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Abstract: Flooding in urban areas is expected to become even more common due to climatic changes,
putting pressure on cities to implement effective response measures. Practical mechanisms for assess-
ing flood risk have become highly desired, but existing solutions have been devoted to evaluating
only specific cities and consider only limited risk perspectives, constraining their general applicability.
This article presents an innovative approach for assessing the flood risk of delimited urban areas
by exploiting geospatial information from publicly available databases, providing a method that is
applicable to any city in the world and requiring minimum configurations. A set of mathematical
equations is defined for numerically assessing risk levels based on elevation, slope, and proximity to
rivers, while the existence of emergency-related urban infrastructure is considered as a risk reduction
factor. Then, computed risk levels are used to classify areas, allowing easy visualisation of flood risk
for a city. This smart city approach not only serves as a valuable tool for assessing the expected flood
risk based on different parameters but also facilitates the implementation of cutting-edge strategies to
effectively mitigate critical situations, ultimately enhancing urban resilience to flood-related disaster.

Keywords: emergency evaluation; OpenStreetMap; risk assessment; urban resilience; sustainability

1. Introduction

Emergencies are not rare events in big cities and metropolises. Because of the fast
growth of urban areas and the lack of planning in most cities, emergency events are
very common [1,2]. Among the many types of hazardous events, floods are the most
recurrent and have the most significant impact on human lives and cities [3,4]. Additionally,
the current global warming process is causing an increase in the frequency of heavy rains
and storms in several cities, putting additional pressure on urban resilience [5,6].

In order to minimise the negative impacts of flooding in cities, different strategies have
been adopted recently, ranging from flood risk prediction [7] to rescuing and mitigation
response during critical times [8]. With the advent of sensors that can continuously monitor
urban areas in real time, providing information about rainfall index and rivers levels, sensor
positioning and communication have also become relevant issues [9]. In all these cases,
data-driven approaches have emerged as a practical way to better understand the particu-
larities of target cities and provide the most adequate services in each considered area [10],
improving prediction, prevention, and actions during a flooding-related emergency, while
paving the way for the construction of smart cities.

Some researchers have been studying and developing data-driven methods for as-
sessing flood risk in urban areas in order to verify which parts of a city are more prone to
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suffering a flooding event [11–14], potentially requiring more assistance. In such works, spe-
cific parameters of each studied city have been usually considered to perform the expected
assessment, achieving relevant results. However, in addition to the usual impossibility of
applying a given assessment method to other cities in general, most proposals have centred
on data that are not publicly or easily available for every city, potentially constraining
their practical adoption for urban planning and flood-related emergency preparedness.
Hence, open methodologies that make use of publicly available data are of great importance
for aiding stakeholders and authorities in assessing urban risk levels, which should be a
guiding development principle in this area [15,16].

Flood risk in urban areas can be directly traced to the geography of a city. First,
elevation and slopes are relevant parameters since water flows to lower regions due
to gravity, dictating the flooding behaviour. Second, the existence of rivers within the
considered urban area is also a risk since flood may occur when a river reaches its maximum
capacity and spills over its banks [17]. In both cases, the most common causes are excessive
rainfall, rapid snow melting, or even an accident (e.g., a dam collapse or a broken pipe),
which may be actively measured for the issuing of emergency alerts and execution of
evacuation actions [18]. Although such measures are warranted in many cases, it is usually
important to identify critical areas that are more prone to flooding in advance: these are the
areas that need quicker assistance and better rescue plans.

Therefore, when retrieving data from open databases for processing and decision
making, it is possible to better assess urban flood risk particularly when data from different
domains are combined. The idea herein is not to perform flood detection or prediction
(which may be performed using other systems) but to estimate how badly an area will
be affected by a flood, on average. In this context, flood risk was assessed in this study
based on the combination of relief (expected tendency to accumulate water), rivers crossing
urban areas (potential source of flooding), and urban emergency response infrastructure
(capability of a city to quickly respond to a critical situation). While the first two factors
increase flood risk in the considered area, the later has the opposite effect, reducing the
combined risk. As such, based on these three data domains, a combined flood risk index
can be determined for every defined urban zone, which can be computed for any city in
the world.

This study exploited georeferenced data from OpenStreetMap, a public database with
geospatial data collected and configured collaboratively, as well as data from the Open-
Elevation API. Among the retrieved and computed data, elevation, slope, and distance to
rivers are important parameters in flood risk assessment [11]. Furthermore, data regarding
emergency-response infrastructure were also retrieved, particularly fire brigades, police
stations (for rescuing), and hospitals (for assisting victims).

To evaluate our proposal, the city of Porto, Portugal, was considered as a case study.
The Douro River, crossing the city of Porto, has an extensive flood history that has made
a significant impact on the city more than once, increasing the expected relevance of our
approach [19].

