
Citation: Fernández-Carrasco, J.Á.;

Echeberria-Barrio, X.; Paredes-García,

D.; Zola, F.; Orduna-Urrutia, R.

ChronoEOS 2.0: Device

Fingerprinting and EOSIO

Blockchain Technology for

On-Running Forensic Analysis in an

IoT Environment. Smart Cities 2023, 6,

897–912. https://doi.org/10.3390/

smartcities6020043

Academic Editors: Miguel Pincheira

and Massimo Vecchio

Received: 31 January 2023

Revised: 24 February 2023

Accepted: 27 February 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

ChronoEOS 2.0: Device Fingerprinting and EOSIO
Blockchain Technology for On-Running Forensic Analysis in
an IoT Environment †

José Álvaro Fernández-Carrasco * , Xabier Echeberria-Barrio , Daniel Paredes-García, Francesco Zola
and Raul Orduna-Urrutia

Fundación Vicomtech, Digital Security Department, Basque Research and Technology Alliance (BRTA),
Mikeletegi 57, 20009 Donostia-San Sebastián, Spain
* Correspondence: jafernandez@vicomtech.org
† This paper is an extended version of our paper published in 4th International Congress on Blockchain and

Applications, L’Aquila, Italy, 13–15 July 2022. ChronoEOS: Configuration control system based on EOSIO
blockchain for on-running forensic analysis.

Abstract: In industrial environments there are critical devices, so their correct operation must be
ensured. In particular, having a secure record of the different events related to these devices is
essential. Thus, this record can be used in future forensic investigations in case of accidents or
production failures. In this sense, blockchain technology can bring reliability to the event log. In this
paper, ChronoEOS 2.0, an extension of ChronoEOS, is presented. This new version can record the
events that occur in multiple industrial robotic arms by deploying a Smart Contract in the EOSIO
blockchain so that all events are immutably recorded in the blockchain. Furthermore, the new version
allows using a unique fingerprint of the robot before registering an event in the blockchain. This
fingerprint depends only on the characteristics of the operation and configuration of the robot. For
this reason, ChronoEOS 2.0 not only increase the ability of ChronoEOS in terms of handling multiple
devices but also increases the security and reliability of the operations. Finally, in this study, we verify
that the new improvements have little impact on the hosting resources (RAM and Network are not
altered, while CPU consumption is slightly higher due to the device fingerprinting module).

Keywords: EOSIO blockchain; forensic analysis; device fingerprint; industrial security

1. Introduction

Cybercrime will have associated damage costs of around 10.5 trillion by 2025
(https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/ accessed
on 30 Januar 2023) (in 2015, it was 3 trillion, three times lower), and this growth is not ex-
pected to slow down in the short/medium term. Another fact that reflects the considerable
impact of cybercrime is that according to the CyberEdge group report
(https://cyber-edge.com/cdr/ accessed on 30 January 2023), 86% of the organizations
analyzed suffered a cyber-attack in the last year (2021).

Although attack methods are becoming more sophisticated and harder to detect [1],
many resources, both financial and human, are being invested to find solutions to mitigate
the effect of these cyber-attacks or prevent them from occurring in the first place. Partic-
ularly in the Internet of Things (IoT) field, the number of attacks is growing since it is a
sector in which security standards are still under development [2]. Furthermore, there are
usually significant vulnerabilities and the impact can be severe for the environment that
suffers the attack [3]. This is due to the fact that it is increasingly common in an industrial
environment to find a multitude of interconnected devices, sharing information between
them about the production processes being carried out. In this way, an attacker currently
does not need to have direct contact with the target device, as it can be connected to the
network and proceed with his attack attempts remotely [4].

Smart Cities 2023, 6, 897–912. https://doi.org/10.3390/smartcities6020043 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities6020043
https://doi.org/10.3390/smartcities6020043
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0001-7574-7123
https://orcid.org/0000-0001-6836-2890
https://orcid.org/0000-0002-1733-5515
https://orcid.org/0000-0002-5932-0987
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cyber-edge.com/cdr/
https://doi.org/10.3390/smartcities6020043
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities6020043?type=check_update&version=1

Smart Cities 2023, 6 898

Because of this, and the large amount of information and data that is handled in this
type of environment, it is crucial to have a secure record of the evidence of the use of the
different elements of the environment. In this way, this record can be useful in future
forensic investigations in the event of an attack, accident or misuse of the equipment [5].
For example, in an environment with several industrial robots in a production plant, any
variation in the configuration of the robots can have serious consequences, both in terms
of employee safety and in terms of delays and failures in production. Logically, for this
evidence repository to be valid in forensic analysis investigations, it is important to ensure
the veracity of the information that has been recorded. In other words, it must be ensured
that all relevant information has been collected and that it has not been altered at any
time by an external agent, and blockchain technology fulfills this requirement [6]. Another
problem is that in many cases, in order to extract evidence in an industrial environment, it
is necessary to stop production and extract the information offline. This is not desirable,
since the ideal is not to affect production.

