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Abstract: Monitoring air quality is gaining popularity in the research community since it can help
policymakers make the right decisions for mitigating the negative effects of the ever-increasing
pollution in cities. One of the significant sources of air pollution in urban areas is road transport.
Assessing and understanding the relationship between urban traffic and local pollutants is crucial
to maintaining sustainable urban mobility. This paper presents an exploratory data analysis of air
pollution and traffic in some cities in Luxembourg. Furthermore, we studied the link that several
pollutants have with other parameters, such as temperature and humidity. The paper also focuses on
traffic and offers more insights for sustainable urban mobility.
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1. Introduction

The assessment of air quality is gaining popularity in the research community since
it can enable policymakers to make proper decisions for mitigating the negative effects
of the ever-increasing pollution in cities. Among the different sources of pollution in
urban areas, transportation represents a share of almost twenty percent of the overall
greenhouse gas emissions (GHGs). Road transportation accounts for the most significant
proportion of the total transport emissions (72% of all domestic and international GHG
emissions in 2019, according to [1]). As a result, most existing and planned measures in the
member states concentrate on road transportation. In parallel, the European Environment
Agency’s report series on the air quality in Europe provides annual assessments of air
pollutant emissions and concentrations in ambient air across Europe and the associated
health and environmental impacts [2]. The annual assessments are based on official data
from European countries and those following the ambient air quality directives of the
European Union (EU), which define the standards for assessing key air pollutants in a
given region [3]. These air quality guidelines were derived from those of the World Health
Organization (WHO), which published new guidelines in 2021 [4] following a systematic
review of the most recent scientific evidence demonstrating how air pollution harms human
health. Some European countries have established an air quality index (AQI), a nationally
uniform index for reporting and daily forecasting, to provide citizens with information
about air quality. It is based on the five most common regulated ambient air pollutants:

1. Particulate matter (PM10) describes inhalable particles with diameters of 10 microme-
tres and smaller;

2. Nitrogen dioxide (NO2) is a highly reactive gas that primarily gets into the air from
the burning of fuel;

3. Ozone (O3) is a highly reactive gas composed of three oxygen atoms. Ground-level
ozone, which we can breathe, is formed primarily from photochemical reactions
between two major classes of air pollutants: volatile organic compounds (VOC) and
nitrogen oxides (NOx);
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4. Carbon monoxide (CO), which is a colourless, odourless gas that can be harmful when
inhaled in large amounts. CO is released when something is burned. The greatest
sources of CO in outdoor air are cars, trucks and other vehicles or machinery that
burn fossil fuels;

5. Sulfur dioxide (SO2), which results from the burning of either sulfur or materials
containing sulfur. SO2 emissions lead to the formation of other sulfur oxides, which
can react with other compounds in the atmosphere to form small particles. Short-term
exposures to SO2 can lead to respiratory problems.

The AQI, see Figure 1, informs the public about how clean or polluted the air is and
how to avoid potential health consequences. The work in this paper assesses traffic-related
air quality using pollutant values.

Figure 1. European Air Quality Index: the pollutants are expressed in terms of their maximum hourly
value in micrograms per cubic meter of air.

Several research initiatives have been proposed to limit the negative effects of pol-
lution on the urban environment. This concerns, for instance, advanced optimization
algorithms [5,6] for mobility [7,8] or freight transportation using cleaner vehicles [9–11]. In
the framework of smart cities, other works are concerned with the optimization of waste col-
lection [12] or water distribution [13] using Internet of Things (IOT)-based devices. In [14],
acoustic sensors were used for monitoring noise annoyance. Most of the publications in the
literature regarding smart cities are concerned with the use of advanced technologies, such
as IOT devices, or artificial intelligence to measure and monitor pollution. The impact of
such initiatives has to be assessed in order to increase the socio-economic benefits of setting
up a smart city [15,16]. Still, research that assesses a part of the implemented solutions is
relevant, such as [17] for sensors and [18] for machine learning techniques. Indeed, the
use of data-driven approaches are of critical importance to reduce the negative effects of
several pollutants by defining some essential steps [19]. Furthermore, understanding the
source of some pollutants is crucial for informing emission-reduction policies and helping
to ensure that the most appropriate air pollution sources are targeted [20]. Several studies
have been performed with the aim of understanding the temporal behavior of pollution
data and their characteristics [21–23], considering the non-stationarity and non-linearity of
pollution data [24]. Many time-series methods have been applied, such as rescaled range
analysis for investigating persistence in large urban areas [25,26]. Detrended fluctuation
analysis has been undertaken for identifying long-term memory effects and the study of
asymmetries in long-term correlations [27]. Complexity measures have also been achieved
in order to understand the dynamics of some pollutants [28–30].

