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Abstract: In smart city contexts, traditional methods for semantic segmentation are affected by
adverse conditions, such as rain, fog, or darkness. One challenge is the limited availability of
semantic segmentation datasets, specifically for autonomous driving in adverse conditions, and
the high cost of labeling such datasets. To address this problem, unsupervised domain adaptation
(UDA) is commonly employed. In UDA, the source domain contains data from good weather
conditions, while the target domain contains data from adverse weather conditions. The Adverse
Conditions Dataset with Correspondences (ACDC) provides reference images taken at different times
but in the same location, which can serve as an intermediate domain, offering additional semantic
information. In this study, we introduce a method that leverages both the intermediate domain and
frequency information to improve semantic segmentation in smart city environments. Specifically,
we extract the region with the largest difference in standard deviation and entropy values from
the reference image as the intermediate domain. Secondly, we introduce the Fourier Exponential
Decreasing Sampling (FEDS) algorithm to facilitate more reasonable learning of frequency domain
information. Finally, we design an efficient decoder network that outperforms the DAFormer network
by reducing network parameters by 28.00%. When compared to the DAFormer work, our proposed
approach demonstrates significant performance improvements, increasing by 6.77%, 5.34%, 6.36%,
and 5.93% in mean Intersection over Union (mIoU) for Cityscapes to ACDC night, foggy, rainy, and
snowy, respectively.

Keywords: domain-adaptive; intermediate domain; Fourier transform; light-weight decoder;
smart cities

1. Introduction
1.1. Semantic Segmentation of Autonomous Driving

With the continuous progress of image processing technology [1–5], autonomous
driving technology is also developing rapidly in smart cities [6–8]. Enabling autonomous
driving is a popular topic to better understand the semantic scenes of the real world [9–12],
and semantic segmentation technology is the core technology in the field of autonomous
driving. The semantic segmentation task of autonomous driving is to classify each pixel into
the image semantically, so that different types of objects can be distinguished in the image.
The semantic segmentation result is to divide the region of visual interest, which provides
favorable guidance for subsequent image analysis and visual understanding. Autonomous
driving systems need to recognize objects such as cars, traffic lights, pedestrians, bicycles,
trees, lane lines, etc. The varying sizes of these objects, along with potential occlusions,
introduce challenges to the semantic segmentation task [13,14]. Referring to Figure 1, which
corresponds to the Cityscapes [15] dataset, captured under favorable weather conditions
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during daylight, it is evident that distinct colors are utilized to denote buildings, sky, trees,
sidewalks, and other objects. The objective of the algorithmic model is to identify various
objects. In practical scenarios, the model is trained on autonomous driving data collected
under optimal daytime conditions. Consequently, the model exhibits commendable recog-
nition efficacy under similar conditions. However, its recognition accuracy significantly
diminishes when confronted with adverse weather conditions, such as low-light settings
and fog [16]. This discrepancy is attributed to incongruities in data distribution between
images from dissimilar weather scenarios, thereby resulting in a domain gap between them.
Assuming the daytime, favorable weather scenes constitute the source domain, and adverse
weather scenes represent the target domain. It becomes apparent that directly applying
a model trained on source domain data to the target domain dataset yields suboptimal
results. Thus, a noteworthy avenue of exploration pertains to the mitigation of the domain
gap between the source and target domains.

Figure 1. The Cityscapes dataset for autonomous driving semantic segmentation. Distinct regions are
delineated by varying colors, each signifying unique object semantic information.

To augment the recognition capabilities of autonomous driving systems, a continuous
influx of advanced visual image sensors has surfaced. Nevertheless, these sensors remain
susceptible to outdoor weather, lighting conditions, sensor noise, and other influential
factors. As a result, achieving precise semantic segmentation within autonomous driving
scenes continues to present a formidable challenge. It is widely recognized that deep
learning has demonstrated remarkable excellence within the realm of semantic segmen-
tation [17–19]. Nonetheless, it necessitates a substantial volume of labeled data, and the
manual collection and labeling of datasets for autonomous driving incur excessive costs.
These methodologies entail leveraging training data as the source domain and test data
as the target domain, progressively mitigating the distribution disparity between the two
domains through algorithmic interventions. Currently, most of the UDA semantic segmen-
tation methods are primarily designed for tasks like fog or rain removal individually. In
2022, Hoyer et al. introduced a domain adaptation algorithm for semantic segmentation [20].
They used the GTA dataset [21], derived from gaming scenes, as the source domain for
training. Subsequently, the Cityscape dataset was employed as the target domain for
testing, as illustrated in Figure 2. The approach demonstrated exceptional performance.
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Figure 2. In the DAFormer work, the GTA5 dataset is employed as the source domain, while the
Cityscapes dataset is the target domain. Our approach involves utilizing the Cityscapes dataset as the
source domain and the ACDC dataset as the target domain and crafting the specialized ShuffleFormer
network tailored for autonomous driving scenarios.

1.2. Motivations

The DAFormer work demonstrates effectiveness in domain adaptation for semantic
segmentation. Furthermore, its theoretical efficacy extends to the application of this method
in challenging adverse weather conditions. In this paper, we enhance the DAFormer work
by utilizing the Cityscapes dataset under favorable daytime conditions as the source domain
and employing the ACDC dataset [22] under challenging severe weather conditions as
the target domain. In recent years, numerous autonomous driving datasets [22–24] have
incorporated supplementary reference images captured within the same scene as the target
domain. Utilizing the GPS positioning information of the vehicle, one can access the
reference images of the target domain captured at different times but in the same location
under favorable daytime weather conditions. These reference images can complement
the semantic information of the target domain. To leverage their potential, we introduce
intermediary domains, depicted in Figure 3, employing these reference images to bolster the
discernment of the model in the target domain. Functioning as intermediary domains, these
reference images synergistically offer easily assimilable information, thereby enhancing the
model’s domain adaptation capabilities.

To mitigate image style disparities resulting from varying lighting conditions and
diverse datasets, we analyzed gray-level co-occurrence matrix values within both the
intermediate and target domain images. This analysis contributes to further narrowing
the domain gap. Moreover, the frequency information present in the target domain proves
valuable for the domain adaptation task. To harness this information, we introduce the
Fourier Exponential Decreasing Sampling algorithm. This sampling strategy facilitates
the adjustment of the training process of network, aligning it more effectively with the
frequency domain characteristics of both the source and target domains.