The remainder of this article is organised as follows: Section 2 presents some related
works in the area of flood risk assessment and smart cities’ optimisation. The materials and
methods are described in Section 3. Section 4 presents our proposed approach based on a
substantial mathematical modelling, while Section 5 details the performed experiments
and the achieved results. Then, Section 6 presents our discussions and outlines research
trends when exploiting our approach in real scenarios. Finally, conclusions and references
are presented.

2. Related Works

Emergency management in smart cities has been studied as a research topic for some
years, with several researchers developing methodologies and mathematical models to
detect, provide alert about, and mitigate emergency events [20,21]. When performing
such services, the concept of “urban risk to emergency” is typically associated with the
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potential threats and vulnerabilities that cities and densely populated areas face regarding
the occurrence of emergencies or disasters. Moreover, risk can also be associated with
the potential for negative consequences during critical situations. This way, flood risk is
directly related to excessive water and its urban impacts, with many complexities and
variables that must be considered, making this a challenging research area [22,23].

Emergency risk assessment is considered as an important element when creating more
resilient cities. Within a smart city scenario, emergency risk has been typically assessed
based on exposure to critical situations and vulnerability to their negative impacts [24].
In fact, while risk exposure indicates the probability of the occurrence of an emergency,
usually due to the physical proximity to a dangerous source (e.g., rivers, lakes, and dams),
risk vulnerability is an indication of the predisposition of being affected by critical events
when they happen (lower areas where water may accumulate), which may be associated
with elevation and slope. In a different way, urban resilience may be associated with the
existence of emergency response services (e.g., fire brigades and rescuing centres), which
is a factor that reduces the perceived risk. Although meaningful when processed in a
combined way, however, the existing literature has mostly been concerned with a single
risk perspective, leaving opportunities for improvement.

Flooding events are the most frequent type of urban emergency, impacting cities
and resulting in economic losses and many other types of damage [3]. Recently, a direct
link between global warming and an increase in river floods in several cities has also
been established [5,6], which increases concern regarding how prone big cities will be in
the future to river floods. In parallel, the negative impacts of heavy rains on cities have
also driven many research works [25,26]. In brieg, many studies have focused on risk
assessment based on risk exposure or the vulnerability to flooding events.

In order to perform a proper risk assessment in a city, regardless of the considered
hazard type and expected optimisation, a lot of urban parameters need to be taken into
consideration. For example, air humidity can be considered when computing fire risk in
some urban areas [27], triggering alarms in dangerous conditions. Other approaches could
take other types of parameters like demographic data and social indicators, constituting a
resilience index for a city [10]. Regardless, the literature indicates that the effectiveness and
coverage of risk assessment approaches are directly linked to some environmental, spatial,
temporal, or social urban parameters.

In the specific case of flooding, there are some parameters that must be considered
in a risk assessment approach. Initially, it is paramount to define the types of floods that
may happen in an urban area: rain and river floods [11]. Regarding rain floods, lower areas
surrounded by higher areas are more prone to flooding. Also, high-slope zones permit
water to flow to lower zones and are less prone to flooding in the event of a heavy rainfall.
Regarding river floods, the proximity to the river has a considerable impact on the flood
risk [28]. All these elements define risk perceptions based on exposure to a critical event.

Still considering this kind of risk perception, the researchers in [11] made use of
elevation and slope data, among other parameters, from the Eldoret Municipality in Kenya,
to classify the flood risk level. Their approach is based on the analytical hierarchy process
(AHP) and geographic information systems (GISs) for performing the assessment and was
able to generate risk maps for the region with an error level of less than 8%. Also, the work
in [12] made use of elevation and slope, among other parameters, as inputs to a fuzzy
support vector machine (FSVM) for assessing the flood risk level in the basin of the Prahova
River, Romania. The authors found that the use of FSVM achieved good performance
compared to when using other models.

While some researchers have used region-specific data for risk exposure and vulnera-
bility assessments, the existence of flood response services is related to urban infrastructure.
In [9], the authors considered the existence of emergency response infrastructure to com-
pute the vulnerability of each urban area to urban emergencies, in inverse order. In that
work, hospitals, fire brigades, and police stations were used as references when computing
risk vulnerability, with areas not served as well by those facilities being considered riskier.
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A similar approach is described in [29], which provides a highly reconfigurable and open
tool to support this type of analysis.

In order to encompass all risk dimensions, this study adopted two publicly and
easily accessible data sources as references. The first source was Open-Elevation API,
which contains data for the computation of elevation and slope in the zones to allow the
assessment of both rain and river flood risks. The second one was OpenStreetMap, which
contains the geolocalisation of rivers, enabling the computation of their distances to support
the assessment of river flood risk. Moreover, OpenStreetMap can also be used for risk
calculation based on urban infrastructure, providing PoIs geolocalisation data, along with
the CityZones tool [29], supporting the computation of emergency response risk. These
were the fundamental data sources that were considered when computing our risk in urban
areas, as discussed in the next subsections. Therefore, by combining these data sources and
our proposed algorithms for flood risk assessment, to the best of our knowledge, we fill a
research gap.

