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Abstract: Recently, the rapid climate change caused by increasing CO2 emissions has become a
global concern. Efficient transportation systems are necessary to reduce CO2 emissions in cities. Taxi
services are an essential part of the transportation system, both in urban areas with high demand and
in rural areas with inadequate public transportation. Inefficient taxi services cause problems such
as increased idle times, resulting in increased CO2 emissions. This study proposes a taxi allocation
model that minimizes taxi idle time costs for efficient taxi service operation. We also propose three
heuristic algorithms to solve the proposed model. At last, we conduct a case study by using real taxi
data in Nagaoka, Japan. By comparing the three algorithms, the dynamic greedy algorithm produced
the best result in terms of idle time cost and CPU time. The findings indicate that by minimizing idle
time costs and reducing the number of taxis, it is possible to achieve a significant 81.84% reduction in
CO2 emissions within the transportation sector. Further, in order to estimate the idle time costs the
sensitivity of demand is considered.
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1. Introduction

Climate change and global warming are increasing in today’s world, which leads to
finding strategic solutions to reduce carbon dioxide (CO2) emissions. Especially, urban
areas significantly impact CO2 emissions in traffic congestion due to high transport demand
and excessive street parking. Vehicles typically run on gasoline or diesel fuel, both of which
emit CO2 and other harmful pollutants into the air when burned. Therefore, increased traffic
congestion caused by private vehicles can lead to decreased travel speed and increased
travel time for passengers, which emits higher CO2 in urban areas [1–5]. Such air pollution
is becoming a serious problem with the rapid increase in vehicle ownership in developing
countries [6–8]. In order to address the issue of air pollution caused by traffic congestion,
it is essential to promote the usage of public transportation and taxis as substitutes for
personal vehicles, thereby reducing the number of vehicles on the road network.

Taxis are an essential part of the public transportation system in urban and rural
areas [9–13]. They offer a flexible and on-demand service that can accommodate multiple
passengers, thereby reducing the need for individuals to rely on their private vehicles. For
example, in 2019, New York City had 116,854 prearranged service vehicles and 16,678 street
hail service vehicles, but more than one million rider trip requests were received every
day. Hua, Shijia, et al. described in 2020 that 18,163 taxis in Hong Kong carried nearly
one million passengers daily [14]. Although these studies analyzed the taxi demand in
urban areas, feeder services of taxis are also important in areas where public transport
services are not comprehensive enough to serve all locations, especially in more rural or
suburban areas. Taxis can provide an efficient and reliable link between public transport
hubs and other parts of the community, allowing people to access public transport more
easily and quickly. Furthermore, taxis are accessible to people who may have difficulty
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using other public modes of transportation, such as those with health, mobility, or vision
impairments. The taxi demand again increases when the older population increases as
a more convenient mode of transportation. Most developed countries experience this in
many suburban areas [15]. Further, taxis are more convenient than public transportation
because they can be hailed at any time and can take passengers directly to their destinations.
By using taxis and public transportation instead of owning a car, individuals can save
money, reduce traffic congestion, and lower their carbon footprint.

On the other hand, inefficient or improper taxi service management can cause nu-
merous issues such as increased idle time, high costs of operation, and increased CO2
emissions [16–18]. In the case of idle time, there are two types of idle time for the driver,
moving idle time and stationary idle time. Moving idle time is the time when taxi drivers
travel while searching for passengers to pick up or while returning to their original location.
Stationary idle time is the period when the driver parks the car for various reasons, such
as a driver’s break time or waiting for a customer’s request. The idle time occurs when
the vehicle’s engine is running, but the taxi is standing, while delay time occurs when the
taxi is stuck in traffic or waiting for passengers. When a taxi is idling, it is still burning fuel
without moving, which leads to unnecessary CO2 emissions. As a result, delay time can
be identified as the key factor for CO2 emission in urban areas [19]. Most of the scholars
argued that reducing idle and delay time is essential to mitigate the emission of CO2 in
taxis [20–24]. The idle time cost is a measure of the time that taxi drivers spend idling
without generating revenue and has a direct impact on profitability. Therefore, for effective
taxi operation, taxi allocation is necessary to prioritize. Taxi allocation refers to the process
of assigning taxis to pick up passengers [25]. Once the taxi allocation is optimized, idle time
can be reduced, which results in reduced taxi operational costs. Therefore, reducing the
idle time by optimizing taxi allocation can lead to several benefits, including time, lower
costs, and decreased CO2 emissions.

The main objective of this study is to reduce the cost of idle time for taxi drivers by
employing an optimal number of allocated taxis and minimizing CO2 emissions through
simulated data analysis. For this purpose, this study proposes a novel mathematical model
of the taxi allocation problem to optimize the taxi driver’s costs as a mixed-integer program,
which will support decision-makers, urban transport planners, and governmental and taxi
companies to make their decisions more strategically. Since the mixed-integer program is
difficult to solve analytically, it is necessary to propose the solution algorithm as well. Then,
this study also proposes three heuristic algorithms, including greedy, simulated annealing,
and a dynamic greedy algorithm, and compares their performance. Further, the proposed
model is validated by conducting the sensitivity analysis and applying it to a case study in
Nagaoka City to understand the efficiency of the proposed model.

Literature Reviews

This section briefly reviews studies on taxi allocation optimization and CO2 emissions
from taxis.

