers. For this
purpose, a sequential digital predistortion approach that uses twin nonlinear two-box structure along
with reduced sampling rates in the feedback path is proposed to implement a linearization system.
Such a system is shown to have a correction bandwidth that exceeds the bandwidth of the feedback
path. This is achieved by synthesizing the predistortion function in two successive characterization
iterations. Both characterizations use the same hardware, which has a reduced sampling rate in the
feedback path. Hence, the proposed predistorter scheme does not require any additional hardware
compared to standard schemes. Moreover, coarse delay alignment is performed while identifying
the memory polynomial function in order to further reduce the computational complexity of the
proposed system. Experimental results using an inverse Class-F power amplifier demonstrate the
ability of the proposed predistorter to achieve a correction bandwidth of 100 MHz with a feedback
sampling rate as low as 25 MSa/s.
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1. Introduction

Fifth generation (5G) communication systems and beyond play a crucial role in the
development and improvement of smart cities by enabling seamless connectivity to support
a wide range of applications [1]. A common backbone to almost all aspects of smart
cities relates to reliable and prompt data transmission. In fact, 5G networks can support
a very large number of users and thus facilitate the proliferation of Internet of Things
(IoT) applications such as infrastructure and environment monitoring, and enhanced
healthcare solutions [2,3]. Moreover, 5G represents a leap in terms of increased capacity
and throughput allowing for large amounts of data transfer, which is critical for traffic
management [4] and real-time public safety and surveillance [5,6]. Finally, the latency and
high speed of 5G systems make them essential for the operation of autonomous vehicles in
smart cities [7,8].

The design of wireless infrastructure for 5G systems involves several aspects related to
networking, data transmission and radiofrequency (RF) electronics. This paper focuses on
performance enhancement of the RF transmitters found in base stations, and more specifi-
cally on the compensation of nonlinear distortions exhibited by the power amplifier (PA).
In fact, 5G systems impose increasingly rigid requirements on the performance of the radio
frequency front-end of the transmitters, and more specifically the RF power amplifier. From
a performance perspective, linearity and power efficiency are two antagonist but critically
important requirements. While using linear amplifiers can easily address the linearity issue,
the need for operating the power amplifier in a power efficient mode calls for a trade-off
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between linearity and efficiency. Such trade-off is commonly addressed by designing
high-efficiency nonlinear power amplifiers and compensating for their nonlinearity by
means of linearization techniques [9].

Predistortion, and more specifically baseband digital predistortion, is widely adopted
for the linearization of base station power amplifiers. This consists of implementing, in the
baseband digital domain, a nonlinear function that is complementary to that of the amplifier
being linearized such that the cascade made of the predistorter and the amplifier operates
as a linear amplification system. Even though digital predistortion is often perceived as a
mature linearization technology, several improvements are continuously needed to address
the specificities of emerging wireless standards and the evolving requirements that these
impose. Recently, several researchers have addressed the challenges in digital predistortion
systems. These include the linearization of millimeter-wave power amplifiers [10], the
reduction of the computational complexity associated with delay estimation algorithm [11],
and the computational stability of low sampling rate systems [12]. Furthermore, neural
networks are gaining popularity, and have recently been reported for bandwidth, power
and carrier configuration resilient predistorters [13], multi-input multi-output (MIMO)
beamforming applications [14], 5G radio over fiber applications [15] and 6G dynamic
spectrum aggregation [16]. Through all recent work, a common issue can be clearly
identified. The design of digital predistorters for modern applications has to address two
major concerns: the accurate characterization of the amplifier’s nonlinear behavior, and the
perfect match between the predistortion function and the amplifier’s nonlinearity [9].