3. Materials and Methods

The flood risk assessment of any urban areais based on three general parameters:
(a) the expected flood risk resulting from heavy rain, (b) exposure to flood due to the
proximity to rivers, and (c) the existing urban flooding response capability, considering
using the presence and proximity to response centres that may perform some mitigation
actions. Overall, certain hazards (low slope, low elevation, and proximity to rivers) increase
the probability of damage caused by flooding, increasing the computed risk perception.
There is, in fact, a historical association of these factors with flooding, as discussed be-
fore. Moreover, after a flood-related emergency happens, response centres can mitigate
the resulting damage and support rescue operations, having an opposite effect than the
identified hazards.

In general, hazard, risk, and vulnerability are intertwined concepts that have a direct
influence on the urban dynamics of emergencies. In our approach, these fundamental
concepts are described as follows:

• Risk: This is the probability that an associated emergency occurs. If a zone has high
risk of flood, that zone is assumed to be more prone to flooding (an emergency) when
a river rises or a heavy rainfall occurs.

• Hazard: This is any threat that may trigger an emergency, depending on defined
safety thresholds and security parameters. In this sense, the proximity to a river
or low-elevation areas are examples of hazardous conditions regarding the risk of
flooding.

• Vulnerability: This indicates how well an area may recover from an emergency event.
In our assessment approach, the proximity to response centres, which may act to
mitigate an emergency, reduces the zones’ vulnerability.

Putting all these concepts together, the urban parameters from different perspectives
can provide important data when computing how risky each zone is, which is highly
practically significant. We treat them in a data-driven geospatial fashion, defining a generic
approach that is easily applicable to any city in the world provided that the required
parameters can be retrieved.

Generally, many other parameters presented in the literature may influence the risk
level of a city regarding flood events [30]. However, our approach performs risk assessment
based solely on publicly and freely available data with minimum configurations, providing
a generalist approach that can be used for virtually any city. Additionally, our approach
may be extended to incorporate new parameters, making it possible to gather other data
and insert them into the risk assessment equation.

Before presenting the details of the proposed approach, some fundamental definitions
are required, as presented in the next subsections.
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3.1. Area of Interest

To assess an urban area regarding combined flood risk, its perimeter must be initially
delimited. Our model defines a polygon area referred as the area of interest (AoI), which is
segmented into small zones, forming a grid-like structure. These zones are the core element
of the proposed assessment process, encompassing the fundamental parameters that are
used as input when the final flood risk perception. Here, each zone is defined as squares of
fixed size zl and location (xc(z), yc(z)) position (centre of the defined square) for zones |Z|
and z ∈ Z. The position of each zone is required when calculating the distance of each zone
to the modelled elements.

Some of the zones may be positioned in an area covered by a river, referred as “river
zones”. The set of river zones, denoted by Zr, is a subset of Z, and every river zone r ∈ Zr
has the same attributes as an ordinary zone plus the river’s flood quota q(r) (described in
rhw next subsection). If there is more than one river in the AoI, each river zone takes the
flood quota of the river to which it belongs.

An AoI is a polygon that encompass a region of the city that will be classified. In this
sense, an AoI is defined by a set of line segments S that connect the pairs of points
P = {P0, P1, . . . , Pn} forming the polygon defined by S = {P0P1, P1P2, . . . , Pn−1Pn, PnP0}.
Set S can be directly defined by a stakeholder or retrieved from geographic information
system (GIS) data as Shapefiles or GeoJSON files. We exploited the work in [29] to retrieve
emergency response data and implemented this function using GeoJSON files containing
multipolygon data to define an AoI, which we adopted as a reference in this study. Af-
ter delimiting an AoI, some zones may be inside or outside the delimited area, requiring the
exclusion of the zones outside the AoI from the proposed risk assessment process. In other
words, the final grid-like structure of the zones is entirely covered by the defined polygonal
area, excluding the zones where the point (xc(z), yc(z)) is outside the polygonal area of
the AoI.

The area of interest must be carefully defined as it limits the effective area considered in
flood risk assessment. For example, in the assessment of a whole city, a polygon comprising
the borders of the city can be defined as an AoI. However, if an assessment of the risk levels
of zones within a more specific region is desired, the AoI should be reduced and limited to
the effective target region, improving the significance of the results.

3.2. Emergency Response Infrastructure

Each emergency response infrastructure in a city is defined as a point of interest (PoI),
which is basically defined by its GPS position. The nature of a PoI is typically standardised
so it can be processed in a more generic way, which is helpful during a flood. In this sense,
fire brigades are of great importance in mitigating critical situations and supporting people
in the vicinity of a flooded area, mostly due to their rescue capabilities during emergencies.
Similarly, police stations and hospitals have an important role when coordinating rescue
operations and attending to victims.