We adopt the DAFormer work as a benchmark method, leading to significant en-
hancements in the performance of domain-adaptive semantic segmentation, particularly
in challenging ACDC night and foggy scenes. Finally, we optimize the decoder network
for efficiency by leveraging group convolution to minimize network parameters. Next, we
randomly shuffle the fusion features for the grouped channels to mitigate overfitting in the
source domain.
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Figure 3. The Student Net is employed for supervised learning within the source domain, while
the Teacher Net serves the purpose of unsupervised learning in both the intermediate and target
domains, thereby generating distinct loss functions for each.

Our contributions are summarized as follows:
(1) Drawing on the concept of grouped convolution, the decoder network is metic-

ulously crafted. This design adjustment results in a remarkable reduction in parameters,
shrinking from 3.7 million to 2.66 million, all the while delivering exceptional performance.

(2) The Fourier Exponential Decreasing algorithm is crafted to sample frequency
domain information. The sampling strategy for frequency domain information adapts over
time through the continuous monitoring of changes in the source domain loss.

(3) Drawing upon the self-training approach detailed in the DAFormer work, we
incorporate the reference image as the intermediate domain, while focusing on learning
from challenging region proposals.

(4) The UDA algorithm presented in this work demonstrates efficacy not only in
enhancing visibility during dark night scenes but also in yielding improved outcomes
amidst foggy environments.

2. Related Work
2.1. Semantic Segmentation Network

Semantic segmentation technology finds extensive application within autonomous
driving contexts, where its precision profoundly impacts the safety of automated driving
systems. A majority of conventional semantic segmentation techniques rely on grayscale im-
age threshold methodologies, encompassing fixed thresholds, the Otsu method, the Canny
edge detection algorithm, and region growth strategies. Regrettably, these approaches fall
under unsupervised learning methods, rendering them incapable of comprehending the
semantic nuances inherent in images. This inherent limitation results in diminished robust-
ness, rendering them susceptible to disruptions originating from the external environment.
In 2015, Long et al. introduced the FCN network [17], marking the first use of deep learning
for semantic segmentation tasks. This groundbreaking approach outperformed the most
advanced semantic segmentation methods of its time. Addressing a limitation of the FCN,
Lin et al. introduced the FPN network [18], which leverages a feature pyramid to inte-
grate high-level and shallow semantic information. This innovation significantly enhances
semantic segmentation accuracy. Such techniques have also demonstrated effectiveness
in studies centered around multi-scale fusion [25–27]. In [28], the authors implemented
novel strategies including hollow convolution and joint pyramid upsampling, amplifying
the receptive field of the network without increasing the convolution size of the kernel.
Subsequently, in 2019, DeeplabV3+ [28] combined deep separable convolution, Xception,
Encoder-Decoder, FPN, and other technologies, resulting in an impressive 82.1 mIoU
performance on the Cityscapes dataset.
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Since the introduction of DeeplabV3+, the advancement of semantic segmentation
networks has encountered a temporary slowdown. This can be attributed to the limitations
of the convolutional kernel, which possesses a relatively small receptive field, thereby
impeding the comprehensive assimilation of global image information. To mitigate this
challenge, the integration of self-attention mechanisms has surfaced as a promising solution
for enabling more efficient acquisition of global contextual information. To better integrate
both global and local semantic information, SETR [29] employs the Transformer architecture
for the task of semantic segmentation. Inspired by the design principles of the ViT [30] struc-
ture, SETR achieved the top rank in the ADE20K dataset competition. When integrating the
Transformer structure with a standard convolutional neural network [31], it outperforms
conventional convolutional neural networks in semantic segmentation accuracy. However,
it is important to note that semantic segmentation networks based on the Transformer struc-
ture often face challenges related to excessive computational requirements. In response,
researchers have explored methods to make Transformers more light-weight [32,33], aiming
to reduce the parameter count of the Transformer architecture while minimizing the impact
on accuracy. For instance, the SegFormer network [34] , introduced in 2021, achieved an
mIoU of 84.00 in the Cityscapes dataset by eliminating location coding and avoiding the use
of hollow and ordinary convolutions. Notably, most efforts towards light-weight operation
in semantic segmentation network structures, except for SegFormer, have focused on sim-
plifying the potent encoder components, with limited exploration into decoder structure
simplification. Consequently, the design of a light-weight decoder network structure holds
significant promise, particularly in its application to autonomous driving scenarios in
semantic segmentation.

2.2. Adaptation Domain of Adverse Conditions

Numerous domain adaptation methods for semantic segmentation exist [35–37], uti-
lizing adversarial learning [38–41], as commonly understood. Utilizing self-training to
generate pseudo-labels tends to outperform adversarial learning [42]. In 2018, Hoffman
et al. introduced an inter-domain adaptation model [43] that leverages generative im-
age spatial alignment and latent representation spatial alignment. This model facilitates
domain-to-domain guidance through targeted discrimination training task transfers, while
also promoting agreement through maintaining semantic consistency before and after
adaptation. In 2019, Zou et al. introduced a method called self-training with confidence
regularization [44]. This approach employs pseudo-labels as continuous latent variables
and enhances domain adaptation performance through iterative joint optimization. The
majority of the methods mentioned above are applied within regular domain-to-domain
scenarios. However, limited research has been conducted on domain adaptation in ad-
verse domain contexts, particularly concerning adverse scenarios in autonomous driving.
Algorithms for removing images captured under adverse conditions in the context of
autonomous driving tend to focus predominantly on single-task solutions [45–49]. Within
the context of snow scene removal, one can encounter both traditional snow denoising
models founded on matrix factorization [50], as well as contemporary deep learning-based
approaches, like the deep dense multi-scale network, DDMSNet [51]. This model leverages
semantic depth maps to acquire both semantic and geometric awareness, enabling effective
snow removal, and the multi-level network, DesnowNet, exhibits the capability to address
both translucent and opaque snow particles. Kang et al. introduced a deep learning-based
architecture for single-image dehazing. This approach leverages multi-scale residual learn-
ing and image decomposition techniques as described by Yeh et al. [52]. The algorithm
combines multi-scale deep residual learning with a simplified U-Net architecture to effec-
tively remove haze. Ren et al. employs an end-to-end neural network architecture [53],
comprising an encoder and a decoder. This network seamlessly integrates information
fusion techniques including white balance, contrast enhancement, and gamma correction.
Zhang et al.’s Densely Connected Pyramid Dehazing Network (DCPDN) [54] is intricately
woven into the framework, facilitating learning via the atmospheric scattering model.
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To recap, there is limited application of domain adaptation techniques in addressing
semantic segmentation tasks within challenging scenarios of autonomous driving. Most
approaches proactively mitigate the impact of adverse weather conditions and remain
focused on single-task objectives. To address these issues, we propose domain adapta-
tion algorithms that are suitable for a variety of adverse weather conditions and achieve
excellent performance in night and foggy scenes.