The observation bandwidth of the feedback path used to acquire the amplifier’s
output signal is becoming a design bottleneck due to the use of wideband signals in
modern applications with up to 100 MHz in 5G sub-6 GHz frequency band and up to
400 MHz in the 5G millimeter wave frequency range (above 24 GHz). The main concern
is that, due to spectrum regrowth, the signal at the output of the PA typically has up to
five times the bandwidth of the signal being transmitted. This spectral regrowth is directly
caused by the nonlinearity of the power amplifier. Therefore, the sampling rate of the
analog to digital converter (ADC) in the feedback path of predistortion systems needs to
accommodate such wide bandwidths. Recently, several research efforts have focused on the
reduction of the required bandwidth of the feedback path, also referred to as the observation
bandwidth, in order to enable the predistortion of power amplifiers driven by wideband
signals using architectures with observation bandwidths that are less than five times that
of the transmitted signal [17–23]. In [17], a sub-band decomposition technique is proposed
to divide the signal spectrum into different ranges to be processed separately. These
ranges are overlapping in the frequency domain due to the nature of decomposition filters.
Compensating for this overlap and ensuring signal reconstruction once the predistortion
function is applied typically requires significant computational overhead. In [18], extended
correction bandwidth is achieved while using analog to digital converters operating at
a reduced sampling rate. However, this leads to a significant hardware overhead by
requiring two feedback paths as well as the use of an analog predistortion function. The
bandlimited DPD system proposed in [19] uses a relaxed sampling rate and does not
add significant computational overhead. The main drawback in this technique is that the
correction bandwidth of the digital predistorter is identical to the observation bandwidth of
the feedback path. This issue was addressed in [20,21] where a correction bandwidth larger
than the observation bandwidth was reported. However, this was achieved at the expense
of complex signal spectral extrapolation technique [20] and hardware overhead [21]. The
authors in [22] proposed a low-complexity technique to extend the correction bandwidth
of digital predistortion system through the use of a synthetic test signal. This made this
technique valuable for laboratory experiments but not useful for field deployed systems.
A two-box DPD system with extended correction bandwidth was proposed for an LTE-A
power amplifier [24]. This predistortion system uses a bank of look-up tables (LUT)-based
memoryless predistortion functions that are pre-calculated from offline measurements,
which represents a limitation.
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Accordingly, previously reported techniques suffer either from a degradation in the
correction bandwidth due to the limitation of the observation bandwidth, or a significant
computational/hardware complexity overhead in order to maintain the correction band-
width while operating the DPD feedback path at a relaxed sampling rate. This represents
a major limitation in state-of-the-art work. Hence, a low-complexity digital predistortion
technique in which a reduced sampling rate can be used without limiting the correction
bandwidth is needed.

In this paper, a sequential digital predistorter (S-DPD) system built using a twin non-
linear two-box (TNTB) predistorter able to achieve an extended correction bandwidth is
proposed. The proposed predistorter system contrasts with previously reported TNTB
predistorters [23,24] in several major aspects. Firstly, the predistortion function is identified
in two sequential steps: two consecutive characterizations using reduced feedback band-
width are used to derive the static predistortion sub-function implemented as a memoryless
look-up table, and then the dynamic nonlinear sub-function implemented as a memory
polynomial (MP). Secondly, the S-DPD system does not require any hardware overhead
to implement the predistortion function. Indeed, only a single standard feedback loop is
needed to derive the predistortion function since the sequential characterization is per-
formed within the digital domain. Thirdly, the computational complexity associated with
the proposed S-DPD system is reduced by adopting a coarse delay estimation and align-
ment algorithm while calculating the coefficients of the memory polynomial sub-function
of the predistorter and alleviating the need for data de-embedding when identifying the
second predistortion sub-function. Finally, extended correction bandwidth is achieved
without the need for offline characterization of the static nonlinearity of the device under
test (DUT). In fact, the use of static predistortion function derived from offline measure-
ments (as reported in prior work) represents a significant drawback for several reasons.
First, there is a need to pre-calculate a large set of memoryless predistortion functions that
would take into account the variation of the operating conditions of the PA mainly due
to the variations of the average power as well as the signal statistics. Secondly, the PA is
likely to experience long-term drifts of the bias point, operating temperature, etc. While
some of these changes (such as bias drifts) are unobservable, their impact on the DPD
performance translates into a degradation of the adjacent channel leakage ratio. Taking into
account the signal variations as well as the operating conditions, variations will require an
unrealistically large set of LUTs to be pre-built offline. Moreover, from an implementation
point of view, there is a need to determine which of the memoryless LUTs needs to be
applied as the static predistortion function. This requires an additional processing block
that would select the most suitable LUT predistorter based on the knowledge of the signal
characteristics, operating conditions, etc.