In a scenario of multiple PoIs, a weight value for each of them may be used to
determine their level of importance in the assessment process. For example, fire brigades
may be more important than hospitals in the mitigation process; thus, they might have
a higher weight. Nevertheless, in order to make this general weighting problem more
tractable and flexible to enable application in any city, each PoI may have the same relevance
and impact during a flood in a common case, but stakeholders and specialists may define
specific weights for them.

A PoI is defined by its GPS position at (xc(p), yc(p)) for any given point of interest
p ∈ P, where P is the set of PoIs, and |P| is the number of PoIs within the defined AoI [9].

Figure 1 depicts the zones within an AoI, highlighting the PoIs. The value of zl defines
the size of the zones and the resolution of the grid, i.e., the smaller the zone, the larger
the number of zones forming the grid. Small values for zl can provide more details in the
classification results but at a higher computation cost. On the other hand, the bigger the
AoI, the greater the chance of finding PoIs. Although the value for zl can be freely defined
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by the user of the proposed approach, it is recommended that it matches the digital terrain
model (DTM of source data. For example, if using remote sensing data of 30 m, a zone
length zl = 30 makes the zones in the AoI match the pixels in the remote sensing data.

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • 🚒 • • • •
• • • • • • 🏥 • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • •

Zone z0
(outside AoI)

Zone centre
(xc(z0), yc(z0))

Zone z56
(inside AoI)

Zone centre
(xc(z56), yc(z56))

zl

PoI

P0 P1

P2

P3P4

P5P6

P7 P8

• River zone AoI boundaries• Zone inside AoI• Zone outside AoI

Figure 1. The defined AoI, zones, and PoI modelling.

4. Proposed Approach

The next subsections present the proposed mechanisms for computing flood parame-
ters (risk perceptions) and the unified flood risk assessment.

4.1. Elevation Data: Rain-Flood Risk

After the grid is defined and an AoI is delimited, the zones can be assessed according
to different parameters associated with urban flooding. The first considered parameter is
related to the zones’ relief, since it impacts how water accumulates during an emergency.

When computing flood risk, elevation is a good parameter for obtained a general
perception of vulnerability, which is, in fact, a measured level of “susceptibility” to negative
effects in this case [11–13]. From the elevation data of the zones, it is also possible to
compute slopes to better perceive such risk. While lower zones can accumulate water in the
event of a heavy rainfall, water on a high-gradient slope flows quickly. The combination of
both characteristics gives us a unified perception of how likely a zone is to retain water,
which we define as the rain flood risk.

Figure 2 shows typical water flow on a terrain with different slopes. Rain water flows
down from high-elevation zones, accumulating in lower areas with low-gradient slopes.
Although some areas may be lower than others, if they have a higher-gradient slope, water
flows down and does not accumulate.
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High slope

Zero slope

Zero slope

Zero slope

High slope

Figure 2. Water flows on terrain with different slopes.

Having modelled both types of data, we were able to compute how vulnerable a zone is
regarding a rain flood event by combining its elevation and slope. As aforementioned, high-
elevation reduces (heavy) rain flood risk, while lower elevation increases it. In addition,
high-gradient slopes reduce rain flood risk. The computation of the rain flood risk H of a
zone z, defined as H(z), is performed as described in Equation (1).

H(z) =
1

eĥ(z)+s(z)
(1)

In this computation, the elevations of the zones are normalised in the range of [−1, 1],
as shown in Equation (2). In fact, the rain flood risk in a zone is relative to that in the
other zones within the AoI; thus its meaning is constrained to this defined area. Thus,
the average elevation zone has a value of ĥ = 0, while that of the lower zone is ĥ = −1,
and that in the higher zone is ĥ = 1. In this range, the average elevation in zone zavg is

eĥ(zavg) = 1, providing the reference value for elevation parameters.

ĥ(z) =
h(z)− hmin −

hmax − hmin

2

hmax − hmin −
hmax − hmin

2

(2)

The slope gradient is the highest ratio of the height difference between the surrounding
zones and the zone size (zl). Suppose a set of zones V(z) in the vicinity of zone z; then,
the slope gradient is calculated as shown in Equation (3). This is computed for every zone
zv surrounding zone z, and the maximum computed value is defined as s(z). If the zones
have the same elevation, the slope gradient is 0. A difference in height that produces a
45◦ angle returns a slope gradient of 1. In this sense, flat surfaces have a value of 0, having
no interference in the computation of the rain flood risk obtained from the elevation data.
However, as long as the gradient slope rises, it reduces the rain flood risk computed from
the elevation data. This is because although a zone may have a lower altitude, water does
not accumulate if it flows downward due to the gradient slope [11].

s(z) = max

(
|h(z)− h(zv)|

zl
, zv ∈ V(z)

)
(3)

4.2. Fluvial Data: River Flood Risk

Another relevant parameter in flood risk assessment is the presence of rivers within
the AoI. In some situations, it is common that a river crossing a city rises high enough
(usually due to heavy rain) and floods its surroundings, which must be properly considered
by authorities when pursuing flood resilience. It is important to account the presence of a
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river in the computation of the unified flood risk assessment of the zones, since this factor
is expected to increase the overall flood risk.