3. Method
3.1. Overview

The task of deep learning domain adaptation involves the necessity for a robust
encoder, capable of capturing source domain information effectively in order to enhance the
generalization prowess towards target domain information. In our approach, we leverage
the potent MiT-B5 [20] network architecture as the foundation, coupled with a reimagined
efficient decoder network called ShuffleFormer. With the introduction of a reference image,
we extract the challenging pixel mask regions for learning. This augmentation enriches
the available information for the domain adaptation task. To optimize the process, the
FEDS algorithm dynamically adjusts the sampling strategy based on the source domain
loss value. This facilitates the comprehensive learning of frequency characteristics across
both source and target domains, ultimately leading to more precise semantic segmentation
outcomes. The comprehensive system architecture is visually represented in Figure 4.

Figure 4. The black block diagram and lines represent the original method structure of DAFormer,
whereas the red block diagram and lines depict our novel approach. Here, the reference images serve
as an intermediary domain, contributing to the generation of the LR loss function.

3.2. ShuffleFormer Network Architecture

In the context of semantic segmentation, the decoder plays a pivotal role in gradually
restoring the semantic information image. Enhancing the recognition accuracy of seman-
tic segmentation often involves using techniques such as multi-scale fusion and dilated
convolution. The decoder architecture of DAFormer is illustrated in Figure 5a. The inputs
F1, F2, F3, and F4 within the Hierarchical Transformer structure represent feature maps at
distinct scales. These multi-scale feature maps encompass both coarse semantic features
and intricate texture details. To facilitate uniformity, all feature maps are standardized in
size and channels. Subsequently, a multi-scale dilated convolution, akin to Atrous Spatial
Pyramid Pooling (ASPP), is employed for comprehensive multi-scale feature fusion. To
achieve multi-scale feature fusion, a multi-scale dilated convolution is employed, drawing
parallels to ASPP. Despite incorporating an array of techniques to form a potent decoder
in DAFormer, the implementation process becomes overly intricate. Consequently, this
paper focuses on optimizing the decoder network with a light-weight approach, ensuring
accuracy remains uncompromised. Illustrated in Figure 5b is the ShuffleFormer decoder
network, introduced in this study. Initially, F1, F2, F3, and F4 undergo grouped convolutions
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employing a 1 × 1 kernel. This strategic choice significantly reduces the number of network
parameters. Subsequently, a post-grouped convolution upsample operation generates
feature maps of uniform scale. The culmination of these processes involves the direct fusion
of these feature maps. This approach yields a simplified overall network structure while
effectively integrating multi-scale semantic information.

Figure 5. (a) DAFormer decoder network structure (image quoted from [20]). (b) ShuffleFormer
decoder network structure, which is a light-weight operation of semantic segmentation decoder.

The structure of the ShuffleFormer is depicted in Figure 5b. Considering that the
network has CHin input channels, CHout output channels, g groups for group convolution,
N1 × N2 as the size of the convolution kernel, and the network bias uniformly set to
False, the parameters for normal convolution, PR1, and grouped convolution, PR2, can be
computed as follows:

PR1 = CHin × N1 × N2 (1)

PR2 = CHout × (
CHin

g
× N1 × N2) (2)

As shown in Figure 6, when the input and output feature maps share the same size, the
total parameter count of a grouped convolutional network is lower compared to standard
convolution [55]. In the left side of Figure 6, we have the standard convolution. We assume
the input feature map size is Q ×W × CH, with K convolution kernels generating K output
feature maps, each with a convolution kernel size of N1 × N2. Consequently, the parameter
count for convolution kernels is N1 × N2 × K × CH. In contrast, the right side of Figure 6
illustrates a grouped convolution. Here, the input size remains Q×W ×CH, with K output
feature maps distributed across g groups. Each group’s input feature map size is CH

g , and

their output feature maps number K
g . The convolution kernel size becomes N1×N2×K×CH

g .

This leads to the grouped convolution network’s total parameter count being only 1
g of the

standard convolution.
As shown in Figure 7, we provide an input image with dimensions Q × W × 3 , which

undergoes processing with MiT-B5 to generate multi-scale feature maps. These multi-scale
feature maps encompass high-resolution coarse features and low-resolution fine-grained
features. This feature combination proves beneficial for semantic segmentation. FMi serves
as the input for the decoder network, its dimensions are Q

2i × W
2i × CHi. The generated

feature map FMi, which serves as the input for the decoder network, is of size Q
2i × W

2i ×CH
after undergoing grouped convolution. This step is followed by shuffling to enhance the
interaction of semantic information. Once the fusion is complete, the feature map gradually
reverts to the size of Q

4 × W
4 × 4CH. Additionally, the multi-scale feature map undergoes

upsampling to achieve a uniform size. Subsequently, a concatenation fusion is performed,
resulting in an output size of Q

4 × W
4 × Nclass. The final output is obtained through the

MLP layer. In our experimentation, we set Q = W = 512. For index i belonging to (1,2,3,4),
CHi = {64, 128, 320, 512}, CH = 256. Additionally, Nclass represents the number of classes,
which is set to 19. The grouped convolution employs a total of g = 16.
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Figure 6. Comparing standard convolution and group convolution, it is notable that group convolu-
tion entails fewer network parameters when the input and output remain consistent.