In a recent paper, Amato et al. studied the time series of some pollutants, including
NO2 and O3, that were collected in different areas in Switzerland, using Fisher–Shannon
measures and time-series clustering [31]. Their findings pointed out different time-series
behaviors depending on where the data were collected (urban environments with traffic,
suburban areas, high-mountain regions, etc.).
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In this paper, we investigated air pollution data with regard to temperature and
humidity. In fact, we considered air pollution time series as data points, to which we
applied clustering techniques. The obtained clusters delivered more insights about each
pollutant and the local climate. In addition, we explored the weekly behavior of each
pollutant and then tried to explain the relationship with the amount of traffic near the
sensors. The remainder of the paper is organized as follows. Section 2 describes the
collected data and presents a comprehensive exploratory data analysis of air pollution and
traffic in some cities in Luxembourg. In Section 3, we perform time-series clustering and
describe the links that several pollutants have with other parameters, such as temperature,
humidity and the amount of traffic. In Section 4, we give conclusions, as well as perspectives
for future works.

2. Data Description

Several sensors have been settled for air quality assessment and traffic counters in
several urban areas in Luxembourg. More precisely, these sensors of different natures
can measure air pollutant concentrations, temperature, humidity and noise intensity, as
well as count and identify vehicles. Their installation depends on the will of the company
installing the sensor or the public or private institution near to where a sensor is installed.
For instance, seven traffic sensors were installed at the beginning of July 2022, while five
air quality sensors were installed in June.

2.1. Air Quality Data

The pollution data used in this paper were collected from five electrochemical air
quality sensors named Sensor 1 to Sensor 5. They use LoRaWAN communications, enabling
each IoT device to connect over a secure network to one central gateway. This form of
communication removes the need for data sim cards, therefore reducing their costs. The
sensors collect data every minute from Monday to Friday and from 7 to 9 a.m and from 5
to 7 p.m on those days. The location of the air quality sensors is given in Figure 2 (by the
blue circles). Another view is possible at the sensor provider’s website via a live map. Two
sensors were located in the commune of Niederkorn (Sensor 1 and Sensor 3 are denoted
as S1 and S3 in the figure, respectively), two others were in Differdange and the last one,
the Sensor 5 (denoted as S5 in the figure), was located in Oberkorn. The data records for
several pollutants, nitrogen dioxide, sulfur dioxide and ozone gases in micrograms per
cubic meter (mg/m3) and carbon monoxides in parts of gas per billion parts of air (ppb),
are available. A drop-down menu at the sensor provider’s site enables the request of data
in a certain period. One can, for instance, choose to observe the record of data for one day,
one week or a more extended period. These data can be downloaded in SVG, png or CSV
format. For instance, Figure 3 shows the records of the data on climate condition from
Sensor 1 in week 27 in png format (from 4 July at 22.00 to 11 July at 12.00).

2.2. Traffic Data

The traffic data were generated by two types of sensors: some acoustic ones and others
based on image processing.

2.2.1. Acoustic Sensors

Five acoustic sensors counted the traffic in Differdange and the surrounding area.
They relied on Doppler radars. These specialized radars use the Doppler effect to generate
velocity data about distant objects. They accomplish this by bouncing a microwave signal
off a target and analyzing how the object’s motion affects the frequency of the returned
signal. The location of these sensors is given in Figure 2 (by the red circles). Visualizing the
sensors’ data at the sensor provider’s site was possible. This way, it enabled to monitor the
real-time traffic in key locations of the commune. We could obtain data on the total number
of vehicles during each hour that came from either the right or the left direction. The data
were available from 13 June onwards. For instance, Figure 4 gives the total number of
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vehicles that were recorded by the IKN04 sensor during one month from 22 August to
22 September. Let us note that this sensor was located in the same street as Sensor 1, which
measured the air quality. It also gave the vehicles’ split depending on their direction from
right to left or from left to right.

Figure 2. Location of the different sensors used in this paper: the right panel shows more precisely
the location of the blue sensors (S1 to S5) for air quality measurements and the red ones for collecting
traffic data. The map was generated using Luxembourg’s national official geoportal (https://www.
geoportail.lu) (accessed on 11 January 2023).
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Figure 3. Visualization of the climate conditions recorded by Sensor 1. The blue line indicates
temperature, while the red line shows humidity.
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Figure 4. Total number of vehicles from 22 August until 22 September recorded by the sensor IKN04.