The first considered element in this particular assessment is the distance from the
river. For each zone within the AoI, we calculated its distance to the nearest river, since
this factor will have the most significant impact on the flood risk. This distance is relevant
because the closer a zone to that river, the higher its exposure to river-originated flooding.
The work in [31] shows that even at a distance of 100 m from a river, a location is still prone
to flooding by the river, thus this factor must be properly considered.

Not all rivers are the same. Some rivers may dangerously rise during heavy rains,
while some do not rise at all. As such, a river flood exposure assessment equation cannot use
the distance from the river as a unique parameter, since the historical flooding behaviour of a
river must also be considered. In this sense, a core element used in our approach is the river
flooding history, denoted as “flood quota”. This element indicates the highest historical
flood elevation of the river, i.e., how high that river has risen in the past. For example,
the Seine River in Paris has a historical flood elevation of 8.80 m (which occurred in
1658) [32]. In this case, that elevation would be the reference value for flood elevation in
our computation for that city. Then, having the historical flood elevation of the river in
an AoI, zones with a value lower than that will probably suffer in the next flood event.
Although it does not mean that the river will reach the historical elevation in every next
flood event, history tells us that such a level has been reached before; thus, it is not
an unrealistic assumption. Furthermore, even though some rivers have been “tamed”
by the construction of dams and canals in modern cities, climatic changes are already
changing precipitation, making it hard to predict how the rivers will rise in the near future.
With all that said, the highest historical level seems to be a good indication for the intended
flood assessment.

Therefore, the proposed river flood risk (exposure) computation combines the his-
torical flood quota q(r) of the considered river and the normalised distance of the zones
from it, achieving a balanced risk parameter that affects the final assessment of each zone,
as shown in Equation (4).

X′(z) = ∀r ∈ Zr,


1

ed̂(z,r)·e4
if h(z) ≤ h(r) + q(r)

0 if h(z) > h(r) + q(r)
(4)

In order to determine the river flood risk, we identified zones that are affected by
a river, processing them separately. This way, the set of all river zones within the limits
of the AoI, comprising the subset Zr ⊂ Z, supports the computation of X′(z), for every
zone r ∈ Zr. The value of X′(z) is inversely proportional to the normalised distance to the
modelled river if the zone elevation h(z) (for a zone outside the river area) is equal to or
lower than the elevation h(r) (for a zone within the river area), plus the flood quota of that
river (q(r)). Otherwise, the river-flood risk is 0 for that zone.

If there is more than one river within the AoI, Equation (4) computes an exposure
value for each zone z considering each zone r (over a river) for all rivers. Since different
rivers may have different historic flood elevations, the parameter q(r) returns the historic
flood level regarding the river containing the considered zone r. Doing so, we provide a
flexible mechanism to consider the impacts of the rivers in any urban configuration.

After the performed computations for every zone z, the final river flood risk is deterem-
ined, as presented in Equation (5). In this assessment, the considered value is the maximum
computed river flood risk, since we assume the worst case scenario as the reference.

X(z) = max(x, x ∈ X′(z)) (5)

4.3. PoI Data: Emergency-Response Risk

The flood risk in each zone can also be assessed according to the existing urban
emergency mitigation capability, which is accounted for with the proximity to response
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centres (PoIs). When a flood occurs and the local authorities are notified (using phone calls,
sensors, or any other means), the typical mitigation procedures begin. First responders like
paramedics, fire responders, and police agents move toward the flooded area to take the
needed actions. Since time is crucial to reduce the number of victims, these agents need
to arrive at their destination as soon as possible. This way, assistance is provided earlier
when affected zones are closer to the PoIs, which is thus an important factor for decreasing
flood risk.

Each zone has an emergency response risk perception (E) based on its distance to
every PoI. Zones closer to PoIs have a lower risk perception value than more distant zones.
Hence, the risk perception of a zone z, defined as E(z), is shown in Equation (6).

E(z) =
1

|P|

∑
j=1

(
1

d2(z, pj)
· f (pj)

) (6)

The emergency response risk perception of a zone z is computed by taking the inverse
of the square distances of that zone to every PoI pj multiplied by the PoI’s weight f (pj),
according to the formulations proposed in [9,29]. Then, since this is a risk-reducing factor,
we take its inverse value. In this equation, the more distant a zone z from the PoIs,
the higher its emergency response risk parameter E(z) (which means it has fewer urban
services, on average).