Figure 7. The comprehensive structure diagram of our semantic segmentation network showcases
the use of MiT-B5 architecture for the encoder network, complemented by the ShuffleFormer network
structure for the decoder network.

3.3. The Fourier Exponential Decreasing Sampling Algorithm

In the context of semantic segmentation for autonomous driving in adverse weather
conditions, it is possible to leverage the Fourier transform algorithm to analyze images in
the frequency domain. This analysis can yield valuable semantic information [56]. Low-
frequency signals typically correspond to areas in the image where grayscale gradients
change gradually. For instance, in scenarios like nighttime and foggy conditions, extensive
areas characterized by uniform color blocks fall into the low-frequency region due to their
slowly changing grayscale gradients. On the other hand, object boundaries, textures, and
image noise contribute to rapid grayscale gradient changes, categorizing them within the
high-frequency region. The insights obtained from this frequency domain information can
be effectively applied to domain adaptation tasks using the Fourier transform. Regarding
Formula (3), it represents the forward discrete Fourier transform formula for the given
image, where j =

√
−1, the size of the image is Q × W, (x, y) represents the Cartesian

coordinates of individual pixel points within the image, and (r, s) represents the coordinate
points of the two-dimensional spectrum obtained through the Fourier transform of the
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image. Meanwhile, Formula (4) corresponds to the inverse discrete Fourier transform
formula applied to the image. The efficient computation of the Fourier transform is detailed
in [57].

F(r, s) = ∑Q−1
x=0 ∑W−1

y=0 f (x, y)e−j2π( rx
Q +

sy
W ),

{
r, x = 0, 1, 2, ..., Q − 1
s, y = 0, 1, 2, ..., W − 1

(3)

f (x, y) =
1

QW ∑Q−1
r=0 ∑W−1

s=0 F(r, s)ej2π( rx
Q +

sy
W ),

{
r, x = 0, 1, 2, ..., Q − 1
s, y = 0, 1, 2, ..., W − 1

(4)

From top to bottom, Figure 8 displays images depicting daytime, nighttime, and
foggy conditions. Additionally, Figure 8a,b illustrate the color image with three channels
and the grayscale image with a single channel, respectively. Figure 8c depicts the low-
frequency filtered image of the automated driving scene under varying lighting conditions:
day, night, and fog. It can be observed that the low-frequency filtered image primarily
preserves the textural information related to object edges and image noise points, which
are inherent to the high-frequency components of the image. Nevertheless, in areas of
the image characterized by low-frequency components, such as extensive regions of solid
color patches present in daytime, nighttime, and foggy scenes, these elements have been
entirely eradicated. Conversely, Figure 8d illustrates the high-frequency filtered image of
the automated driving scene across different lighting conditions: day, night, and fog. It
becomes apparent that the high-frequency filtered image retains a majority of the coarse
features pertaining to semantic information. For instance, the image still captures the
distinctive large color block buildings present within the scene; however, the intricate
textural details and noise originally present in the image are now absent.

Figure 8. Fourier-transformed representations of scenes under different atmospheric conditions: clear
sky, nighttime, and foggy weather.

By transferring the frequency domain information from the target domain (adverse
weather condition) to the images of the source domain (normal weather condition), the
source domain images acquire the frequency domain characteristics of the target domain.
In addition, training the fused images containing the frequency domain information from
the target domain, the neural network incorporates target domain characteristics, thus
enhancing the recognition accuracy of autonomous driving systems in adverse weather
conditions. In the context of semantic segmentation for autonomous driving, objects like
buildings, cars, or pedestrians are identifiable independently of sensors, light sources,
or frequency variations. However, in practical scenarios, this interference can disrupt
semantic segmentation results, leading to a domain gap between the source and target
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domains. Interference of this nature is prevalent in images captured during inclement
weather conditions. Consequently, approaching the domain adaptation challenge from a
frequency domain perspective can enhance the precision of semantic segmentation and
recognition for autonomous driving in unfavorable weather conditions.

We refer to the FDA [56] work, given the source dataset (normal weather condition)
Dnormal = (mnormal

i , nnormal
i ) ∼ P(mnormal, nnormal)

Nnormal
i=1 , where mnormal ∈ RQ×W×3 de-

picts an RGB image and nnormal ∈ RQ×W stands for the label of mnormal
i . As above, we

assumed Dadverse =
{

nadverse
i

}Nadverse

i=1
for the target data (adverse weather condition),

which is not annotated.
After a Fourier transform, we denote the obtained magnitude and phase as Fam and

Fph, respectively. Finverse represents the image space generated by the inverse Fourier
transform of Fam and Fph. In this scenario, the Fourier-transformed image is subjected to a
mask denoted as Mask(i, j), which zeros out all regions except for the central region. The
formulation can be expressed as follows:

Mask(i, j) = 1(i,j) ∈ [−0.01 × Q : 0.01 × Q,−0.01 × W : 0.01 × W] (5)

We give mnormal ∼ Dnormal (normal weather condition) and nadverse ∼ Dadverse (ad-
verse weather condition). The Fourier domain adaptation from normal to adverse scenarios
can be expressed as follows:

f normal−→adverse = Finverse([Mask ◦ Fam( f adverse) + (1 − Mask) ◦ Fam( f normal), Fph(Fnormal)]) (6)

As depicted in Figure 9, the blue region represents the sampling of low-frequency
information, while the yellow region corresponds to the sample of high-frequency informa-
tion. The selection of the high-frequency area is conducted randomly. The FEDS algorithm
is capable of adaptively selecting the frequency components to sample from both the source
and target domains, based on the current conditions of the network.

Figure 9. Upon applying the FEDS algorithm, the source domain image acquires the frequency
domain characteristics of the target domain image.