For this reason, this paper presents ChronoEOS 2.0, a solution based on blockchain
technology and device fingerprinting that allows having a record of evidence of the events
that occur in an industrial environment [7]. This work is an extension of a conference
paper [8], which presented a solution for forensic analysis on a configuration file of a single
industrial robotic arm. The main difference with the previous project is that this time the
developed solution allows having a decentralized log with the events of several robots.
In addition, to ensure the veracity of the information that is recorded, a previous step of
univocal identification of robots based on device fingerprinting is performed, so that it is
necessary to know the fingerprint of that robot to enter a new event. In this way, an extra
layer of security is provided to the system.

1.1. Device Fingerprinting Description

Device fingerprinting [9] involves gathering device information to generate particular
signatures that identify individual devices. Those signatures can cover a set of devices
or individual devices according to the information they contain and how restrictive it
is. Moreover, device fingerprinting can be active if it sends queries to the target device
to analyze the response or passive if it only uses a sniffer to capture and analyze traffic
but never sends traffic to the target device. An effective device fingerprint must satisfy
two main properties, the difficulty of forgery and the stability of the features used and
localization [10]. Therefore, classical device identifiers, such as IP, cannot be the unique
characteristics of the fingerprint, as they are easily modifiable. In addition, the features
that can be modified at the minimum generate fingerprints that are valid for a short time
due to their low stability. Particularly, robots are considered devices, and they contain
operative systems. Therefore, the device fingerprinting technology can be implemented on
them. Moreover, there exist works where the device fingerprinting technology has been
modified for the robots, and their particular properties, such as movements or the energy
they consume [11].

1.2. Blockchain in Forensic Analysis

According to the National Institute of Standards and Technology (NIST), digital
forensics is understood as "The process used to acquire, preserve, analyze, and report on
evidence using scientific methods that are demonstrably reliable, accurate, and repeatable
such that it may be used in judicial proceedings". Because electronic evidence is present in
cybercrimes, digital forensics refers to all evidence and information that can be obtained
from electronic devices, whether computers, cell phones, or external storage devices [12],
so any item stored digitally can become evidence in a digital forensic investigation [13].

Accessibility to this information by investigators is relatively simple since there is
always an electronic trace of the processes performed [14]. However, the treatment of
the evidence must be done following a series of specific patterns or steps, since any
contamination of the evidence could imply its invalidity in a judicial process. To preserve

Smart Cities 2023, 6 899

this integrity, a process called chain of custody takes place, through which the integrity
of the evidence is preserved by keeping an exhaustive and chronological record of all the
stages from the time the evidence is obtained until it is presented as criminal evidence.
This implies control of the persons who collect the evidence, of the persons or entities
that make use of such information, and of a dated record of each of the movements of the
evidence. In addition, to avoid contamination of the original evidence, it is necessary to
carry out all investigations through a copy of the available information, since this avoids
direct processing and, with it, the possible contamination of this information [15].

This chain of custody process can be divided into five main stages, as explained by [16]:
Collect Evidence, Authenticate, Examine, Analyze and Report Evidence.

The first stage consists of collecting the samples. It, once the elements that make up
this evidence are known, it is necessary to use equipment that safely allows its acquisition,
since an error in its extraction could leave the evidence with an invalid character due to
its contamination. The second part is related to the authentication of the evidence found.
For this, it will be necessary to verify the veracity of the evidence and its origin to be able
to accept it. The third stage consists of the thorough examination of all the evidence, i.e.,
the search for possible hidden information in order not to lose any evidence, as it will
be important to be analyzed in the next stage. The fourth stage consists of the analysis
of all the information collected. This stage is crucial because the results obtained from
the analysis will provide the evidence that proves the guilt or innocence of the alleged
cyber attacker. Finally, the fifth stage consists of the preparation of a complete report with
the entire investigation process from beginning to end, which will be delivered as final
evidence in a trial.

Of all these processes, one of the most complicated phases is the verification of the
information, since it is complex to ensure that no information available in the registry
has been adulterated or eliminated by cyber-attackers, which would cause the integrity
of such information to be violated. It is here where blockchain technology acquires great
importance [17], since it is a blockchain-based technology in which transactions are recorded
in a public, secure and decentralized manner, where all blockchain participants have access
to the database and in which there is no central administrator who is the provider of the
information, thus being all the information immutable.