4.4. Flood Risk Assessment

Having calculated the rain flood risk (how vulnerable a zone is to heavy rain), river
flood risk (exposure of a zone to a nearby river), and emergency response risk (how
well served by public services a zone is during an emergency), the proposed assessment
approach combines the three parameters to produce a unified flood risk level for every
zone. Figure 3 presents the overall processing flow for the proposed approach.

Retrieve open data

Define variables

Rain-flood
risk

River-flood
risk

Emergency-response
risk

Flood risk assessment

AoI polygon
Zone length
PoIs weights
Flood quota

OpenStreetMap
Open-Elevation API

Figure 3. Flowchart of the flood risk assessment approach.
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The goal of the proposed assessment approach is to provide an overview of urban
flood risk, identifying areas (zones) that will be most affected by flooding, on average,
taking open databases as references. The idea is to numerically evaluate the impact of
water accumulation and how the response centres in a city will act to mitigate the eventual
conditions. In this sense, a unified flood risk level can be exploited to produce useful
heatmaps from the combination of elevation, river zones, and PoI localisation. Equation (7)
defines how to compute the unified risk level of each zone, R(z).

R(z) = H(z) · Ê(z) + X(z) (7)

From Equation (7), the unified flood risk of a zone z is represented by its rain flood
risk H(z), which can be mitigated by the presence of response centres, considered in its
risk perception E(z). In any case, the presence of a river increases the zone’s flood risk by
totaling the river flood exposure X(z). Since not every city has a river, the value of X(z)
may be 0 in some cases, having no influence in the unified flood risk of the zones.

Equation (7) also demonstrates a generalist approach that allows several layers con-
taining other parameters that are valuable to an assessment process to be considered. For ex-
ample, we added the rain-flood risk H(z) by multiplying it to the emergency-response
risk E(z), but other formulations could be proposed. In fact, we expect a “plugabble”
effect, making it easy to implement other assessment procedures and mixing them to-
gether to achieve an overall picture of the risk zones of an AoI, depending on the expected
risk modelling.

After computing the unified flood risk for each zone, our approach classifies each zone
into one of a group of predefined classes. The number of classes is parameterised and is
denoted by M, i.e., if M = 3, the classification model sets each zone a risk class ranging
from 1 to 3 (low, medium, and high risks, with 3 being the riskiest). Equation (8) describes
the risk class computation of a zone, which adopts natural logarithmic behaviour for the
risk classification since it is very reasonable for urban planning [33,34].

C(z) = M − min(M − 1, |⌈ln R(z)⌉|) (8)

A value of C(z) = 1 means that the zone has the lowest risk level among the zones
within the AoI, i.e., this zone is not very vulnerable to rain flooding, it is near several
PoIs (enabling faster initiation of an emergency mitigation procedure), and it has little
exposure to river floods. The worst case is when C(z) = M, which means that zone z
has the highest risk of a rain flood, the poorest positioning regarding the distance to and
localisation of the PoIs, and very high exposure to river flooding. Intermediate values are
obtained in situations that one bad parameter may be compensated by a good parameter.
Once again, it is important to remark that the class of a zone is relative to the defined AoI
due to the employed normalisation process, so making comparisons among different areas
of interest is pointless. Figure 4 demonstrates a visual example of this risk computation.

In Figure 4, the four zones at the top have a high risk classification level (red) because
they have low elevation (grey squares) and thus are prone to rain flood, whilst the zones at
the bottom of the figure have a high risk classification due of their proximity to the river.
The other zones have medium (yellow) or low (green) risk levels owing to their proximity
to risky zones and/or response centres (one hospital and one fire station). This figure also
highlights the list of vertices of the AoI (from P0 to P8).
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Figure 4. Risk classification of the zones based on the combined processing of defined parameters.

5. Experiments and Achieved Results

Porto, a historic city situated along the banks of the Douro River in northern Portugal,
was chosen as the target city for the evaluation of our proposed approach. It is the second
largest city in Portugal, renowned for its cultural heritage, vibrant atmosphere, and eco-
nomic significance. However, its geographical location near the Douro River places it at
risk of flood events, making it an ideal case for flood risk assessment. Figure 5 presents a
satellite view of the city, highlighting its flood-prone terrain.

The city of Porto holds a special place in the context of flood risk assessment due to
its historical and contemporary susceptibility to river flooding. The Douro River, which
flows through Porto before reaching the Atlantic Ocean, has been the site of recurrent flood
events over the centuries. Historical flood data for the Douro River in Porto provide a
rich repository of information on past flood events, their extent, and the resulting damage.
These events have left an indelible mark on the city’s infrastructure and inhabitants.

The highest flood elevation in the history of Douro River along the city of Porto was
26.3 m in 1909 [35]; thus, this was the considered value for Equation (5). The AoI was
delimited to the boundaries of the city, and the retrieved PoIs were fire brigades, police
stations, and hospitals.