Accordingly, the novelty in the proposed predistorter is related to the following aspects:

• First, the predistortion function is performed in a sequential manner through two
distinct characterization steps.

• Second, a single characterization hardware loop is used for both characterization steps.
• Third, a relaxed sampling rate is used in the feedback path for acquisition of the power

amplifier’s output.
• Fourth, the computational complexity overhead due to the proposed technique is

minimized through the use of coarse delay alignment when identifying the second
predistortion sub-function.

• Fifth, the use of sequential identification process minimizes the computational com-
plexity associated with the signal reconstruction to a simple re-sampling operation.

The above-mentioned five aspects cohesively allow for substantial improvements
in digital predistortion systems that makes it possible to achieve satisfactory linearity
performance over a correction bandwidth much larger than the observation bandwidth
of the feedback path without the computational and hardware complexity drawbacks
observed in previously reported work.
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In Section 2, the proposed S-DPD system is introduced and thoroughly discussed. In
Section 3, the S-DPD system is applied for the linearization of an inverse Class-F power am-
plifier prototype. The computational complexity reduction through coarse delay alignment
is investigated in Section 4. The conclusions are reported in Section 5.

2. Sequential Digital Predistortion Using Under-Sampled Feedback Signals
2.1. Frequency Domain Analysis of Power Amplifier’s Nonlinear Distortions

Nonlinear distortions such as those exhibited by power amplifiers are commonly
characterized by the spectrum regrowth they cause through intermodulation and harmonic
distortions. Two-tones along with a simplified polynomial model of the nonlinear PA are
often used to illustrate this basic concept. Harmonic distortions can be eliminated through
filtering, and hence are not considered problematic when linearizing power amplifiers.
Conversely, intermodulation distortions are located too close to the in-band signal to be
filtered. Therefore, the synthesis of digital predistortion function is usually based on the
observation of the amplifier’s output signal over a bandwidth that spans up to five times
the bandwidth of the input signal. This serves to guarantee the inclusion of the third
and fifth order intermodulation distortions caused by the power amplifier. However, a
closer look using a multi-tone signal can clearly illustrate that the in-band frequency range
contains significant information about the nonlinearity of the power amplifier. To illustrate
this aspect, a five-tone input signal is considered for this analysis. This time domain input
signal xin(t) is given by:

xin(t) =
5

∑
i=1

Ai × cos(2π fit + ϕi), (1)

where Ai, fi, and ϕi represent the amplitude, frequency and initial phase of the ith tone.
The power amplifier’s nonlinearity can be modeled by a simple nonlinear polynomial

function, such that

xout(t) =
N

∑
k=1

αkxk
in(t), (2)

where xout(t) is the amplifier’s output signal, N is the nonlinearity order, and αk are the
model coefficients.

The analytical derivation of the amplifier’s output signal xout for a third order nonlin-
ear model, and the analysis of its frequency content show the presence of 145 components
including 15 components around DC, 80 components in the in-band region correspond-
ing to the input signal’s frequency range (including intermodulation distortions), and 15
and 35 components in the frequency ranges corresponding to the second and third order
harmonics, respectively.

As a numerical example, let us consider the case of a five-tone signal where the
tones’ frequencies are uniformly spaced between 890 MHz and 910 MHz. Figure 1 depicts
the number of terms at each frequency component around the original transmit band.
Most importantly, this figure shows that the in-band frequency range has a significantly
larger number of terms when compared to the intermodulation range. Therefore, it can be
anticipated that the reduction of the observation bandwidth in the feedback path of the
digital predistortion system can lead to a fairly accurate representation of the amplifier’s
nonlinear behavior.
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Figure 1. Frequency content of amplifier’s input and output signal for a five-tone input signal and a 
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Figure 1. Frequency content of amplifier’s input and output signal for a five-tone input signal and a
third order polynomial model: (a) input signal; (b) output signal.