As shown in Equation (7), we refer to the DAFormer [20] loss function calculation
method. LS, LT , and LFD represent the loss function of the source domain, the loss function
of the target domain, and the loss function of the thing-class ImageNet feature distance,
respectively. In the FEDS training process, at every 50 iterations of the network, we
calculate the difference, denoted as Ldv , between the current loss function value of source
domain, Llast, and the loss function value, Lprev, from the previous 50 iterations. After
every 50 iterations of training, we increment the value of K by one, and we let Sf represent
the number of iterations of the sampling frequency.
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L = LS + LT + 0.005 × LFD (7)

Referencing Algorithm 1, Figure 10 and Figure 11,the value of Ldv is computed during
iterative training of the network for 50 batches. A positive Ldv value signifies underfitting in
the source domain learning, necessitating further acquisition of source domain information.
In such cases, it is recommended to prioritize learning frequency domain information
from the source domain and increase the value of Sf. Conversely, if Ldv is non-negative, it
indicates the network is appropriately learning source domain information, allowing the
sampling algorithm to continue extracting both low- and high-frequency information from
the target domain.

Algorithm 1: The FEDS Algorithm

Requirement: source domain and target domain datasets DS and DT , as well as a segmentation
network fθ .
1. Initialize network parameters θ randomly.

K = 0, S f = ( 1
2 )

K × 32, S f ∈ (16, 8, 4, 2, 1), K ∈ [0, 5]
2. Sampling low-frequency target domain (Operation 2 of Figure 10)
3. For i = 0 to iter, do
4. Each iteration is conducted 50 times,

K = K + 1, Ldv = Llast − Lprev
// Sampling low-frequency target domain (Operation 2 of Figure 10)

5. if Ldv > 0, then
6. Sf = ( 1

2 )
K , run Sf iterations, return step 4

// Sampling low-frequency source domain (Operation 1 of Figure 10)
7. if Ldv ≤ 0, K < 5 , then
8. return step 4

// Sampling low-frequency target domain (Operation 2 of Figure 10)
9. if Ldv ≤ 0, K = 5, then
10. Sf = 1, K = 0 , return step 4

// Sampling high-frequency target domain (Operation 3 of Figure 10)

Figure 10. Schematic diagram of frequency domain sampling of FEDS algorithm: Operation 1 uses
low-frequency information in the source domain, operation 2 uses low-frequency information in the
target domain, and operation 3 uses high-frequency information in the target domain.
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Figure 11. Three possible cases of the FEDS algorithm: (a) the network training process is normal,
(b) the source domain training process is underfitting, (c) the network training process is normal, and
high-frequency signals in the target domain are sampled.

3.4. Extraction of Region Proposals from the Reference Image

The reference images within the ACDC dataset hold a wealth of additional information
that can be effectively utilized for enhancing semantic segmentation tasks. Figure 12
showcases reference images captured in the ACDC target domain under optimal daytime
weather conditions. These images notably augment the available data with supplementary
details, serving as intermediary domains to facilitate semantic segmentation in adverse
weather. Notably, a domain gap exists between the ideal weather daytime conditions and
the challenging bad weather scenarios of the autonomous driving dataset. This divergence
can lead to decreased recognition accuracy when applying models trained solely on the
former to cross-domain scenes. Addressing this, a strategic approach involves scrutinizing
the dissimilarities between the two image sets and guiding the network model to assimilate
these divergent cues. This process, in turn, enhances the recognition accuracy of the
network model when confronted with challenging weather conditions.

Figure 12. (a) ACDC night image, (b) ACDC reference image; reference image taken at different times
but in the same location, which can serve as an intermediate domain.

The information contained in the gray-level co-occurrence matrix of an image signifies
a variety of pixel relationships. By contrasting the gray-level co-occurrence matrices of
images captured under optimal and adverse weather conditions, significant dissimilarities
in image regions come to light. These distinct regions are selected to guide focused training,
ultimately facilitating the acquisition of a network model that mitigates domain gaps.
Figure 13 depicts the statistical feature map derived from the gray-level co-occurrence
matrices of images captured under ideal and adverse weather conditions. It is apparent that
there exist discernible disparities in the standard deviation and entropy values between
the two types of images. This discrepancy implies that autonomous driving datasets
collected under favorable and inclement weather conditions exhibit notable differences
in standard deviation and entropy values during daylight hours. As a strategic measure,
we allocate elevated weights to regions characterized by the highest standard deviation
and entropy values. These regions are earmarked for the training process, enabling the
network to concentrate its learning efforts on challenging areas. Refer to Figure 14 for a
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detailed exposition of the algorithmic workflow. As follows, the loss function integrates
the intermediate domain loss into the original DAFormer work.

L = LS + LR + LT + 0.005 × LFD (8)

Figure 13. Comparing the gray-level co-occurrence matrix images between daytime and nighttime,
as well as foggy, conditions reveals notable discrepancies in standard deviation and entropy values.

As shown in Equation (8), LS, LR, and LT represent the loss function of the source
domain, the loss function of the intermediate domain, and the loss function of the target
domain, respectively. LFD refers to the physical loss function, as described in the DAFormer
method [20], and its coefficient of 0.005 can be adjusted according to the actual situation.

Figure 14. The reference image serves as the intermediary domain, primarily focusing on extracting
the most dissimilar region between this intermediary domain and the target domain. Subsequently,
this extracted region is assigned a higher weight during the training process.

The entropy value of the gray-level co-occurrence matrix signifies the complexity
of image information. When the entropy is relatively high, it indicates that the image
texture is complex and exhibits significant randomness. Conversely, when the entropy
value is low, it indicates that the image texture is simple, with less structural intricacy.
Standard deviation reflects the clarity of the image and the depth of the groove lines of the
texture. The sharper the texture, the greater the standard deviation. Let P(i, j) represent
the gray-level co-occurrence matrix of the image, where i and j are the two-dimensional
coordinates of the gray-level formula matrix. We define ENT as the entropy value, MEAN
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as the mean, and STD as the standard deviation. The formulas for calculating these metrics
are provided below:

ENT = −∑i∑jP(i, j)log(P(i, j)) (9)

MEAN = ∑i∑jP(i, j)× i (10)

STD =
√

∑i ∑j P(i, j)× (i − MEAN) (11)

We designate the matrix X to represent the original image and traverse each pixel in
the X matrix, determining the maximum (max) and minimum (min) values. The resulting
Xnorm represents the image matrix after undergoing image normalization. Ymax represents
the upper bound of the desired planning range, while Ymin represents the lower bound.
Xmax corresponds to the maximum pixel value in the image, and Xmin represents the
minimum pixel value. By applying the following formula (12), setting Ymax to 255 and Ymin
to 0, we can effectively normalize the image data to fit within the range of 0 to 255.