According to Abbas [26], future taxi fleet size is determined by using three methods:
“generic algorithm for estimation of taxi fleet size”, “taxi fleet requirements based on taxi
demand model”, and “taxi fleet requirements based on taxi availability index”. Yao et al.
established a bilevel programming model for taxi fleet size demand according to capacity
configuration and ticket cost [27]. Li et al. introduced a strategy for logistics companies to
optimize their public charging infrastructure localization and route planning. The proposed
approach utilized a bilevel program and a two-phase heuristic approach, combining a two-
layer genetic algorithm (TLGA) and simulated annealing (SA). The author focused on
determining the optimal locations for public charging stations in Chengdu, a major city in
southwest China. The study highlights the advantages of employing a bilevel optimizing
approach in addressing the challenges of citywide charging station location selection and
logistics routing problems [28].
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Mingolla and Lu associated vehicle technology to reduce the carbon emissions of the
taxi fleet [16]. The authors discussed a taxi cost–benefit analysis of the CO2 equivalent. Li
et al. aimed to examine how various optimizations of taxiing paths can contribute to the re-
duction of CO2 emissions. The authors conducted an analysis to determine the influence of
different parameters, such as aircraft speed, taxiway layout, and environmental conditions,
on the reduction of CO2 emissions [29]. Eslamipoor R. proposed a comprehensive model for
inventory transportation planning that incorporates multiple products, multiple periods,
and CO2 emission considerations within a two-echelon framework. The problem focused
on the deterministic and dynamic demands of retailers, where the supplier must adhere
to delivery schedules and product quantities based on a vendor management inventory
policy [30]. The environmental pollution factor is recognized as a significant influence in as-
sessing and choosing a supplier. The suggested model aimed to achieve several objectives,
including reducing supplier costs (covering total ordering and shortage costs), minimizing
the receipt of low-quality goods from suppliers, minimizing delivery time, and mitigating
the emission of environmental pollutants caused by vehicles [31]. Nilrit and Sampanpanish
conducted tests on a chassis dynamometer in an emission lab to determine automobiles’
greenhouse gas (GHG) emissions. They obtained results for CO2 and methane emission
rates from taxis and passenger cars that run on alternative fuels at different driving speeds.
These findings can serve as a database for decision-making in developing transportation
projects and controlling GHG emissions in Thailand’s mitigation plans [32]. Zhang et al.
conducted a case study in Shanghai to explore the potential for reducing carbon emissions
from urban traffic based on CO2 emission satisfaction. The study utilized data collected
through travel surveys and transportation models to assess the impacts of various mea-
sures on CO2 emissions reduction and travel satisfaction. The research team examined
the effectiveness of measures such as optimizing traffic signal timings, promoting public
transportation, and encouraging non-motorized transport modes [33]. Ghahramani and
Pilla [34] put forward an unsupervised learning method to explore how taxi trips affect
CO2 emissions. They utilized a hierarchical clustering algorithm optimized to identify
emissions-related clusters, enabling the identification of the most polluting trips. By doing
so, they could pinpoint the vehicles associated with these trips, thereby prioritizing CO2
emissions and enabling informed decision-making in the future. Their results could give
decision-makers a clearer knowledge of fuel use and policy recommendations. The acces-
sibility of data on taxi operations opens new avenues for mitigating the CO2 emissions
brought on by taxis. Most previous studies on taxi emissions and greening the supply
chain are based on surveys and statistical data [7,33,35,36]. These studies adopted a new
approach where the authors assessed and examined the CO2 emissions from different
forms of urban passenger transportation, such as cars, buses, taxis, and rail transit. On the
basis of such information, several models may be created, and it is possible to determine
the average amount of air pollution caused by vehicles.

In addition, there are also several studies trying to improve the heuristic algorithms
of transport systems. Abdel-Basset et al. presented a new nature-inspired metaheuristic
algorithm named the spider wasp optimization (SWO) algorithm, which was based on
replicating the hunting, nesting, and mating behaviors of the female spider wasps in
nature [37]. Kaya et al. aimed comparison of the performance of seven metaheuristic
training algorithms in the neuro-fuzzy training for maximum power point tracking (MPPT),
including particle swarm optimization (PSO), harmony search (HS), cuckoo search (CS),
artificial bee colony (ABC) algorithm, bee algorithm (BA), differential evolution (DE) and
flower pollination algorithm (FPA) [38]. Ouyang et al. proposed a new heuristic solver
based on the parallel genetic algorithm and an innovative crew scheduling algorithm,
which improved traditional crew scheduling by integrating the crew pairing problem (CPP)
and the crew rostering problem (CRP) into a single problem [39].

However, the problem of taxi fleet allocation has been studied extensively in the
literature, especially at the operational level of taxi companies. Most of the existing studies
have focused on urban areas [7,33,40], where the demand and supply of taxis are relatively
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high and dynamic. In contrast, suburban areas have different characteristics, such as lower
demand, longer travel distances, and higher idle time. These factors affect not only taxi
companies’ service quality and profitability but also the environmental impact of taxi
operations, as idle time is correlated with CO2 emission. Therefore, this study aims to fill
the gap in the literature by proposing an optimization model for taxi allocation in suburban
areas, using authentic data from actual taxi firms. The model considers both the economic
and environmental objectives of taxi companies and the constraints of demand, supply,
and vehicle capacity. The model is applied to a case study of a suburban area, and the
results show that the optimal fleet size and reallocation to meet future passenger demand
can reduce both the idle time cost and CO2 emission of taxi companies while improving
the community’s living standards, thereby creating a sustainable future. Furthermore, this
study proposes a new dynamic greedy heuristic algorithm to obtain better solutions to the
problem and evaluate the performance of this algorithm in comparison with greedy and
simulated annealing heuristic algorithms.

In summary, the main contributions of this paper are as follows:

(1) We analyze taxi Global Positioning System (GPS) data to detect taxi hotspots where
drivers and passengers appear frequently in suburban areas. This research easily and
formally identifies areas with high demand and quantifies those hotspots.

(2) We formulate a mathematical model of the taxi allocation problem to optimize the
taxi drivers’ idle time costs as a mixed-integer program, which will support decision-
makers, urban transport planners, and governmental and taxi companies to make
their decisions more strategic. The proposed model focuses on taxis in suburban areas.
Most of the existing studies, e.g., [7,33,40], consider only the taxi model for urban
areas other than suburban areas. Since the behavior of the taxi model for suburban
areas is different from that of urban areas, our model can contribute to the reduction
of CO2 emissions and the efficient operation of a taxi service in suburban areas.

(3) We compare the performance of the proposed algorithm with two heuristic algorithms,
namely greedy and simulated annealing. Further, we evaluate the optimality of the
model by applying it to a real case study in Nagaoka City, Japan.

(4) Even though the recent articles [33,41] analyzed the CO2 emissions in taxi operations,
the optimization of the idle time and the number of taxis still needed to be considered.
Therefore, this study focused on analyzing idle time and reducing taxi numbers to
optimize taxi operations thus reducing CO2 emissions.

2. Methods and Materials

This study aims primarily to decrease the amount of CO2 emissions by optimizing
the allocation of taxis. In order to accomplish this objective, the study proceeds in four
sequential steps, which are as follows:

1. Detection of taxi hotspots—Analyzing taxi GPS data to detect taxi hotspots where
drivers and passengers appear frequently.

2. Formulation of a mathematical model—Developing a mathematical model of the
taxi allocation problem for minimizing the taxi’s idle time cost. Minimizing idle time
costs is expected to achieve more efficient and sustainable taxi services with a lower
environmental impact.

3. Solution methods for the proposed model—Develop heuristic methods for solving
the proposed model in step 2.

4. Calibrate and test the proposed model—Applying the proposed model and solution
methods to real data in Nagaoka, Japan. Based on the results, we discuss appropriate
operations for a sustainable society.

The below sections of this study follow the above four key steps. Section 3 shows
the detected taxi hotspots from the taxi data. Section 4 shows the formulation of the
taxi allocation problem for minimizing a taxi’s idle time cost. Section 5 shows heuristic
algorithms to solve the proposed problem. Section 6 discusses the result of taxi idle time
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cost, taxi trips, and CO2 emissions, and Section 7 represents the model validity by sensitivity
analysis. Finally, the conclusions and future works are presented in Section 8.

3. Taxi Demand Hotspots

For reducing CO2 emissions, this study focuses on reducing taxi’s idle time by op-
timizing taxi allocation in hotspot locations based on the high taxi demand. Therefore,
taxi hotspot detection is necessary to consider appropriate taxi allocation. This paper
detects taxi hotspots by using real data. The data collection starts by considering taxi usage
patterns, including pick-up and drop-off locations, trip distances, and times of the day. This
data will allow us to identify high-traffic areas and peak usage times that can be utilized to
optimize taxi allocation.