2.2. Proposed Sequential Digital Predistortion

Two-box based digital predistorters have been widely used for the linearization of
wideband power amplifiers exhibiting strong memory effects [9]. In fact, these models
typically result in better performance than their single-box counterpart while requiring a
lower number of coefficients. In conventional two-box models, the static and the dynamic
nonlinearity functions are derived concurrently from a single set of measurements. The
flow chart of such process is depicted in Figure 2. First, the input signal is applied to the
PA, and the corresponding output signal is acquired. The input and output baseband
complex waveforms are then used to perform accurate delay estimation and alignment
with a sub-sample delay resolution. This is essential to cancel out the propagation delay
between the input and output waveforms, and accurately derive the instantaneous gain
of the amplifier. Following this delay estimation and alignment step, the time-aligned
input and output waveforms are used to identify the look-up table corresponding to the
memoryless predistortion sub-function. Later, and depending on the structure of the two-
box network, the signals at the input and output of the remaining predistortion sub-function
are generated. This data de-embedding process is then followed by the identification of
the memory polynomial predistortion sub-function. This step completes the identification
process of the predistortion function. The obtained DPD is then applied to linearize the
device under test. Depending on the performance of the synthesized digital predistortion,
the update of the predistortion function may be triggered (if the DPD performance does
not meet the requirements) or not (if the DPD performance meets the requirements).

The proposed S-DPD uses the reverse TNTB structure introduced in [23] along with
an enhanced identification approach that allows for the effective use of under-sampled
feedback signals. The TNTB predistorter architecture, presented in Figure 3, is made of a
memory polynomial function followed by an LUT function. As per the conventional DPD
identification process depicted in Figure 2, only one characterization is performed. This
characterization, labelled as Characterization #1 in Figure 3, is used to synthesize the two
sub-functions of the DPD model by applying the identification process of Figure 2.
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In the proposed approach, two characterization steps are performed. As shown in
Figure 3, the first characterization step includes only the power amplifier, and uses the
input and output baseband waveforms of the power amplifier to synthesize the LUT
predistortion function. During the synthesis of the LUT DPD, accurate delay estimation
is used. However, a reduced sampling rate is adopted in the feedback path. In fact, even
though such reduction will lead to sub-optimal and slightly inaccurate memoryless DPD
sub-function, the resulting residual distortions will be addressed and compensated for
during the second characterization step. In this second characterization step, the system to
be characterized is made of the LUT DPD as well as the PA (as shown in Figure 3). This
system has a mildly nonlinear behavior since the LUT was designed with the objective
of reducing the PA distortions. Therefore, reduced sampling rate in the feedback path
will not introduce any significant errors since the bandwidth of the signal at the output
of the partly linearized system (LUT DPD + PA) is expected to be significantly narrower
than that of the PA alone. During the second characterization step, coarse delay estimation
and alignment is performed. This implies that the delay resolution will be equal to the
sampling period of the signals. This reduces the complexity associated with accurate
delay estimation and alignment. Furthermore, the step related to the data de-embedding
needed in the conventional identification approach is avoided in the proposed system and
is replaced by the second characterization. Hence, the sequential characterization approach