Xnorm =
(Ymax − Ymin)× (X − Xmin)

(Xmax − Xmin) + Ymin
(12)

We employ a method based on comparing standard deviations and entropy maps
to analyze scenes in both normal and non-ideal conditions at identical locations. This
comparison allows us to identify the most salient regions, which are then assigned higher
contribution weights during the training process. This concept is illustrated in Figure 14.

The process of mask generation involves two main steps. The initial step entails
computing the difference in standard deviations within the image. In this step, a threshold
for standard deviations is established. When the standard deviation of an image pixel
surpasses this threshold, the corresponding area is designated as a Bmask. The second step
focuses on determining the disparity in entropy values. Entropy values are computed for
both the scenario with non-ideal conditions in the target domain and the normal scenario in
the intermediate domain. Subsequently, a comparison is made between these two entropy
values, utilizing a predefined threshold. This aids in identifying the region with the highest
information content, which serves as the Emask. Assuming the input image for the reference
image is denoted as Rimage and the output image as Rmix, the intersection of these two
masks is utilized to compute the weight applied to Rimage. The formula for this computation
is as follows:

Rmix = Xnorm((Bmask ∨ Emask) • Rimage + Rimage) (13)

The specific algorithm process is outlined in Algorithm 2. Firstly, the standard devia-
tion and entropy values of the middle domain DR and the target domain DT are calculated
to obtain STDR, STDT , ENTR, and ENTT . Afterward, the differences between the two
are computed to derive ŜTD and ÊNT , identifying regions with substantial disparities
between the middle and target domains. It is noteworthy that ŜTD and ÊNT may contain
outlier noise points, potentially impacting the screening of candidate regions. To address
this, the algorithm employs a median filtering technique for smoothing.

Before proceeding with candidate region screening, the image is normalized to the
0–255 value range, resulting in ̂STDnorm and ̂ENTnorm. A thresholding step follows, where
pixel values exceeding 127.5 are set to 1; otherwise, they are set to 0, yielding binary masks
Bmask and Emask. Finally, utilizing Equation (13), the images are fused, producing Rmix as
the ultimate fused image.

Subsequently, the most significant region within the intermediate domain can be
acquired. Lastly, to ensure that pixel values remain within an acceptable range, a renormal-
ization operation is performed.
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Algorithm 2: Extraction of Region Proposals

Requirement: intermediate domain and target domain datasets DR and DT .
1. Calculate the standard deviation and entropy

STDR = STD(DR), STDT = STD(DT), ENTR = ENT(DR), ENTT = ENT(DT)
2. Calculating the difference

ŜTD =| STDR − STDT |, ÊNT =| ENTR − ENTT |
3. Median filtering

STD = f ilter(ŜTD), ENT = f ilter(ÊNT)
4. Image normalization

ŜTD −→ ̂STDnorm, ÊNT −→ ̂ENTnorm
5. Generate the mask image, threshold = 127.5

̂STDnorm −→ Bmask, ̂ENTnorm −→ Emask
6. Image fusion
(Bmask, Emask, Rimage) −→ Rmix

4. Experiments
4.1. Experimental Details

Datasets: For the source domain dataset, we utilized the Cityscapes dataset, com-
prising 2975 training samples and 500 validation samples, each with a resolution of
2048 × 1024 pixels. For the target domain dataset, we employed the ACDC dataset, consist-
ing of 400 training samples and 500 validation samples, capturing both night, foggy, rainy,
and snowy scenes, with a resolution of 1920 × 1080 pixels. During training and validation,
we consistently resized the images to dimensions of 512 × 512 pixels.

Network Architecture: To mitigate the bias introduced by relying solely on exper-
imental results from a single encoder network, we employed both Mix Transformer B5
(MiT-B5) [20] and ResNet-101 [58] as encoding networks. These choices are based on the
mmsegmentation framework, and we utilized the ImageNet-1K dataset for pre-training.
The output channels of MiT-B5 are configured as C = [64, 128, 320, 512].

Training: To ensure consistency and avoid interference from varying hyperparameter
values, we aligned our training approach with that of the DAFormer work. Specifically,
we set the encoder learning rate to 6 × 10−5 and the decoder learning rate to 6 × 10−4.
Weight decay is employed with a coefficient of 0.01. Following the warm-up phase, we
implemented linear decay to mitigate potential overfitting caused by the limited dataset size.
The total training iteration count is 20,000. It is worth noting that the original DAFormer
work utilized 40,000 iterations for training. The computational hardware employed for
calculations is the Tesla M40 24G graphics card.

4.2. ShuffleFormer Performance Test

To evaluate the domain adaptation performance of the ShuffleFormer network as the
decoder of a segmentation network under challenging conditions and to mitigate the bias
introduced by a single encoder, we utilized ResNet-101 [58] and MiT-B5 [20] architectures,
following the approach outlined in the DAFormer work. All the methodologies employed
in this experiment were validated using the ACDC night scene dataset. As demonstrated
in the first and seventh rows of Table 1, it is evident that the performance of the Seg-
Former768 decoder, which employs a fully connected network structure, lags behind that
of the decoder utilizing similar ASPP multi-scale extraction features. In scenes of severe
weather conditions, semantic segmentation images suffer from substantial interference
from extraneous information, thereby escalating the neural network’s learning complexity.
Consequently, the network’s recognition accuracy diminishes. The SegFormer768 [34],
functioning as a straightforward decoder, inadequately captures the intricacies of semantic
segmentation. Conversely, architectures like UperNet256, UperNet512 [59], DAFormer
aspp, and DAFormer seaspp [20] demonstrate improved performance. These decoders
leverage ASPP-like structures to effectively extract high-resolution coarse features crucial
for semantic segmentation, along with low-resolution fine texture features. Remarkably, the



Smart Cities 2024, 7 269

DAFormer seaspp decoder outperforms the DAFormer aspp decoder while utilizing fewer
parameters (as demonstrated in the fourth and fifth rows of Table 1, as well as the tenth
and eleventh rows of Table 1). This phenomenon can be attributed to the implementation
of depthwise separable convolutions in the DAFormer sesapp decoder. This approach
fosters a lighter convolutional neural network architecture, mitigating overfitting in the
source domain. Similarly, although the ShuffleFormer lacks an ASPP-like structure, it excels
in this experiment by adopting a grouped convolution structure with fewer parameters
than the depthwise separable convolution. This outcome substantiates the validity of
this hypothesis.