We could also obtain the number of vehicles that traversed the road every twelve
hours for one month or more. The vehicles that went from the left to the right, and were
captured by sensor IKN04 from 22 August until 22 September, are represented in Figure 5.
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Figure 5. Count of vehicles recorded by the IKN04 sensor from 22 August until 22 September.

2.2.2. Object Detection Sensors

The second type of traffic sensor was the “Telraam” device. Each one was attached to
the inside of a window and needed to face the street. The camera took a pixelated image
in low resolution, then these images were transmitted to a Raspberry Pi minicomputer,
which analyzed them: it could detect objects and their size, speed and location. Finally, an
object’s properties were forwarded to a central database where they were converted into
one of the four vehicle types. In order to be able to forward the traffic count data to the
central database immediately, the device was continuously connected to the Internet via
Wi-Fi. The sensor provider gives the location of the Telraam sensors at the following url:
https://telraam.net (accessed on 11 November 2022), see also Figure 6.

Figure 6. Locations of the eight Telraam sensors.

The Telraam sensors can detect a pedestrian or a vehicle that crosses the road from
the left to the right or in the opposite direction, whether its a two wheeler, a car or a heavy
vehicle. Figure 7 gives, for instance, the split of the different types of road users from
the period starting on 22 August and ending 22 September that was recorded by a sensor
located near Sensor 4.

https://telraam.net
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Figure 7. Total number of vehicles per type recorded by the sensor near Sensor 4 for a one
month period.

Figure 8 shows the daily traffic count for cars, pedestrians, two-wheelers and heavy ve-
hicles that was recorded by the sensor near Sensor 4 from 22 August until 22 September 2022.

Figure 8. Overview of the traffic per day recorded by the sensor close to Sensor 4 from 22 August
until 22 September.

It is also possible to observe, for each hour, the split per category of vehicles and
directions recorded by any Telraam sensor, as is the case in Figure 9.

Figure 9. Average per hour of the split per category of vehicles and per direction recorded by the
sensor close to Sensor 4 from 22 August until 22 September. A > B represents the direction from the
left to the right, and B > A represents the opposite direction.

Lastly, the V85 was also recorded, see Figure 10. This corresponds to the vehicle traffic
law where the legal speed limit of a motorway is decreased by 15% in case of hazardous
weather conditions [32]. This is common practice in many countries within the European
Union [33].

One can observe that the speed limitation was respected during all of the observed period.
As some traffic sensors were installed after the air quality ones, data were collected

only for the period during which all the sensors were operational. Only the data of the
sensors located at the same location as the air quality sensors were considered to assess the
impact of the traffic on the air quality.
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Figure 10. Average speed limit (V85) per hour in the period from 22 August until 22 September
recorded by the sensor close to Sensor 4 in Differdange.

2.3. Differentiation of the Collected Data

Daily sensor data averaged over four months were examined in this study (from 1
April to 31 July 2022). Table 1 gives an overview of the data available at the time of the
study, an instance being the data recorded on a whole week by one sensor.

Table 1. Data statistics of the studied area.

Air quality Sources 5
Instances 320

Weather Sources 5
Instances 160

Traffic count Sources 13
Instances 208

Figure 11 shows an example of raw data from one of the air quality sensors in
Niederkorn. As is mentioned in the figure, data from the four months (since the be-
ginning of the recording) for four pollutants, namely NO2, SO2, O3 in mg/m3 and CO in
ppb, were investigated.
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Figure 11. Examples of time series of NO2, SO2, O3 in mg/m3 and CO in ppb that were recorded by
one of the sensors in Niederkorn.

One can easily see the increasing trend of some pollutants, such as the CO and the
O3. We differentiated the time series to remove this trend and other potential seasonalities.
Figure 12 shows the results of the differentiation of the time series of Figure 11.

To illustrate the performed differentiation, Figure 13 shows the cross-correlation of
SO2 between sensors (before and after removing the trend and seasonalities). By removing



Smart Cities 2023, 6 936

the trend and the seasonalities, we focused on the local behaviors of the data, which could
help to understand, at an urban level, the temporal evolution of these pollutants.