3.1. Selection of the Case Study Area

In this study, Nagaoka suburban area was selected as the case study area. Suburban
areas possess distinct characteristics, including reduced demand, extended travel distances,
and increased idle time. Nagaoka is in the center of Niigata and the nearby Chūetsu
economic region of Japan and is on the national highway network. According to population
data from 4 August 2021, there are 264,611 people living here and 109,283 households, with
300 people per square kilometer of population density (780 square miles). The total land
extent of the city is 891.06 square kilometers. We selected Nagaoka because alternative
public transportation is frequently unavailable in this location. After 9:30 p.m., there are no
buses inside the city. Further, since the majority of individuals are elderly and unable to
drive in this Nagaoka suburban area, they rely on public transportation. In order to solve
these kinds of problems, the general taxis work 24 h a day. A taxi driver works at a specific
time every day and sometimes works overtime. The dynamic properties of the identified
taxi demand hotspots are analyzed in this study.

3.2. Data Collection Methods
3.2.1. Taxi Data in Nagaoka City

Mitsukoshi Taxi Co., Ltd. (Nagaoka-shi, Japan) is the largest taxi company with a
business area in Nagaoka City. The Nagaoka Taxi Company provided the taxi data for
this study. Their 42 taxis were equipped with the Global Positioning System (GPS), which
enables vehicle identification in a location-specific manner with date, and time (i.e., 1 Jan-
uary 2019 11:32:00 unique key), latitude and longitude (i.e., 37.4634 and 138.8147 degrees),
and other relevant real-time information as depicts in Table 1. The origin and destination
are considered places at the beginning of the ride and the arrival. The data were collected
over a year in 2019, and 163,532 valid data were identified. These data can be utilized for
detecting taxi demand information with dynamic features.

Table 1. Selected data for the study.

No Pick-Up Date Time Drop-Off Date Time Pick-Up
Longitude

Pick-Up
Latitude

Drop-Off
Longitude

Drop-Off
Latitude

1 1 January 2019 11:32 1 January 2019 11:46 138.8247 37.4634 138.8488 37.44448
2 1 January 2019 12:28 1 January 2019 12:39 138.8233 37.44263 138.8528 37.44718
3 1 January 2019 14:22 1 January 2019 14:38 138.8289 37.46078 138.8526 37.42944
4 1 January 2019 15:09 1 January 2019 15:21 138.829 37.46065 138.8388 37.44359
5 1 January 2019 16:01 1 January 2019 16:21 138.7792 37.44842 138.8517 37.43882

163,532 31 December 2019 5:19 31 December 2019
5:56 138.8525 37.44682 138.9990 37.47461

After preprocessing data, we can study taxi journeys from different perspectives.
Here are identified two specific types of characteristics: the geographic characteristics of
positions (i.e., longitude, latitude) and trip characteristics (i.e., trip demand, distance, day of
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the week, time of day, day of the week). The taxi trip data include average daily passenger
travel times, distances, and waiting times. The analysis of the travel characteristics between
the taxi demand locations and the times is also helpful for presenting events in the future.

3.2.2. Hourly Taxi Demand Locations

Table 2 depicts the hourly aggregated data for clarifying hotspot changes in the
morning, afternoon, and night.

Table 2. Hourly taxi demand locations.

No. Locations
ID Time of Day Number of

Trips Per Year
Number of Trips

Per Location Address

1
A

0:00–1:00 7901
13,153

LiVE MAX, Higashiguchi Street, Nagaoka, Niigata,
940-0033, Japan2 1:00–2:00 5252

3 B 2:00–3:00 3018 3018 Shiromaru 2-chome, Nagaoka, Niigata,
940-0041, Japan

4

C

3:00–4:00 1381

4250
E-PLAZA, East Exit Street, Nagaoka, Niigata,

940-0033, Japan
5 4:00–5:00 613
6 5:00–6:00 812
7 6:00–7:00 1444

8 D 7:00–8:00 2922 2922 Kamijo-cho, Nagaoka, Niigata, 940-8621, Japan

9 E 8:00–9:00 7517 7517 Horikane 1-chome, Nagaoka, Niigata,
940-8653, Japan

10
F

9:00–10:00 9883
28,253

Nagaoka Red Cross Hospital, Nagaoka, Niigata,
940-2085, Japan11 10:00–11:00 9846

12 11:00–12:00 8524

13 C 12:00–13:00 7733 7733 E-PLAZA, East Exit Street, Nagaoka, Niigata,
940-0033, Japan

14 G 13:00–14:00 6941 6941 Daishi Bank, East Exit Street, Nagaoka, Niigata,
940-0033, Japan

15

A

14:00–15:00 7814

30,953
LiVE MAX, Higashiguchi Street, Nagaoka, Niigata,

940-0033, Japan
16 15:00–16:00 7429
17 16:00–17:00 7295
18 17:00–18:00 8415

19 H 18:00–19:00 8973 8973 Hasugata 4-chome, Nagaoka, Niigata,
940-2088, Japan

20 F 19:00–20:00 9004 9004 Nagaoka Red Cross Hospital, Nagaoka, Niigata,
940-2085, Japan

21 I 20:00–21:00 9633 9633 Kamiwake-cho Nishi 1-chome, Nagaoka, Niigata,
940-2035, Japan

22 J 21:00–22:00 11,245 11,245 Hasugata 5-chome, Nagaoka, Niigata,
940-2093, Japan

23 K 22:00–23:00 11,243 11,243 Oshima Honmachi 4-chome, Nagaoka, Niigata,
9402104, Japan

24 L 23:00–00:00 8694 8694 Shimoyanagi 3-chome, Nagaoka, Niigata,
940-2088, Japan

In the morning (9:00–12:00), taxi demand was high in the Nagaoka Red Cross Hospital
area. Taxi trips were high in the supermarket area in the afternoon (13:00–18:00). At night,
station and restaurant areas saw high taxi demand for service.

The consistent hotspots were determined mainly by passenger traffic in various time
segments. Railway stations, being major hubs for moving people between cities, handled
massive traffic. However, the majority of the hotspots seemed to work only at certain times.
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Therefore, hotspots were concentrated around stations, hospitals, restaurants, and business
areas, as depicted in Figure 1.
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Figure 1. Locations of taxi demand per hour. Location details for the taxi demand areas are listed in
Table 2 (Locations ID).

3.2.3. Weekly Taxi Demand Locations

Table 3 depicts the taxi demand variation pattern on different days within the week.
The number of daily trips was counted at taxi pick-up/drop-off points. The analysis
showed that the highest and lowest demand for taxis per week occurred on Fridays and
Sundays, respectively.

Table 3. The top 5 busiest locations on various days of the week.