At this point, an important aspect is the proper selection of the relevant weights for the
PoIs. Usually, firefighters and police agents are the first responders that act in mitigation
processes when a river flood occurs in Portugal, while hospitals are used to provide
medical assistance to the victims and as hubs to dispatch and receive incoming ambulances.
Although ambulances and hospital services are needed in a flood event, firefighters may
be perceived as the most important responders in such mitigation scenarios, followed by
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police agents. But, the opposite may also a reasonable choice, with police agents being
more relevant depending on the cities’ characteristics and emergency strategies. In this
sense, in order to define a reference for the experiments, the weight for fire brigades was
empirically set to 10 and the weight for police stations was set to 5, while that of hospitals
was set to 4, meaning that fire brigades were twice more important than police stations,
which, in turn, were slightly more relevant than hospitals in our experiments. Although we
defined those weights, different values could be used in the same approach since our
approach does not define fixed weights for any PoI.

Figure 5. A satellite view of the city of Porto, Portugal.

The algorithms were executed on a computer with a 6-core AMD Ryzen 5 4600H
3.0 GHz processor, 16 GB of RAM, running Debian GNU/Linux 12. All the code was
implemented using the Python 3.11 language, making use of the MultiProcessing library.

Figure 6 presents the elevation of every zone within the defined AoI, created using
Open-Elevation API, for zones with zl = 90 m matching Open-Elevation’s DTM. As ex-
pected, the elevations of the zones near the coast and banks of the Douro River are lower,
being potentially more affected by water accumulation during a flood.

Elevation	(m)
−9	-	41
41	-	70
70	-	89
89	-	116
116	-	167

OpenStreetMap

Porto

Figure 6. Elevation data for Porto.
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The retrieved list of PoIs within the defined AoI is depicted in Figure 7. The colour of
the dots represents the PoI type in our experiments.

PoIs
Hospital
Police	station
Fire	brigade

OpenStreetMap

Porto

Figure 7. Emergency response centres in Porto.

Figure 8 shows the final flood risk classification for the city of Porto, combining the
three computed risk parameters. In the figure, zones with lower risk are classified as C = 1
(green), while the riskiest zones are C = 3 (red). When analysing the results presented
in Figure 8, they match the flooded areas reported in [35,36]. In both works, the authors
presented the effects of the Douro River’s historical floods, including a map of Porto and
Gaia depicting the most affected zones. These zones were at the Douro riverside, showing
similarity to the results of our approach. In fact, our approach also considers rain flood
risk, classifying other zones as high risk like the ones in the left region of Porto. However,
the effect of heavy rain on the city of Porto is harder to compare, mainly due to the fact that
previous works focused on larger regions and districts, as in [19,37]. This is, in fact, one of
the key aspects of our approach: allowing fine-grained small-scale flood risk classification
within cities of any size, providing results not presented before.

Risk	Level
1:	low
2:	medium
3:	high

OpenStreetMap

Porto

Figure 8. Flood risk classification for Porto.
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In order to obtain a bigger picture of the flood risk assessment in the surroundings of
the Douro River, we applied our approach to a broader area comprising not only the city of
Porto but also part of its metropolitan area covering both banks of the river. Figure 9 shows
the elevation levels for the computed zones in a rectangular AoI (cities of Porto and Vila
Nova de Gaia).

Elevation	(m)
−9	-	2
2	-	51
51	-	80
80	-	103
103	-	231

OpenStreetMap

Porto	and	Gaia

Figure 9. Elevation data for Porto and Vila Nova de Gaia.

Having all risk parameters for this new AoI, we applied the proposed assessment
approach to determine the desired flood risk classes, as depicted in Figure 10.

Flood	Risk
1:	low
2:	medium
3:	high

OpenStreetMap

Porto	and	Gaia

Figure 10. Flood risk classification for Porto and Vila Nova de Gaia.

At first glance, one may notice that the assessment for the area of Porto differs between
the scenarios. This is because the proposed assessment approach provides a relative
classification, i.e., the three different classification levels mark the zones with low or high
risk relative to each other and within the defined AoI. In this sense, red zones are riskier
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than yellow and green zones in the considered context: if the AoI changes, the resultant
assessment and risk classification may change too.

Finally, after the performed computations, we could see that the intended flood risk
assessment could be satisfactorily performed, as expected. Since open databases were
used as our reference, the only concern was to find the worst historical flood record for the
Douro River, which was easy to find (or even loosely estimated). Therefore, we believe
that the proposed approach could be easily adopted as a practical tool for improving
urban resilience.

6. Discussion and Future Perspectives

The proposed approach is a generalist method that can be applied to any city around
the world without restrictions, contributing to the development of smart city initiatives
targeted at flooding resilience. The use of open data from OpenStreetMap and Open-
Elevation API makes that possible, as well as the defined comprehensive mathematical
model. Thus, we expect that our approach will be suitable for several applications in the
smart cities’ landscape, particularly regarding emergency detection, alerts, and mitigation,
with a lot of potential significant results.