-50

0

50

A
ve

ra
ge

 C
O

-50

-25

0

25

50

A
ve

ra
ge

 N
O

2
-400

-200

0

200

A
ve

ra
ge

 O
3

-50

0

50

100

A
ve

ra
ge

 S
O

2

Figure 12. Example of the pollutants’ time series (NO2, SO2, O3 in mg/m3 and CO in ppb) from the
same sensor in Niederkorn, after differentiation to remove the trend and seasonalities.
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Figure 13. The SO2 pollutant used as an example to show the high correlation at several lags, between
the first sensor and the other four sensors (left-hand-side plots). This correlation was then reduced by
differentiating the time series (right-hand-side plots).
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3. Time-Series Clustering
3.1. Description of the Method

In many cases, the collected data were not labelled or were lacking information
regarding their partition. Unsupervised learning techniques are usually used to overcome
this issue [34]. In time-series data, assigning labels is an active research area [35]. The
key component in time-series clustering is the choice of a suitable dissimilarity measure.
Montero and Vilar suggested an R library (TSclust) that dealt with this issue, in which they
offered many dissimilarity techniques [35]. Once the dissimilarity measure is selected, the
clustering can be performed using the centroid-based technique (k-means algorithm) [36]
or the medoid-based method (partitioning around medoids (PAMs) algorithm) [37]. In
this paper, we used a k-means algorithm to perform the clustering. It defined the partition
by reducing the sum of the squared errors between the empirical means of each partition
and data points belonging to it [38]. Initially, the k-means algorithm randomly defined a
partition and then labeled each data point with the closest cluster centre. This procedure
was repeated until convergence. The selection of the number of clusters, k, is a crucial
step in k-means clustering. There are several methods to select k, including the elbow
method [34], in which the sum of the squared distances between each data point and its
cluster centroid (also known as the within-cluster sum of squares or WCSS) for different
values of k is plotted. The plot will typically form an elbow shape, and the number of
clusters can be chosen at the elbow point where the decrease in the WCSS begins to level off.
Another method for selecting k is the silhouette method, which measures how well each
data point fits into its assigned cluster compared to other clusters. The number of clusters
can be chosen to maximize the average silhouette score. Hierarchical clustering can also
be used to obtain a dendrogram to choose the number of clusters based on the height of
the branches in the dendrogram [34]. The clustering strategy follows the same strategy as
in [31]. However, as an example, we show the result obtained by the most straightforward
dissimilarity measure, which is a correlation-based dissimilarity [39]. In the next section,
time-series clustering is applied to the full time series to evaluate the temporal behavior of
each pollutant with respect to the temperature and the humidity.

3.2. Temporal Behavior of Each Pollutant with respect to the Temperature and the Humidity

In Figure 14, one can observe that two clusters of SO2 data appear for the temperature.
The first cluster, in green, is composed of the data captured by four sensors (Sensor 1 to
Sensor 4), while the other is composed of data from Sensor 5. There are also two clusters
for the humidity, the first one with data from four sensors, Sensor 1 to Sensor 4, and the
second, in red, with data from Sensor 5. One can observe a slight difference in humidity
and temperature between the two clusters. One can see that Sensor 5 forms, by itself, a
cluster and shows slightly different temperature and humidity values compared to the
other sensors. Furthermore, the cluster containing Sensor 5 could possibly be influenced by
the presence of manufacturers or different activities.

The same trend was observed with the other pollutants. Figures 15–17 represent the
clustering of the data for the CO, NO2 and O3 pollutants, respectively. There were always
two clusters, but they depended on the observed pollutants. For CO and temperature, the
first cluster consisted of data from three sensors (Sensor 1 to Sensor 3), while the second
contained data from two sensors, Sensor 4 and Sensor 5. Humidity clusters were formed
similarly to the temperature clusters.

For the NO2 data in correlation with the temperatures registered, the first cluster
contained data from Sensor 1, Sensor 2 and Sensor 3, which were similar to those of the CO
pollutant. The second cluster gathered data from Sensor 4 and Sensor 5. For the humidity,
the two clusters had data from the same sensors as for the temperatures. Regarding the O3
data, two clusters appeared, the first including data from Sensor 1, Sensor 4 and Sensor 5,
which had the same temperature behavior. The second cluster was made up of data from
Sensor 2 and Sensor 3. The data correlated to humidity resulted in two clusters with data
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from the same sensors (Sensor 1, Sensor 4 and Sensor 5) for the green cluster and Sensor 2
and Sensor 3 for the red cluster.
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Figure 14. Clustering of SO2 data for the full period of the study and their visualization with respect
to temperature and humidity.
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Figure 15. Clustering of CO data for the full period of the study and their visualization with respect
to temperature and humidity.
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Figure 16. Clustering of NO2 data for the full period of the study and their visualization with respect
to temperature and humidity.
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Figure 17. Clustering of O3 data for the full period of the study and their visualization with respect
to temperature and humidity.