No. Locations
ID

Number of
Trips

Days of the
Week Address

1 J 29,541 Friday Hasugata 5-chome, Nagaoka, Niigata Prefecture, 940-2093, Japan
2 K 27,437 Saturday Ojimahoncho 4-chome, Nagaoka, Niigata Prefecture, 940-2104, Japan

3 F
23,689 Wednesday

Nagaoka Red Cross Hospital, Nagaoka, Niigata, 940-2085, Japan22,914 Thursday
19,265 Monday

4 I 22,642 Tuesday Kaminozokimachi Nishi 1-chome, Nagaoka, Niigata, 940-2035, Japan
5 M 18,044 Sunday Nagaoka Station, Nagaoka City, Niigata Prefecture, 940-0061, Japan

Kernel density analysis was performed on the 24 h data from Friday to quantify the
dense grade of taxi demand and visualize taxi travel hotspots at the spatial level. This
was consistent with the experience that Friday is the last working day of the week, when
people tend to go out for recreation after work, thus resulting in more taxi trips. In contrast,
Sunday is the second day of the weekend, and people prefer to rest at home to prepare for
the workweek ahead, thus resulting in fewer taxi trips.

The results indicated the top five hotspots, including nos. 1, 2, 4, and 5 at the railway
station or the supermarket, while no. 3 was located in the Nagaoka Red Cross Hospital
area, as depicted in Table 3. As large public spaces where people and vehicles converge
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and deliver things, stations are usually equipped with taxi stands in specific locations to
meet passenger travel needs.

Table 3 depicts the network of hotspot no. 1, covering 29,541 taxi trips on Fridays.
However, three other days (Monday, Wednesday, and Thursday) had high taxi demand,
including 65,868 trips in the Nagaoka Red Cross Hospital area.

As depicted in blue points in Figure 2, the constant hotspots are mainly at Nagaoka
Red Cross Hospital (F), Nagaoka Railway Station (M), supermarket (I), and so on. The
constant hotspots mainly depend on passenger demand with respect to different days.
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Figure 2. Taxi demand locations per day of the week. Location details for the taxi demand areas are
listed in Tables 2 and 3 (Locations ID).

This section used taxi data to determine the potential hotspot areas for taxi allocations.
As a suburban area in Nagaoka, the driver’s and passengers’ behaviors affect the location
of a taxi hotspot area. For example, if drivers prefer to park near convenience stores or
restaurants, a taxi spot close to those facilities might be more attractive. On the other hand,
if passengers hail taxis from busy intersections or train stations, then a taxi spot near those
places is more convenient. Therefore, this paper formulated a mathematical model of the
taxi allocation problem to optimize taxi driver idle time using taxi data, which may benefit
passengers and drivers.

4. Formulation of Mathematical Model
4.1. Establishing the Problem

The cost of taxi services is influenced by the idle time of the drivers, which is the
time they spend without passengers. Idle time is not only unproductive but also increases
fuel consumption and emissions. One way to reduce idle time is to match the supply and
demand of taxis more efficiently by predicting where and when passengers will need a ride.
For example, if a driver received a call from a nearby location, they would move towards
it, but if the call were from a faraway or congested area, they would ignore it or decline
it. This subsection presents the challenges of modeling the cost function that incorporates
idle time and the benefits of using data-driven methods to optimize it. This way, we could
capture the complexity and variability of the taxi service in our simulation.
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By reducing the idle time, each taxi will have greater use, while the taxi driver spends
less time finding passengers. Further, a smaller number of taxis can cover the same amount
of demand. Accordingly, there are two objectives of this model:

• To minimize the total idle time of the taxi driver when using the optimum number of
allocated taxis.

• To minimize the total operational cost when minimizing the idle time of the taxi driver
and the number of taxis utilized of potential demand.

The above goals are directly tied to taxi system efficiency and driver profitability. In
addition, idle time costs and the number of taxis can be considered important factors in
reducing CO2 emissions.

4.2. Problem Assumptions

The following assumptions were used in this research to better understand the taxi
problem:

Assumption 1—Passenger demand for taxis is assumed to be random:
This assumption highlights the importance of reducing idle time and optimizing

routes to avoid unnecessary driving. Through the developed program, it is able to achieve
significant reductions in both idle time and CO2 emissions while improving efficiency and
reducing costs for all stakeholders involved.

Assumption 2—An empty car repeatedly moved over the planning horizon:
This assumption highlights the importance of reducing idle time and optimizing

routes to avoid unnecessary driving. Through the developed program, is able to achieve
significant reductions in both idle time and CO2 emissions, while improving efficiency and
reducing costs for all stakeholders involved.

Assumption 3—The pick-up and drop-off must always happen within the specified
time windows, i.e., the driver’s waiting time for the passengers and the passenger’s waiting
time for the taxi.

Assumption (3) is the requirement for a successful taxi service to ensure that passen-
gers’ pick-up and drop-off are done on time. It means that the drivers and the passengers
must respect the agreed time windows for each trip, creating a more sustainable and
efficient transportation system.

4.3. Formulation of the Idle Time Cost

This paper shows a mathematical formulation of the taxi allocation problem for idle
time cost. The present study considered an undirected graph G = (N, A) that consists of N
locations and the A arcs (A = N × N). Let Sk

i and Ek
j represent the start and end working

times of the taxi driver k at the locations i and j. For arc (i, j) ∈ A assign a positive distance
and travel time Tij. Location i ∈ A has a service time seri. The service time represents the
time required for pick-up and drop-off, and the time indicates when the visit to the location
must start. A taxi is allowed to arrive at a location before the start of the time, but it has to
wait until the start of the time before the trip can be performed. The maximum capacity of
a taxi is denoted by Q.

Figure 3 shows a sample of taxi allocation. This taxi (numbered 1 ∈ K) starts working
time at location 1 at the time S1

1. Location 1 is where this taxi remains stationed for
passengers who are waiting. Then this taxi is assigned a passenger at the time E1

1 and
moves to location 2 where the passenger is waiting. Then, this taxi pick-up the passenger
at location 2 at the time S1

2; after that, the onboard passenger drop-off at location 3 at the
time S1

3. After that, the driver waits at specific locations for the passenger, then the taxi is
assigned a passenger at the time E1

2 and moves to new passenger pick-up location 4 at the
time S1

4 and the onboard passenger drop-off location 5 at the time S1
5. Idle time is defined

as the amount of time a driver spends waiting for a new passenger request. Then, the total
idle time can be calculated as (E 1

1 − S1
1

)
+(E 1

1 − S1
2

)
+(E 1

2 − S1
3

)
+ · · · .. + (E k

j − Sk
i

)
for

this sample.
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4.4. Formulations

The taxi driver idle time problem is formulated by several equations. Equation (1)
develops from this study, and the flowing constraint functions are found in the previous
literature surveys [42].