Smart Cities 2024, 7 778

eliminates the data de-embedding step, and allows for the use of reduced sampling rates in
the feedback path without causing a loss of performance for the proposed DPD as it will be
demonstrated through the experimental validation section. The flow chart summarizing
the identification process of the proposed sequential DPD system is presented in Figure 4.
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From an implementation point of view, the proposed sequential DPD does not involve
any additional circuitry in the analog domain. The detailed block diagram presented in
Figure 5 shows that a single feedback loop is used for both characterization steps. This
feedback path provides access to the power amplifier’s output signal. The output of the
power amplifier is down-converted and then digitized using an analog to digital converter
(ADC) operating at lower sampling rate. The signal at the output of the ADC is fed to a
digital signal-processing block which mainly implements the up-sampling of the acquired
PA output signal in order to have consistent sampling rates between the input and output
waveforms being fed to the delay alignment blocks. The identification of the LUT-based
DPD sub-function includes a fine delay alignment (FDA) block. Conversely, a coarse delay
alignment (CDA) block is used for the identification of the memory polynomial DPD
sub-function. From a hardware perspective, the proposed DPD is identical to conventional
DPDs in the sense that only a single feedback path is required. However, this feedback
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path operates at reduced sampling rate in the proposed DPD. In the digital domain, the
proposed DPD includes two loops. The first loop (shown in red color in Figure 5) is used to
identify the LUT DPD function. It includes a fine-delay alignment block (FDA) followed by
a model identification block (MIB) which calculates the model coefficients or in this case the
LUT entries. In the second loop (shown in blue color in Figure 5), a coarse delay alignment
(CDA) is first performed, then the coefficients of the MP function are identified using the
MIB block. Depending on which predistortion sub-function is being identified, the output
of the digital signal processing block is channeled to position 1⃝ or 2⃝. The output of the
LUT DPD is fed into a digital to analog converter (DAC) which generates the analog signal
to be up-converted by the frequency up-conversion stage before being applied at the input
of the power amplifier. In the scheme depicted in Figure 5, the DPD update is performed
using the signal to be transmitted and does not require any synthetic test signal. Hence, it
can be performed online while the PA is operating and does not require any down time.
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Figure 5. Proposed sequential DPD system.

Compared to conventional identification techniques of two-box models, the proposed
sequential DPD eliminates the need for data de-embedding needed to calculate the memory
polynomial function, but requires an additional delay alignment step. However, the
complexity of this step is reduced by using a coarse delay alignment algorithm. In fact,
it was shown in [25] that the identification of static nonlinear distortions requires sub-
sample delay resolution for satisfactory modelling accuracy, while the identification of the
memory polynomial function is robust to delay misalignment. Therefore, in the proposed
DPD, when the static nonlinear function is being identified, a sub-sample accurate delay
estimation and alignment algorithm is used. Conversely, when the memory polynomial
function is identified, a coarse-delay alignment algorithm with a one-sample resolution
will be used. This will contribute to reducing the computational complexity associated
with the identification of the memory polynomial sub-function in the proposed S-DPD.

3. Performance Assessment of the Proposed Digital Predistortion System

For the experimental validation of the proposed DPD, an inverse Class-F power ampli-
fier operating around 900 MHz was used. The functional block diagram of the experimental
setup is reported in Figure 6. The DPD signal processing unit includes the functionalities
related to time delay alignment, DPD function identification and predistortion of the in-
put signal. The baseband digital waveform at the output of the DPD signal processing
unit is fed into the vector signal generator (VSG) which implements the digital to analog
conversion and the frequency up-conversion. The signal at the output of the VSG is pre-
amplified using a driver before being applied at the input of the main power amplifier. The
signal at the output of the power amplifier is first attenuated and then fed into the vector
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signal analyzer (VSA). The VSA performs the frequency down-conversion, the analog to
digital conversion, and the demodulation of the signal. The resulting digital waveform
corresponding to the PA’s output signal is used by the DPD signal processing block to
synthesize the predistortion function. A photograph of the experimental setup is presented
in Figure 7.
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The PA was driven by a test signal having a bandwidth of 20 MHz. This bandwidth
is largest that can be handled by the available experimental setup. The output signal
was acquired at various sampling rates using the vector signal analyzer. The sampling
rates used were 100 MSa/s, 50 MSa/s, 40 MSa/s, 30 MSa/s and 25 MSa/s. The in-
phase and quadrature components of the baseband input signal (Iin, Qin) and the in-
phase and quadrature components of the baseband output signal (Iout, Qout) were used to
compute the instantaneous complex gain of the device under test and derive its AM/AM
(amplitude-modulation to amplitude-modulation) and AM/PM (amplitude-modulation to
phase-modulation) characteristics. The AM/AM and AM/PM characteristics represent the
magnitude and the phase of the complex instantaneous gain, respectively. The measured
AM/AM and AM/PM characteristics of the device under test derived from the 100 MSa/s
sampling rate data acquisition are presented in Figure 8.