The ShuffleFormer network not only reduces the number of network parameters but
also addresses intricate design considerations for the decoder network structure. Elaborate
decoders can inadvertently lead to overfitting on source domain data, consequently imped-
ing the efficacy of unsupervised domain adaptation and undermining the accuracy of the
network in the target domain.

Table 1. Comparison of ShuffleFormer and mainstream decoder network performance (ACDC night).

Encoder Decoder Params (M) mIoU

ResNet-101 SegFormer768 3.13 38.13
ResNet-101 UperNet256 29.64 38.26
ResNet-101 UperNet512 8.33 39.14
ResNet-101 DAFormer aspp 9.97 38.27
ResNet-101 DAFormer sesapp 3.71 39.89
ResNet-101 ShuffleFormer (Ours) 2.68 40.65

MiT-B5 SegFormer768 3.13 41.87
MiT-B5 UperNet256 8.33 42.46
MiT-B5 UperNet512 29.64 43.73
MiT-B5 DAFormer aspp 9.97 42.97
MiT-B5 DAFormer sesapp 3.71 44.27
MiT-B5 ShuffleFormer (Ours) 2.68 44.34

4.3. Cityscapes –> ACDC Night

Table 2 presents a comparison of domain adaptation capabilities, specifically address-
ing the transition from the source domain of the Cityscapes night scene to the target domain
of ACDC adverse scene. Utilizing ResNet-101 as the encoder yields notably inferior per-
formance compared to the Transformer-based MiT-B5 model. This observation reinforces
the validity of the earlier-stated hypothesis, Transformers pay more attention to the global
information of the image than CNNS, highlighting that the Transformer architecture proves
more advantageous for domain adaptation in dark night scenes.

Building upon the MiT-B5 model, the introduction of reference images (as demon-
strated in the first and second rows of Table 2, as well as the fifth and sixth rows of Table 2)
results in a noteworthy increase of 1.01% and 2.34% in mIoU, respectively. This introduc-
tion capitalizes on the wealth of semantic information contained within the intermediate
domain of the target domain, and the intermediate domain contains information that is not
available in adverse weather conditions, thus effectively enhancing the domain adaptation
capability in adverse weather conditions of the network.

Upon examining the third and seventh rows of Table 2, it becomes evident that the
standard deviation and entropy of the gray-level co-occurrence matrix aptly reflect the
distinctions between the intermediate domain and the target domain. The variations in
standard deviation and entropy substantiate the notion that incorporating information
via the training process improves performance. Specifically, ResNet-101 demonstrates a
2.61% improvement as an encoder, and MiT-B5 displays a 2.12% increase as an encoder,
further attesting to the superior recognition accuracy of MiT-B5 when embedded within a
Transformer encoder structure in low-light scenarios.

The efficacy of the FEDS algorithm becomes evident through the examination of the
third and fourth rows of Table 2, as well as the seventh and eighth rows of Table 2. The
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adoption of the FEDS algorithm leads to enhanced recognition accuracy, with ResNet-101
as an encoder experiencing a 1.20% improvement and MiT-B5 as an encoder realizing a
2.31% advancement. The integration of low-frequency signals from the target domain is
particularly advantageous in mitigating the domain gap in cross-domain tasks. In the
context of autonomous driving in dark scenes, the low-frequency signals capture distinct
features, such as large color patches that contrast starkly with daytime scenes. However, the
presence of low-light conditions, coupled with optical factors like camera sensors, can blur
semantic information related to objects like bicycles, buses, and roads. Additionally, night
scenes are prone to introducing discrete noise points. By incorporating high-frequency
signals from the target domain, sampled via Fourier transform and fused with the source
domain during training, the neural network becomes more resilient and attains improved
performance in low-light environments. We employ the DAFormer work as a benchmark
for comparison. As a result, the mean Intersection over Union (mIoU) on the ACDC dark
night scene test dataset increases from 44.34% to 51.11%.

Table 2. Comparison of ACDC night experimental results. Ref: The reference image is used as an
intermediate domain for training. Region Proposal: This involves focusing the training process on
candidate regions within the intermediate domain image. FEDS: This abbreviation stands for the
Fourier Index Decreasing Algorithm, which is used to enhance our method.

Encoder Ref Region Proposal FEDS mIoU

ResNet-101 40.65
ResNet-101

√
41.66

ResNet-101
√ √

44.27
ResNet-101

√ √ √
45.47

MiT-B5 44.34
MiT-B5

√
46.68

MiT-B5
√ √

48.80
MiT-B5

√ √ √
51.11

Figure 15 illustrates the semantic segmentation outcomes of the ACDC night. It shows
that our method improves both domain adaptation tasks in dark night scenes.

Figure 15. Qualitative results on ACDC night. The yellow rectangular boxes represent the regions
where our method has better segmentation performance than the mainstream semantic segmentation
methods. Our method improves the segmentation accuracy for both small objects and background.