Min
N

∑
k=1

A

∑
i,j=1

[co(Ek
j − Sk

i )]Z
k
ij (1)

Subject to,
A

∑
j=1

Zk
ij −

A

∑
j=1

Zk
ji = 0 ∀i ∈ A, ∀k ∈ N (2)

A

∑
j

Zk
0j = 1 ∀k ∈ N (3)

A

∑
i=1

Zk
i0 = 1 ∀k ∈ N (4)

A

∑
i=1,i 6=j

Zk
ij = 1 ∀j ∈ A, ∀k ∈ N (5)

Sk
i + seri + Tij −M(1− Zk

ij) ≤ Ek
j ∀i, j ∈ A, ∀k ∈ N (6)



Smart Cities 2023, 6 1599

A

∑
i=1

A

∑
j=1,i 6=j

qiZk
ij ≤ Q ∀k ∈ N (7)

Zk
ij ∈ {0, 1}, ∀k ∈ N, and ∀i, j ∈ A (8)

The objective Function (1) minimizes the cost of taxi idle time and the number of taxis
utilized of potential demand. C0 is the idle time cost, which depends on the taxi company,
but in this study, an idle time cost of JPY 300 has been used. Constraint (2) guarantees that
the number of taxis coming to a passenger’s location and the number of taxis exiting are
the same. Constraint (3) ensures that the taxi leaves the depot. Constraint (4) ensures that
the taxi returns to the depot. Constraint (5) means that each passenger is riding only once
in one taxi. Constraint (6) ensures that passengers do not consume more time at the taxi
stand. Constraint (7) does not exceed the maximum capacity (Q). That means no more than
one passenger per taxi. Constraint (8) is the binary condition.

5. Optimality Algorithms

The pick-up and drop-off problem is well-established as a non-deterministic polynomial-
time hardness (NP-hard) problem, which means that the computational time required to
solve it increases rapidly with the size of the expansion [43–45]. This issue can be solved
using two different algorithms. The first algorithm is an exact algorithm, and this is based
on a mathematical model that guarantees the optimal result in every situation. The biggest
disadvantage of this algorithm is the computing time necessary to solve the issue, particu-
larly if it is NP-hard. The second algorithm is referred to as a set of heuristic algorithms,
which use advanced mathematical optimization techniques such as branch-by-branch and
neighborhood search.

Consequently, heuristic algorithms take less time to execute than accuracy algorithms.
Although it has a quick processing time, the optimal solution is not guaranteed, and the
results may not be satisfactory. This study utilized three types of heuristic techniques;
construction heuristics, local search heuristics, and metaheuristics to derive a new heuris-
tic algorithm.

This study utilized a linear mixed-integer programming model. Heuristic and meta-
heuristic algorithms can solve the model (1)–(8). Here devised a technique for solving the
taxi issue that entails the establishment of (i) a greedy heuristic [46], (ii) a local search [46],
(iii) a simulated annealing [47] metaheuristic to solve the optimization problems, and (iv) a
dynamic greedy algorithm to improve the greedy algorithm. The establishment of the
detail of the algorithms is described in the following subsections.

5.1. Greedy Algorithm

The number of drivers, assignment costs, and the area that the first solution must
have been all inputs to the heuristic method function. It begins by initializing all global
parameters, such as the total number of passengers still requiring pick-up and drop-off,
the global time, global distance, global service time, global waiting time, and total costs.
The first iteration process begins when these variables are established, and it continues
until all of the taxis available have been utilized. Once within the first iteration, the taxi
driver parameters (i.e., total time, travel time, service time, waiting time, and costs) are
set to their starting states, including the places that the taxi has previously chosen and its
initial position and pick-up location. After collecting all pick-up sites from the passenger
positions, the heuristic technique enters the second iterative step. This process continues
until the present taxi runs out of drop-off sites or it is time to return to the depot.

It is common to use greedy heuristics to create effective initial solutions to difficult
optimization problems. One can first, and sometimes intuitively, find an initial possible
solution, which is subsequently improved by heuristics. To obtain a possible initial solution
to the problem, an attractively structured heuristic is developed that considers the demand
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for all taxi stands and periods, prioritizes demand with high profit, and checks which taxis
can be moved empty when necessary.

In the pseudocode presented for the greedy algorithm, the proposed greedy heuristic
method is described as generating a relatively good initial solution to the taxi allocation
problem. The basic idea is to check if there is a taxi that does not meet every pick-up
that “arrives on time”. “Arrival time” refers to the travel time from the current location
of pick-up within the requested time. It is also necessary to check whether the taxi route
(empty or not) can be used to meet the demand.

We have taxi ride data for a set of drivers, and we want to optimize the idle time cost.
Here is the greedy algorithm that would work:

Step 1: Start with an initial solution. This could be the initial sequence of rides for each
taxi driver.

Step 2: Evaluate the cost of the initial solution. This would involve calculating the
total idle time cost of all the taxi drivers.

Step 3: Determine the set of candidate solutions that can be obtained by making a
small modification to the current solution. For example, we could consider swapping the
order of two consecutive rides for a particular taxi driver.

Step 4: Evaluate the cost of each candidate solution. This would involve calculating
the taxi drivers’ total idle time cost for each candidate solution.

Step 5: Select the candidate solution that provides the best immediate improvement in
the objective function value and make it the new current solution. In this case, we want to
minimize the total idle time cost of all the taxi drivers, so we would select the candidate
solution that has the lowest idle time cost.

Step 6: If the stopping criterion is not met, repeat steps 3–5 until no more candidate
solutions can be found or until the stopping criterion is met. The stopping criterion
could be a maximum number of iterations or a minimum improvement in the objective
function value.

Step 7: Return the current solution. The solution returned by the greedy algorithm
would be the sequence of rides for each taxi driver that has the lowest total idle time cost.

The greedy works step-by-step based on the Algorithm 1 for optimizing idle time cost
in taxi ride data.

Algorithm 1: Greedy Heuristic

1 Function greedy
2 Greedy solution = Solution ()
3 For each client in the total clients
4 Minimum costs = np.inf
5 Minimum costs driver = 0
6 For each driver in the total drivers
7 Current costs = calculate costs (client, driver, Greedy solution)
8 If the current costs < minimum costs
9 Minimum costs driver = driver
10 Minimum costs = current costs
11 Assert minimum costs driver! = 0
12 Assign client (client, minimum costs driver, Greedy solution)
13 Return all to depot (Greedy solution)
14 Costs = total costs (Greedy solution)
15 Greedy solution (total costs) = costs
16 Assigned drivers = 0
17 For each driver in the total drivers
18 If the Greedy solution in the current driver assigned for each client
19 Assigned drivers += 1
20 Return Greedy solution



Smart Cities 2023, 6 1601

Taxi data (trip data) are input into memory. All empty and onboard passenger move-
ment of the taxi is recorded in a data structure, including route, time, and cost. All passenger
pick-ups are selected in sequential taxi calling, and if there are multiple pick-ups simultane-
ously, they are prioritized depending on the distance. The purpose of the problem is the
value of the function. In the initial solution, the taxi driver calculates the cost of waiting
time. It is the responsibility of the taxi driver if the current cost is less than the minimum
cost. Finally, the optimal solution is evaluated by the greedy algorithm.