Then, the five acquisitions of the DUT’s output signal were performed using sampling
rates of 100 MSa/s, 50 MSa/s, 40 MSa/s, 30 MSa/s and 25 MSa/s. In these tests, since
the input waveform has a sampling rate of 100 MSa/s, acquisitions performed at lower
sampling rates required the use of a resampling step in order to up-sample the acquired
output signal to the same 100 MSa/s rate as the input signal. This resampling step is
accomplished before performing the time delay estimation and alignment as well as the pre-
distortion function synthesis. From each of the five acquired output signals, a memoryless
look-up table was built. All predistorters were derived from the measured input and output
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data using the same exponentially weighted moving average algorithm for the LUT DPD
synthesis. These LUT-based DPDs were then used to linearize the power amplifier when
driven by the 20 MHz input signal. The spectra obtained at the output of the linearized
power amplifier are reported in Figure 9 for all the memoryless predistorters along with
the output spectra without linearization. This figure shows that the LUT derived from the
measured output signal at 100 MSa/s leads to the best linearization performance. However,
residual distortions can be seen in this spectrum. This is expected since the DUT exhibits
memory effects, and therefore a memoryless DPD will not be able to fully compensate for
the DUT’s distortions.
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Moreover, considering the spectra (of Figure 9) corresponding to DPDs derived from
lower sampling rates, additional performance degradation is observed. This performance
deterioration is more pronounced as the sampling rate decreases. This is anticipated since
a more accurate reconstruction of the output signal waveform sampled at 100 MSa/s will
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translate into a more accurate model of the DUT, and hence a more optimal memoryless
LUT. However, even though the performances of the DPDs derived from low-sampling-
rate data acquisitions are not as good as the one derived from 100 MSa/s measurement,
they lead to noticeable spectrum regrowth cancellation ranging from 10 dB to 20 dB for
the 25 MSa/s and the 50 MSa/s data acquisitions, respectively. More importantly, this
spectrum regrowth cancellation reduces the bandwidth of the signal at the output of the
device under test, which will reduce the impact of the limited observation bandwidth on the
performance of the DPD. Accordingly, the use of the low-sampling-rate data acquisitions
for the synthesis of the second predistortion sub-function (the memory polynomial block)
is anticipated to further enhance the capabilities of the predistorter.

The last step in the validation of the proposed S-DPD system is to assess the per-
formance of the complete two-box DPD for each value of the sampling rates used in the
signal observation path. First, the benchmark data corresponding to a data acquisition at
sampling rate of 100 MSa/s was used to determine the required dimensions for the memory
polynomial block of the two-box DPD. The memory polynomial predistortion function is
given by

xout_MP(n) =
K

∑
k=1

M

∑
m=0

akmxin_MP(n − m)|xin_MP(n − m)|k−1, (3)

where xin_MP and xout_MP are the input and the output of the MP function, respectively. akm
are the complex-valued model coefficients. K and M represent the memory polynomial’s
nonlinearity order and memory depth, respectively.

For the considered DUT, it was found that the MP sub-function needed to have a
nonlinearity order K = 7 and a memory depth M = 5. This setting (nonlinearity order and
memory depth) of the MP sub-function was kept the same for all MP sub-functions derived
from the under-sampled output waveforms. For each acquisition, a new set of coefficients
was calculated.