3.3. Temporal Behavior of Each Pollutant with Respect to the Traffic

This section reports the results obtained by applying the clustering technique to the
whole time series to assess the role of traffic on each pollutant. The same clustering strategy
was applied after differentiating the time series from one of the sensors. We grouped the
time series by weeks and tried to find clusters. From the recorded 16 weeks, we obtained
4 clusters, each representing the data of several weeks. Figure 18 illustrates how these
four clusters were distributed in terms of SO2 and traffic recorded during these weeks. For
each cluster, we computed the median value for visualization purposes. One can see that
Cluster 1 and Cluster 2 correspond to a higher amount of traffic and higher values of SO2.
However, Cluster 3 and Cluster 4 show less traffic and a lower value of SO2 than in the
previous clusters.
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Figure 18. Clustering results applied to several weeks of data and visualization of SO2 and traffic data.

Figure 19 shows nine clusters of CO and traffic data. One can observe that, for several
clusters, the high level of traffic can be linked with the high amount of CO recorded.
However, this was not the case for Clusters 1, Cluster 2, Cluster 8 and Cluster 9, which
represent almost half of the data.
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Figure 19. Clustering results applied to several weeks of data and visualization of CO and traffic data.

Figure 20 shows four clusters for the NO2 pollutant. One can see that for Cluster 1,
Cluster 2 and Cluster 4, the distribution of the level of traffic and amount of emitted NO2 is
completely different, which is not the case for the Cluster 3. Globally, the amount of NO2
tends to be as high as the traffic level.
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The results for the O3 pollutant are illustrated by Figure 21, which shows seven clusters.
The data distribution was different for the pollutant and traffic in almost all the clusters.
The amount of traffic did not reflect the pollution level in the two first clusters.

7500

8000

8500

9000

1 2 3 4 5 6 7

Clusters

T
ra

ffi
c 

co
un

t

Cluster

1

2

3

4

5

6

7

200

400

600

800

1 2 3 4 5 6 7

Clusters

P
ol

lu
ta

nt

Cluster

1

2

3

4

5

6

7

Figure 21. Clustering results applied to several weeks of data and visualization of O3 and traffic data.

Therefore, despite the results showing a difference in the obtained clusters (concerning
temperature, humidity and traffic), it was not easy to point out a causality between these
inputs and the different pollutants. For instance, for the traffic, the differences that Cluster
1, Cluster 2 and Cluster 3 have in comparison with the other clusters is clear. However,
other related activities could have driven both variables, the traffic and O3.

4. Conclusions and Perspectives for Future Works

In this work, daily air pollution time series of NO2, CO, SO2 and O3 from five locations
in Luxembourg were analyzed and compared with humidity, temperature and traffic data.
An exploratory time-series analysis was performed, which showed an increasing trend
in some pollutants. Trends and seasonalities were removed by differentiating each time
series. Such detrending helped us to focus on the local behaviors of the recorded time series.
Clustering was performed to find grouped labels. The clustering explored the potential link
between the pollutants and other variables, such as temperature, humidity and the amount
of traffic near the recording sensors. The clustering was performed using the k-means
algorithm with Pearson correlation as a dissimilarity measure.

As mentioned previously, although the results showed separate clusters concerning
urban traffic, the decision to mitigate traffic should consider more parameters. The existing
link of pollutants with traffic may be driven by other features to which we presently do not
have access, such as the impact of industrial areas near the sensors.

Although the results were interesting, the paper could have been more extensive in
terms of purpose because of the amount of data. This work used data recorded only during
peak hours during the day, which was also essential to assess the impact of traffic. The data
were recorded by a limited number of sensors that covered a small region. However, the
proposed methodology could easily be adapted to a more significant number of sensors
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covering a wider geographical area. Moreover, this work represents a starting point for
an exploratory analysis of the data collected through these sensors. We plan to forecast
these time series and the air quality index when more data are collected, mainly when all
seasons have been recorded. We will then design an optimization framework to reduce the
number of vehicles, for instance, according to environmental parameters and the prediction
of pollutant time series. Further works could also involve collecting more features, such as
land use, land cover, vegetation, wind speed and information about the city (e.g. building
heights) over an extended period.
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