5.2. Local Search Strategy

Greedy developed an advanced method to perform from a greedy starting solution to
investigate unmet pick-ups, which would be profitable. The local search method looks like
the following. Here the steps of a local search algorithm are:

Step 1: Initialize the current solution to a random or heuristic solution.
Step 2: Evaluate the quality of the current solution using an objective function.
Step 3: Repeat the following steps until a stopping criterion is met:

a. Generate a neighboring solution by making a small perturbation to the current solu-
tion.

b. Evaluate the quality of the neighboring solution.
c. If the neighboring solution is better than the current one, accept it as the new one.
d. If the neighboring solution is worse than the current solution, accept it with a prob-

ability that depends on the difference in quality between the two solutions and the
current temperature.

e. Update the temperature according to a cooling schedule.

Step 4: Return the best solution found during the search.
The following Algorithm 2 illustrates a basic outline of a local search algorithm, which

can be used to solve various optimization problems. However, the specific implementation
of the algorithm and the choice of the objective function, neighborhood structure, and
cooling schedule depend on the problem being solved.

Algorithm 2: Local Search Procedure

1 Function ImproveSolutions (Initial Route):
2 Get local (no iteration)
3 Current solution = randomly
4 NUMBER ITERATION = no iteration
5 Minimum cost = current solution (total costs)
6 Values = zeros (no iteration)
7 For each position in NUMBER ITERATION
8 New solution = neighbor (current solution)
9 If new solution (total costs) < minimum cost
10 Minimum cost = new solution (total costs)
11 Current solution = new solution
12 Each position values = new solution (total costs)
13 Assigned drivers = 0
14 For each position in the Number of drivers
15 If current solution (each position of current driver assigned)
16 Assigned drivers += 1
17 Return Current solution, Values

According to the solution of the model, a short-term scheduling model is developed
using taxi driver information. Then it re-evaluates the costs for the two mentioned drivers,
as this conversion does not affect the other drivers.
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5.3. Simulated Annealing

The simulated annealing metaheuristic algorithm that was developed to solve the taxi
allocation problem is described in the following steps.

Step 1: Start the program.
Step 2: Define the initial state or solution to the problem.
Step 3: Set the initial values for the algorithm’s parameters, such as the cooling rate

and the number of iterations.
Step 4: Define the temperature schedule, which determines how the temperature

changes over time.
Step 5: Generate a neighbor state or solution based on the current one. This is achieved

by making a small change to the current state or solution.
Step 6: Calculate the energy or difference in cost between the current and neighbor

solutions.
Step 7: Accept or reject the neighbor solution based on the energy or difference in cost

and temperature. The neighbor solution is accepted if the energy is lower than the current
energy. If the energy is higher, the neighbor solution is accepted with a certain probability
that depends on the temperature.

Step 8: Repeat steps 5–7 until the temperature reaches a minimum value.
Step 9: End the program.
Simulated annealing is a stochastic relaxation method based on an iterative procedure

starting from an initial “high temperature” with the system in a known configuration. The
simulated annealing Algorithm 3 is a stochastic optimization algorithm that finds global
optima by allowing uphill moves early in the optimization process. It achieves this by
using a temperature parameter to determine the probability of accepting a worse solution.
The iterative method of simulated annealing improves the cost function until the current
temperature cools down. At high temperatures, atoms can become unstable from initial
positions, meaning that the algorithm is allowed to have flexibility in searching potential
space. In contrast, at decreasing temperatures, it is more likely to improve with local
searches than with initial conditions.

Algorithm 3: Simulated Annealing Procedure

1 Function Simulated Annealing (no iteration, low temperature, step, iteration step)
2 Current solution = greedy solution
3 Initial temperature
4 For each step in the no iteration
5 Temperature solution = current solution

6
Cost delta = (temperature solution (total costs)–current solution (total costs))/current
solution (total costs)

7 If cost delta <= 0 or random < exp (-cost delta / temperature)
8 If temperature! = 0.1 or cost delta <= 0
9 Current solution = temperature solution
10 Values (current solution (total costs))

11
If each step % iteration step == 0 and temperature > low temperature +
1e-10:

12 Temperature−= each step
13 Return Current solution, values

Simulated annealing is a potential method that is proposed to find a global minimum
cost function that may contain several minimums [48]. By updating the model, optimizers
link the cost function and model parameters together in order to achieve global minima
with respect to the cost function. The objective is to minimize the cost function of the taxi
system, while the search for the best solution refers to the cooling process.
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5.4. Dynamic Greedy Programming

In dynamic greedy programming, decisions are made by considering the current
problem and the solutions of previously solved subproblems to compute the best solution.
This makes it the best solution because it considers all possible cases and chooses the best.
For dynamic programming implementation, an additional data structure must be created.
Here is a step-by-step explanation of the dynamic greedy algorithm based on the flowchart:

Step 1: Start the program.
Step 2: Define the problem that needs to be solved. This involves specifying the inputs,

the objective function to be optimized, and any constraints that need to be satisfied.
Step 3: Divide the problem into smaller subproblems that can be solved independently.

This is achieved using dynamic programming. The subproblems are usually defined in
terms of a sequence of decisions or states that need to be made or reached to obtain the
optimal solution.

Step 4: Solve each subproblem using the greedy algorithm. The greedy algorithm
makes the locally optimal choice at each decision point in the subproblem. This means that
it chooses the option that provides the maximum benefit at that particular point in time
without considering the long-term consequences of that choice.

Step 5: Combine the solutions to the subproblems to obtain a solution to the original
problem. This is achieved using dynamic programming. The solutions to the subproblems
are combined to obtain the optimal solution to the original problem. This is achieved by
choosing the sequence of decisions or states that provide the maximum benefit overall.

Step 6: Repeat steps 3–5 until an optimal solution is found. The dynamic greedy
algorithm iteratively solves the subproblems and combines the solutions until an optimal
solution is obtained. This involves solving the subproblems in a sequence that allows the
maximum benefit to be achieved overall.

Step 7: End the program. The dynamic greedy algorithm terminates once the optimal
solution has been obtained.

In summary, the dynamic greedy Algorithm 4 is an iterative process that uses dynamic
programming and the greedy algorithm to obtain an optimal solution to a problem that
involves a sequence of decisions or states.

Algorithm 4: Dynamic Greedy Procedure

1 Function DynamicGreedySolution
2 For each client in the total clients
3 Minimum cost = np.inf
4 Minimum driver = 0
5 Time of minimum driver = 0
6 For each driver in the total driver
7 Distance to client = distance (client, driver)
8 Time on arrive to the client = maximum (client desired time, distance to client/speed +

driver time)
9 Lateness = time on arrive to the client–client desired time
10 Idle cost = lateness ** 2 + time on arrive to the client + client segment
11 If drivers == 0:
12 Idle += driver opening cost
13 If minimum cost > idle cost
14 Minimum cost = idle cost
15 Minimum driver = driver
16 Time minimum driver = time on arrive to the client
17 Driver cost [minimum driver] += minimum cost
18 Drivers on [minimum diver] = 1.0
19 Driver position [minimum driver] = client position
20 Driver time [minimum driver] = time min driver + client segment/speed
21 Minimum costs of drivers
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For this purpose, greedy and dynamic are combined into the dynamic greedy algo-
rithm. The optimization method is applied in dynamic greedy programming, and the
minimum total cost is found.