4.4. Cityscapes –> ACDC Fog

Table 3 presents the experimental data conducted in a foggy autonomous driving
scenario. Notably, our method, as outlined in this paper, exhibits a discernible enhance-
ment in recognition accuracy for semantic segmentation within the foggy environment.
A comparative analysis of the first and second rows as well as the fifth and sixth rows
of Table 3 highlights that the incorporation of the intermediate domain contributes to an
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increment of 3.55% and 3.20% in mIoU, respectively. It is noteworthy that upon introduc-
ing the intermediate domain, the network model demonstrates enhanced adaptability in
handling foggy scenes. The presence of fine fog particles and noise in the foggy scene,
particularly around the camera, poses a challenge to the accuracy of semantic segmentation.
Introducing an intermediate domain as a reference in clear daytime scenes can be beneficial
for improving recognition accuracy. Further scrutiny of Table 3 reveals a similar pattern
between the second and third rows, along with the sixth and seventh rows. Specifically,
dedicating attention to the region of interest within the intermediate of the foggy scene
domain translates to an accuracy improvement, resulting in a 1.25% mIoU increase and
a 1.37% mIoU increase, respectively. There are large areas of color blocks in the foggy
scene, and the fog distribution is more uniform compared to the night scene. Therefore,
there is little difference between the entropy and contrast of the gray-level co-occurrence
matrix in the foggy scene, and the candidate regions to be trained extracted by entropy
and contrast are not obvious. Lastly, the incorporation of the FEDS algorithm into the
training process yields a discernible, albeit not prominently pronounced, enhancement in
semantic segmentation accuracy. This observation indicates that while domain adaptation
employing spectrum analysis proves effective in the foggy scene context, the degree of
improvement might not be highly conspicuous. We employ the DAFormer framework as a
benchmark for comparison. As a result, the mean Intersection over Union (mIoU) on the
foggy scene test dataset rises from 50.51% to 55.85%.

Table 3. Comparison of ACDC fog experimental results. Ref: The reference image is used as an
intermediate domain for training. Region Proposal: This involves focusing the training process on
candidate regions within the intermediate domain image. FEDS: This abbreviation stands for the
Fourier Index Decreasing Algorithm, which is used to enhance our method.

Encoder Ref Region Proposal FEDS mIoU

ResNet-101 39.81
ResNet-101

√
43.36

ResNet-101
√ √

44.61
ResNet-101

√ √ √
45.85

MiT-B5 50.51
MiT-B5

√
53.71

MiT-B5
√ √

55.08
MiT-B5

√ √ √
55.85

Figure 16 illustrates the semantic segmentation outcomes of the ACDC fog. It shows
that our method improves both domain adaptation tasks in fog scenes.

Figure 16. Qualitative results on ACDC fog. The yellow rectangular boxes represent the regions
where our method has better segmentation performance compared to the mainstream semantic
segmentation methods. Our method has a certain improvement in segmentation accuracy for color
patches with large areas.
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4.5. Cityscapes –> ACDC Rain and Snow

Tables 4 and 5 present the experimental results of ACDC under rainy and snowy
conditions. The findings demonstrate that our method consistently achieves commendable
semantic segmentation results in such challenging scenarios. Specifically, we observed an
increase of 6.36% in mIoU for rainy scenes and 5.93% for snowy scenes.

Table 4. Comparison of ACDC rain experimental results.

Encoder Ref Region Proposal FEDS mIoU

ResNet-101 45.54
ResNet-101

√
47.36

ResNet-101
√ √

49.21
ResNet-101

√ √ √
51.77

MiT-B5 56.32
MiT-B5

√
58.96

MiT-B5
√ √

59.99
MiT-B5

√ √ √
62.68

Table 5. Comparison of ACDC snow experimental results.

Encoder Ref Region Proposal FEDS mIoU

ResNet-101 44.27
ResNet-101

√
45.36

ResNet-101
√ √

47.61
ResNet-101

√ √ √
49.28

MiT-B5 50.64
MiT-B5

√
52.91

MiT-B5
√ √

54.96
MiT-B5

√ √ √
56.57

Figures 17 and 18 illustrate the notable improvement in the semantic segmentation
performance of our method in rainy and snowy scenes when compared to the leading net-
work. When compared to the DAFormer method, our approach demonstrates a significant
enhancement in semantic segmentation performance under adverse weather conditions,
due to the incorporation of intermediate domain information. To ensure robustness and
mitigate reliance on the Transformer network, we employ ResNet-101 as the backbone for
comparison. The experimental results affirm a substantial improvement in the performance
of our method for semantic segmentation in rainy and snowy scenes.

Figure 17. Qualitative results on ACDC rain. The yellow rectangular boxes represent the regions
where our method has better segmentation performance compared to the mainstream semantic
segmentation methods.
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Figure 18. Qualitative results on ACDC snow. The yellow rectangular boxes represent the regions
where our method has better segmentation performance compared to the mainstream semantic
segmentation methods.

5. Conclusions

Our method proves effective in semantic segmentation scenarios involving night,
foggy, rainy, and snowy scenes. Additionally, the use of candidate region training and the
FEDS algorithm yields favorable results in night scenes, although its effectiveness in foggy
scenes is less prominent. The proposed ShuffleFormer architecture in this paper, which
integrates a Transformer-based encoder and a decoder featuring contextual feature fusion,
demonstrates efficacy in addressing semantic segmentation challenges within adverse
scenarios relevant to autonomous driving. Additionally, we have introduced auxiliary
training involving reference images from favorable weather conditions, specifically night
and foggy scenes in autonomous driving scenarios. This augmentation enables the network
to assimilate supplementary information, consequently enhancing its capacity to achieve
superior segmentation outcomes. Moreover, with regard to the frequency domain, we
extract low-frequency information from the target domain scene and integrate it into the
source domain images, a strategy that substantially contributes to segmentation quality.

Through an array of experiments, our approach has been substantiated as well-suited
for adaptive tasks within the realm of autonomous driving. It boasts commendable perfor-
mance, with the designed ShuffleFormer network embodying a balance between simplicity
and efficiency. While the ShuffleFormer network, as devised in this study, boasts a compact
parameter count, its efficacy in terms of computational efficiency on mainstream chips
is somewhat lacking. Empirical testing indicates that the chip consumes a considerable
amount of memory, and the majority of chips are currently optimized for standard convolu-
tional neural networks. We expect that mainstream chips will progressively offer enhanced
support for light-weight neural networks in the imminent future.

Furthermore, although the algorithm introduced in this paper holds potential appli-
cability across various adverse weather autonomous driving scenarios, it is important to
note that the experiments herein solely focus on night, foggy, rainy, and snowy scenes of
the ACDC dataset. Given the constraints of time and data volume, the effectiveness of
the algorithm in other adverse weather autonomous driving datasets remains an area that
warrants further investigation.
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