For the 25 MSa/s data acquisition, the signal at the output of the amplifier linearized
using the memoryless LUT derived from the same sampling rate was used along with the
LUT’s input signal to build the memory polynomial sub-function of the predistorter. This
sub-function, also derived from data acquired at 25 MSa/s, aims at linearizing the cascade
made of the LUT predistorter and the power amplifier. The same test was repeated for the
30 MSa/s, 40 MSa/s and 50 MSa/s acquisitions as well as the 100 MSa/s benchmark. The
spectra obtained at the output of the power amplifier following the use of the cascade made
of the memory polynomial and the LUT DPDs are reported in Figure 10 for all considered
sampling rates. This figure clearly shows that the use of the proposed sequential DPD
technique can result in excellent linearization without performance deteriorations as the
sampling rate is reduced by a factor of four from 100 MSa/s to 25 MSa/s. This is mainly
due to the fact that despite the imperfections of the LUT DPD, it still reduces the bandwidth
of the partly linearized output signal, and the fact that the MP DPD is derived to linearize
the cascade made of the LUT and DUT in a second iteration.
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4. Complexity Reduction through Coarse Delay Alignment

In order to further reduce the computational complexity associated with the identifica-
tion of the memory polynomial coefficients, coarse delay alignment algorithm was used
to time-align the input and output waveforms prior to the identification of the memory
polynomial predistortion function. The main reason is that fine-delay alignment is a com-
putationally extensive process. In fact, delay alignment with a resolution Ts

R where Ts is the
sampling period of the two signals to be time-aligned typically requires up-sampling the sig-
nals by a factor R, performing delay estimation and alignment often using cross-correlation
technique, and then down-sampling the waveforms by a factor of R back to their original
sampling rate. Therefore, using a delay resolution equal to the signal’s sampling rate
(R = 1) will eliminate the need for the signal up-sampling and down-sampling processes
in the delay estimation and alignment and hence reduce the computational complexity
associated with this process.

For the experimental validation of the coarse delay alignment, the identification of
the LUT sub-function was not modified, and a fine delay alignment was used in that step.
However, a coarse delay alignment algorithm was adopted for the MP DPD identification.

To assess the impact of the delay misalignment caused by the limited delay resolution
of the coarse alignment, three delay resolutions were considered. These are 1 ns, 5 ns
and 10 ns, which correspond to 0.1Ts, 0.5Ts and Ts, where Ts is the sampling period of the
100 MSa/s input signal. Moreover, a reference memory polynomial DPD derived from
accurate delay estimation and alignment was used as a benchmark.

The effects of the coarse delay alignment are depicted in the plots of Figure 11. For
conciseness, this figure only includes the results corresponding to 50 MSa/s and 25 MSa/s
rates in the feedback path. Comparable results have been obtained for the 40 MSa/s and
30 MSa/s cases. The results of Figure 11 show that the impact of limited delay resolution is
slightly more pronounced for the signal acquisition performed at 25 MSa/s than the one
performed at 50 MSa/s. Most importantly, these results clearly demonstrate that a delay
resolution of up to 10 ns, which corresponds to one sample, does not have a significant
impact on the sequential DPD performance. Hence, delay estimation and alignment for
the MP DPD identification can be performed with low complexity algorithms that do not
require sub-sample resolution without compromising the performance of the S-DPD.
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5. Conclusions

In this paper, a sequential DPD architecture was proposed and experimentally vali-
dated. Compared to conventional predistortion systems, the proposed DPD reduces the
complexity of the feedback path hardware by using reduced sampling rates for the acqui-
sition of the PA output signal. Moreover, the computational complexity of the proposed
predistorter is reduced by using a coarse delay resolution for the identification of the mem-
ory polynomial DPD. The two-step sequential characterization and predistortion function
synthesis does not add any hardware overhead, reduces the sampling rate in the feedback
path, eliminates the need for signal de-embedding required for the identification of the MP
DPD sub-function, and alleviates the computational complexity of the delay estimation and
alignment. Experimental results show that the proposed DPD can successfully linearize
a PA driven by a 20 MHz test signal while operating the feedback path at 25 MSa/s, and
using a coarse delay alignment resolution. Future work can investigate the suitability of the
proposed architecture for other two-box digital predistortion functions, and the possibility
of extending the complexity reduction to the transmit path.

Author Contributions: Conceptualization, O.H. and S.B.; methodology, M.A. and R.A.; valida-
tion, M.A.; formal analysis, M.A. and R.A.; writing—original draft preparation, M.A. and R.A.;
writing—review and editing, O.H. and S.B.; supervision, O.H.; project administration, O.H.; funding
acquisition, O.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Office at the American University of Sharjah
under Grant FRG20-M-E85. The work in this paper was supported, in part, by the Open Access
Program from the American University of Sharjah.