6. Results and Discussion

This section shows the results of the experiments for the performance of the proposed
algorithms. The proposed mathematical model is solved by three algorithms shown in
Section 5. The total number of taxis (42) means the number of taxis in the company. The
heuristics were written in the Python programming language. The tests were carried out
using a laptop with an Intel (R) Core (TM) i7-5500U CPU running at 2.40 GHz, with 16 GB
of RAM, and using the Windows 10 operating system.

The dataset has three instances, 01.01.19, 01.03.19, and 15.03.19, representing taxi
problems in Nagaoka City. These instances contain between 333 and 658 passenger demand.
Additionally, there are problems where only a subset of the taxi fleet can serve the passenger
requests. To make it easier for the heuristic to find solutions, we set the number of available
vehicles to one more than required. According to the model, taxi demand was the optimized
number of taxis (approximately 8) that was sufficient for a day. Table 4 presents the average
passenger demand, the number of taxis, the total cost, and the CPU time calculated for
each algorithm. The outcomes are based on randomly generated taxi demand situations.
The greedy, simulated annealing, and dynamic greedy heuristics showed average total
costs of JPY 21,433.93, JPY 23,730.75, and JPY 20,573.98, respectively, in the optimal solution.
The dynamic greedy heuristic required an average CPU time of 1.19 s to find the optimal
solutions. The findings show it was able to identify better solutions in a shorter period on
the CPU.

Table 4. Results obtained from the heuristics algorithms.

Instance
Passenger

Demand/Day

Greedy Algorithm Simulated Annealing Dynamic Greedy

Taxi Idle Time
Cost (Yen)

CPU Time
(Sec.) Taxi Idle Time

Cost (Yen)
CPU Time

(Sec.) Taxi Idle Time
Cost (Yen)

CPU Time
(Sec.)

01.01.19 333 5 10,548.54 47.2 5 13,883.37 55.66 5 9175.24 0.85
01.03.19 537 9 25,461.13 37.25 9 26,303.6 68.67 8 24,602.08 1.32
15.03.19 658 10 28,292.11 59.77 10 31,005.28 119.11 10 27,944.63 1.42
Average 509 8 21,433.93 48.07 8 23,730.75 81.15 8 20,573.98 1.19

(JPY 1 = USD 0.0072).

The lengthy simulated annealing schedule may take a while to complete. The begin-
ning and finishing temperatures for the simulated annealing were set as 0.21. The decay rate
was 0.001. These parameters were maintained for all problems and independent runs. Each
problem was solved 10 times by using an iteration step of 500, with the initial step of 0.1 and
a low temperature of 0.1. Further, simulated annealing has a lot of adjustable parameters.
Therefore, simulated annealing takes comparatively longer CPU time for simulation. On
the other hand, the greedy algorithm also consumes comparatively longer time since it
breaks the issue into its components and remembers the answer for each element to apply
it later when a similar component occurs again. Compared to other algorithms, dynamic
greedy algorithms have lower temporal complexity and identify the most practical solution
to arrive at the best solution at every stage. Therefore, dynamic greedy algorithms consume
comparatively less time for the simulation process.

The passenger demand/per day for the suburban area of Nagaoka City is, on average,
509, with the average number of taxis required as 8. The optimization results of the taxi
allocation problem with different demands are summarized in Table 4. As the demand
increased, the total idle time costs increased from JPY 10,548.54 with five taxis to JPY
28,292.11 with ten taxis in the greedy algorithm, and in the simulated annealing algorithm
from JPY 13,883.37 to JPY 31,005.28. However, the proposed algorithm (dynamic greedy
algorithm) increased the cost from JPY 9175.24 to JPY 27,944.63.
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In addition, a dataset with information on taxi trips, including pick-up and drop-off
locations, was examined. This investigated the pick-up and drop-off coordinates from the
dataset and used them to compile the taxi trips for each location. This paper combined the
trips based on these coordinates to determine how frequently taxis picked up and dropped
off passengers at each distinct place. Figure 4 represents the regular average of 509 taxi
trips per day in Nagaoka City.
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The number of journeys was reduced, and it was determined which trips showed
notable drops. The dataset reflects the taxi journeys across several places by integrating and
preprocessing these various datasets. The proposed model was obtained to optimize taxi
driver idle time, taxi routes, and allocations while taking into account parameters including
trip distances, traffic conditions, and passenger demand (Figure 5). After solving, the model
reduced the overall number of trips while preserving effective transportation services by
redefining the issue as an optimization challenge. The fact that the number of trips fell
by a statistically significant amount shows that the model was successful in optimizing
the taxi service and maximizing resource usage. This result implies that the model was
successful in identifying chances for trip consolidation, whereby a number of passengers
with comparable itineraries were put together, resulting in fewer individual journeys.

The results of this study have implications that the reduction in taxi trips indicates the
potential for improved efficiency and sustainability in suburban transportation systems. By
optimizing route planning and allocation of resources, the number of unnecessary trips has
been minimized, which leads to reduced fuel consumption, and CO2 emissions.
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Calculate the Total CO2 Emissions

The emission factor for taxis can vary depending on the type of vehicle, the fuel
type, and the average distance traveled. According to the U.S. Environmental Protection
Agency (EPA), the average CO2 emissions for a gasoline-powered taxi is approximately
0.404 kg/mile [49]. Using the carbon footprint model [50] provides a useful starting point
for understanding the environmental impact of the taxi fleet and identifying ways to reduce
emissions. The carbon footprint model is as follows:

CO2 Emissions = Nat × ACe × Att (9)

where Nat: the number of allocated taxis per day,

ACe: the average CO2 emissions per taxi,
Att: the taxi travels on average per day.

Minimizing the number of taxis required to serve all passenger demand is typically
the top priority in this problem. The current heuristic approach addresses this objective by
proposing a simple algorithm that minimizes the number of vehicles needed. It is worth
noting that the algorithm is only suitable for problems involving a homogeneous fleet of
taxis. We also assume that the number of taxis available is 42, so constructing an initial
feasible solution can always be done. This paper focused on minimizing the CO2 emissions
from taxi idle time and reducing the number of taxis that idle. This can be achieved by
implementing policies or practices that encourage drivers to turn off their engines when not
driving, such as turning off the engine during short breaks or when waiting for passengers.