One of the possible applications leveraging the proposed flood risk assessment ap-
proach is the deployment planning of sensing units. The work in [38] exploited only the
existence of PoIs when detecting any kind of urban emergency, and we believe that similar
results could be achieved when considering flooding. In this case, the classification of the
zones would guide the distribution of a previously defined set of sensing units, particularly
created to detect flood-related emergencies [39,40]. Although it might seem obvious that
water sensors must be positioned in the river areas, the performed flood risk assessment
indicates the most exposed zones, aiding in the planning of sensors’ deployment.

Following a similar trend, the deployed sensors could be combined with the computed
risk maps when finding escape routes during a flood, guiding people through less risky
zones. This could avoid the trapping of evacuees in flooded areas, which could have
potentially dangerous outcomes [41,42]. As such, mobile applications could be developed
to leverage interactive heatmaps, allowing users to explore different areas of the city and
understand the varying levels of flood risk. Users could receive notifications and alerts
based on their location within the heatmap.

Urban planning can also be benefited. In a dense urban area, heavy rain flooding
is a real risk and must be tackled to prevent damage to a city’s infrastructure and its
inhabitants [43]. In this sense, the rain flood risk classification reveals zones that are more
geographically vulnerable. This assessment may reveal areas in a city that may require
suitable drainage infrastructure that is capable of draining all the water from a heavy rain,
avoiding flood-related disasters.

In the overall picture, the proposed flood risk assessment method may aid public
authorities in better planning the infrastructure in a city, discovering more vulnerable and
exposed areas that need special equipment for the detection of, provision of alerts regarding,
and for the mitigation of flooding events, preventing excessive losses and damage due to
an unprepared urban area. Concerning the existing tools, the proposed approach could
also be incorporated, improving their results. By implementing the rain and river flood risk
assessments, tools like CityZones [29] could be enhanced to provide better results for flood
risk classification; similar results are expected for other tools devoted to risk assessment.

Our proposed assessment approach could also be integrated within the context of a
smart city, particularly in the scenario of multisystems interfacing [20]. When integrating
flood risk heatmaps with smart infrastructure, urban systems can exploit risk data for opti-
misation. For example, smart traffic lights can be used to prevent vehicles moving towards
flooded areas [44,45], which could be dangerousforto the drivers or even compromise the
rescue of affected people due to unwanted traffic. During a heavy rain, riskier areas could
be considered for this processing, reducing traffic even before a flood emergency occurs.
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Finally, by applying our proposed approach to the city of Porto, we leveraged geo-
referenced data to assess and potentially enhance the city’s flood resilience in the face
of future challenges. As smart cities continue to evolve, managing and mitigating flood
risks have become crucial aspects of urban planning and development. Porto’s experience
with the Douro River floods offers invaluable insights for not only safeguarding its future
but also providing a blueprint for other urban areas facing similar challenges. We believe
that the development of data-driven methodologies to assess risk levels in cities will help
authorities in better planning the growth of urban areas and the building of new response
centres in order to prevent or at least reduce life and economic losses, reinforcing the
applicability of our approach.

7. Conclusions

Among the many types of emergency events that may happen in an urban area,
flooding is the most recurrent and has more of an impact on a city. In order to prepare a
smart city for such events, a risk classification mechanism must be used to identify the
flood-prone areas and to allow for better responses and preparedness. In this context, this
article proposed a flood risk assessment methodology that makes use of open data as the
reference, making the method generic and very adaptive. The performed experiments for
the city of Porto, Portugal, provided some promising results.

The river geolocalisation data obtained from OpenStreetMap allowed us to compute
the river flood risk regarding the proximity to river zones. Taking open elevation data from
Open-Elevation API, it was possible to calculate the slope of each zone and combine all these
data to compute rain flood risk, selecting regions that are too low and surrounded by high-
slope zones. The elevation data were also used in the river flood risk assessment to verify
which zones in the river surroundings could benefit from an elevation difference higher
than the historical flooding heights. Finally, emergency response data from OpenStreetMap
were also considered. This combined approach shows that open and publicly available data
are valuable for risk assessment, helping with the planning and maintenance of emergency
infrastructure in an urban area.

As future studies, other types of floods will be considered, particularly the ones
resulting from tsunamis and rapid snow melting. Several cities in Europe are already being
affected by climates change, making them more prone to flood events [5]. Because of these
changes, extreme climatic events are predicted to increase in the next years [46], making
cities more prone to tsunamis and coastal flooding. By gathering other types of parameters
related to climatic changes, such as snow depth history and temperature changes, we could
extend our approach to assess new aspects of flood risks in cities.

Moreover, while the cross-validation of our results with local emergency plans and
classical hydrological computations would be valuable, resource constraints prevented this
in the current study. Additionally, verifying high-risk areas with watersheds presented
cost and time challenges at this stage. However, we plan to address these aspects in future
research to enhance the robustness of our findings.
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