Data Availability Statement: The data used for this research work are not publicly available.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Kakkavas, G.; Diamanti, M.; Stamou, A.; Karyotis, V.; Bouali, F.; Pinola, J.; Apilo, O.; Papavassiliou, S.; Moessner, K. Design,

Development, and Evaluation of 5G-Enabled Vehicular Services: The 5G-HEART Perspective. Sensors 2022, 22, 426. [CrossRef]
2. Devi, D.H.; Duraisamy, K.; Armghan, A.; Alsharari, M.; Aliqab, K.; Sorathiya, V.; Das, S.; Rashid, N. 5G Technology in Healthcare

and Wearable Devices: A Review. Sensors 2023, 23, 2519. [CrossRef]
3. Mazhar, T.; Malik, M.A.; Haq, I.; Rozeela, I.; Ullah, I.; Khan, M.A.; Adhikari, D.; Ben Othman, M.T.; Hamam, H. The Role of ML,

AI and 5G Technology in Smart Energy and Smart Building Management. Electronics 2022, 11, 3960. [CrossRef]

https://doi.org/10.3390/s22020426
https://doi.org/10.3390/s23052519
https://doi.org/10.3390/electronics11233960


Smart Cities 2024, 7 785

4. Tengg, A.; Stolz, M.; Hillebrand, J. A Feasibility Study of a Traffic Supervision System Based on 5G Communication. Sensors 2022,
22, 6798. [CrossRef] [PubMed]

5. Franchi, F.; Marotta, A.; Rinaldi, C.; Graziosi, F.; Fratocchi, L.; Parisse, M. What Can 5G Do For Public Safety? Structural Health
Monitoring and Earthquake Early Warning Scenarios. Sensors 2022, 22, 3020. [CrossRef]

6. Volk, M.; Sterle, J. 5G Experimentation for Public Safety: Technologies, Facilities, and Use Cases. IEEE Access 2021, 9, 41184–41217.
[CrossRef]

7. Guevara, L.; Auat Cheein, F. The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems.
Sustainability 2020, 12, 6469. [CrossRef]

8. Banafaa, M.; Pepeoglu, O.; Shayea, I.; Alhammadi, A.; Shamsan, Z.A.; Razaz, M.A.; Alsagabi, M.; Al-Sowayan, S. A Compre-
hensive Survey on 5G-and-Beyond Networks with UAVs: Applications, Emerging Technologies, Regulatory Aspects, Research
Trends and Challenges. IEEE Access 2024, 12, 7786–7826. [CrossRef]

9. Ghannouchi, F.M.; Hammi, O. Behavioral Modeling and Predistortion. IEEE Microw. Mag. 2009, 10, 52–64. [CrossRef]
10. Somasundaram, G.; Mayeda, J.C.; Sweeney, C.; Lie, D.Y.C.; Lopez, J. Effective Digital Predistortion (DPD) on a Broadband

Millimeter-Wave GaN Power Amplifier Using LTE 64-QAM Waveforms. Electronics 2023, 12, 2869. [CrossRef]
11. Zhong, T.; Peng, J.; He, S.; You, F.; Guo, J.; Wang, X.; Tang, Y.; He, G. Low Computational Complexity Delay Estimation Algorithm

for Digital Predistortion. IEEE Trans. Circuits Syst. II Exp. Briefs. 2024; in press. [CrossRef]
12. Li, B.; Hu, X.; Kan, N.; Wang, W.; Ghannouchi, F.M. Computationally Stable Low Sampling Rate Digital Predistortion for

Non-Terrestrial Networks. IEEE Trans. Broadcast. 2024, 70, 325–333. [CrossRef]
13. Ali, A.; Hammi, O. Bandwidth, Power and Carrier Configuration Resilient Neural Networks Digital Predistorter. IEEE Access

2023, 11, 63126–63135. [CrossRef]
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