The number of allocated taxis per day is 42 taxis that the company used and the average
CO2 emissions per taxi are 0.404 kg/mile. Each taxi travels an average of 64.10 miles per
day, then from Equation (9), the total daily CO2 emissions from the taxi would be:

CO2 emissions = 42 taxis× 0.404 kg CO2/mile× 64.10 miles per taxi = 1087.65
kg CO2 per day
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After the optimal solution of the mathematical model in the case study, we minimize
the number of taxis and costs. On average, the number of taxis per day used is only 8 in
Table 4. Therefore, the total daily CO2 emissions are:

CO2 emissions = 8 taxis× 0.404 kg CO2/mile× 64.10 miles per taxi = 197.48 kg
CO2 per day

(10)

The taxis in the suburban area of Nagaoka have reduced their CO2 emissions by
81.84%, which amounts to 890.17 kg per day.

This paper presents a novel model for optimizing the operations of a taxi firm using
a simulation-based approach to evaluate the performance of our model. It shows that
our model can effectively capture the real-world situation of the taxi market. By using
the proposed model, the best number of taxi hours can be made available to customers
while retaining driver benefits, which means reducing customer waiting time and making
it one of the best solutions. The effects on taxi customers must be taken into account
when researching reducing taxi operating costs. Table 4 shows the optimal allocation of
taxi demand. This confirms that the model can minimize the total idle time costs of taxi
drivers while minimizing CO2 emission. Dynamic greedy heuristics in a relatively short
runtime successfully solved the taxi allocation problem, making this an effective tool for
taxi companies.

Taxi companies should know that establishing a decision support system will benefit
fleet management and empty taxi repositioning. The results of our case study on optimizing
taxi allocation and minimizing CO2 emissions in a suburban area were very encouraging.
By collecting and analyzing data on taxi usage patterns, it is able to identify areas of high
demand and optimize taxi allocation to reduce idle time, which in turn leads to a reduction
in CO2 emissions. Optimization algorithms to identify the most efficient routes for taxis
also significantly reduced the distance traveled by taxis and the amount of CO2 emissions
produced. This was achieved by minimizing the number of empty trips and optimizing
routes to avoid traffic congestion. The existing studies [8,33] described their model could
reduce CO2 emissions from 36% to 47.62% in urban areas, whereas this proposed model
could reduce CO2 emissions up to 81.84 % in suburban areas. Therefore, this model can
make a sufficient contribution to the reduction of CO2 emissions.

Taxi drivers and passengers saved time and money, while the suburban area became
more sustainable and environmentally friendly. The success of this case study highlights
the potential for similar programs to be implemented in other regions and cities. Using data
analysis, optimization algorithms, and incentives can create a more sustainable and efficient
transportation system that benefits everyone involved. It also highlights the importance of
taking action to reduce CO2 emissions and mitigate the impact of climate change.

7. Sensitivity Analysis

This section discusses the sensitivity analysis based on taxi demand. Such analysis
is vital in assessing the validity of the objective function. Sensitivity analysis is employed
to identify relationships between input parameters and model outputs. For example, one
can select initial concentrations of modeled species or reaction rates as input parameters.
Sensitivity analysis is very helpful in mathematical modeling because it explains how
different model components are interdependent. The developed model in this study was
also subjected to a sensitivity analysis with regard to passenger demand. When performing
a sensitivity analysis of expenses, the taxi demand was altered (increased or decreased) by
10% and 50% while only altering one parameter at a time, leaving the other parameters the
same. The formula for calculating the percentage inaccuracy was (measured value-actual
value) * 100/actual value. Here the actual value is the average ideal time cost from the
model, and the measured value is obtained after alternating the demand.

The sensitivity analysis was carried out by increasing and decreasing the passenger
demands by the daily passenger volume. From the sensitivity, it was clear that the total idle
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time cost increased if the demand increased, as depicted in Figure 6. The operating costs
(yen) increased significantly when taxi demand increased from 215 to 387 trips per day.
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8. Conclusions

Efficient transportation systems are necessary to reduce CO2 emissions in the context
of climate change. Taxi services are an essential part of the transportation system in
urban and rural areas. Inefficient taxi services cause problems such as increased idle
times, resulting in increased CO2 emissions. Therefore, optimizing taxi allocation can
help reduce CO2 emissions and improve the sustainability of urban transportation. For
this purpose, this study proposed a mathematical model of taxi allocation optimization
problem for minimizing taxi driver idle time costs which help to reduce CO2 emission in
suburban contexts. Since the proposed model is formulated as a mixed-integer program, it is
necessary to propose the solution algorithm as well. We proposed three heuristic algorithms:
greedy algorithm, simulated annealing algorithm, and dynamic greedy. Further, a case
study has been carried out to demonstrate the proposed methods and show its implication
by using real taxi data from Nagaoka, Japan. For the case study, we first identified the taxi
travel hotspots as potential locations for taxi spots by investigating the pick-up and drop-off
locations and times by analyzing the GPS data of the taxi. After that, we found the optimal
taxi allocations by applying the proposed model and solution algorithms. To summarize,
dynamic greedy heuristics successfully obtained excellent solutions in relatively short
runtimes for the taxi issue, making strategic decisions and feasible choices for taxi markets
to adopt. The case study application in this study demonstrates the potential for using
data analysis, optimization of taxi allocations and the number of taxis, and reducing
approximately 81.84% of CO2 emissions in the transportation sector. Finally, sensitivity
analysis was applied to validate the model for passenger demand. The sensitivity analysis
showed that the total idle time cost increased if the demand increased.

To conclude, the optimization of taxi allocations can have a significant impact on
creating carbon-free and environmentally friendly cities. By strategically placing taxi
spots and optimizing their routes, cities can reduce the number of vehicles on the road,
decreasing harmful emissions and improving air quality. Therefore, it is essential for cities
to invest in and prioritize taxi allocation optimization as a crucial step toward achieving
sustainable transportation. Future research able to be conducted utilizing machine learning
algorithms to solve the allocation issue may provide promising results. This model can also
be adapted to improve the performance of taxis in various cities and other urban public
transport networks.

Author Contributions: The authors confirm their contributions to the paper as follows: study
conception and design, M.M., K.S., T.K. and C.P.; resources, K.S.; data collection, M.M.; analysis
and interpretation of results, M.M., T.K. and C.P.; draft manuscript preparation, M.M., T.K. and C.P.;
supervision, K.S. All authors have read and agreed to the published version of the manuscript.



Smart Cities 2023, 6 1609

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
This part describes the notations and parameters to be applied in the formulations from (1) to

(8) as follows:

Symbols Descriptions
A The set of arcs
n The total number of taxi drivers
Sk

i Start time for driver k his working day at a specific location i ∀ i ∈ A(Sec.)
Ek

j End time for driver k his working day at a specific location j ∀ j ∈ A(Sec.)
co Idle time unit cost (yen)
qi Demand at the location i ∀ i ∈ A
seri Service time at the location i ∀ i ∈ A, each taxi maximum stay at the location (Sec.)
Tij Travel time from the location i to j ∀ i, j ∈ A
Q Maximum capacity of each taxi
M A large number
Decision variable

Zk
ij

{
1 if traveling along (i, j) with taxi k

0 otherwise
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