There are several fields of application where this blockchain technology is imple-
mented. Among them is [18], which uses it in forensic applications for connected vehicles,
allowing the collection of all available information, such as, for example, own and third-
party driving speed, vehicle braking information, the state of the vehicles or the state of
the roads, among others, securely and truthfully. Another environment where blockchain
technology is being used in IoT environments. An example of this is found in [19], where its
implementation based on Hyperledger Fabric is proposed, which is a blockchain authorized
to meet privacy requirements being used in smart homes to preserve the integrity and
veracity of the data collected. Another implementation framework where this technology
is used is the agri-food industry, as presented by [20], which exposes the use of blockchain
to perform an exhaustive record of food traceability, thus reliably certifying its origin,
from the farm to the arrival of the consumer. Finally, an example of an application in the
pharmaceutical industry is [21], which implements this blockchain technology to perform a
reliable and secure record of the traceability of the processes carried out in the distribution
network of products in the industry.

1.3. EOSIO Blockchain

EOSIO is a type of blockchain that emerged in 2018 from the hand of the company
block.one (ref white paper) and is specially designed to facilitate the operation and deploy-
ment of Decentralized Applications (dApps), for the creation of Smart Contracts [22].

Smart Cities 2023, 6 900

1.3.1. Consensus Protocol

Unlike other types of blockchain, such as Bitcoin [23] or Ethereum 1.0 [24], which
use the Proof of Work (PoW) consensus protocol, in EOSIO the protocol is the Delegated
Proof of Stake (DPoS). This protocol provides better performance, both in terms of energy
consumption and the number of transactions per second that can be recorded. Thus, in
EOSIO, up to 8000 transactions per second (TPS) can be performed, unlike the 7 TPS that
can be performed in Bitcoin or 11 TPS in Ethereum [24].

In EOSIO [25], 21 producer nodes are elected through a voting system in which
stakeholders can participate. These nodes share the block’s production, so that each
producer signs 12 blocks, with a period of 0.5 seconds between blocks. This approach
enables the possibility to work in environments with a very quick response, and, at the same
time, keep control over the block production. Therefore, each producer node generates
blocks for 6 s in each round. These parameters (12 blocks and 0.5 s production time of each
block) are constants of EOSIO layer 1 and cannot be changed. However, the number of
producers can be different than 21. PoW consumes a large number of resources, which
translates into problems related to the pollution this causes, provoking criticism from
many sectors. On the other hand, in PoS (Proof of Stake) [26] and DPoS, the consensus
is reached by dedicating tokens from the blockchain (staking them). So, the more tokens
staked [27], the more importance they gain in the participation of consensus (in PoS) and
the more weight they gain in voting for the producers (in DPoS). In EOSIO, BFT and
DPoS protocols are employed at different network layers (https://eos.io/news/dpos-bft-
pipelined-byzantine-fault-tolerance/ accessed on 30 January 2023):

• Layer 1: Asynchronous Byzantine Fault Tolerance (aBFT). Its main function is to
monitor and confirm the execution of the blocks so that they are permanently recorded
in the blockchain. Thus, aBFT receives a list (schedule) of block-producing nodes,
which have been proposed in the second layer (DPoS), and checks that the blocks
have been produced correctly through a confirmation process. This process requires
two-thirds of the producers to confirm or validate each block twice before considering
it irreversible.

• Layer 2: Delegated Proof of Stake (DPoS). In this layer, block-producing nodes
are elected to be authorized to sign blocks in the network [28]. Thus, in the EOSIO
main network, 21 producer nodes are chosen, which will be in charge of producing
the blocks.

1.3.2. EOSIO’s Architecture

EOSIO works with three key concepts, which define its architecture [22]:

• RAM: Storage space (in bytes) where the blockchain stores information. Using RAM
for storage allows for faster queries.

• CPU: Processing capacity of an account (in microseconds) and represents how much
processing time an account has when a transaction is executed.

• NET: Measures (in bytes) the size of the transaction stored in the blockchain.

When a transaction is executed, NET and CPU are consumed by the account executing
the transaction, so that account must have the necessary resources.

CPU and NET are mostly used by ordinary users to interact with the blockchain’s
applications and contracts, while RAM is used almost exclusively by developers for imple-
menting decentralized applications (dApps) [22].

1.3.3. Multi Index Tables in EOSIO

Multi Index Tables in EOSIO [29] allow to execute, create, read, update and delete
operations (CRUD operations), while typical blockchain operations are only created and
read. This is why they are a quite useful type of structure in some Smart Contracts, as it
provides a quick way to store information related to the application. In this way, although
the transactions generated by the use of the Smart Contract are stored in the blockchain, in

https://eos.io/news/dpos-bft-pipelined-byzantine-fault-tolerance/
https://eos.io/news/dpos-bft-pipelined-byzantine-fault-tolerance/

Smart Cities 2023, 6 901

the Multi Index Table there is a direct record of the data to be stored. This type of table is
stored in EOSIO’s RAM cache.

Tables in EOSIO are stored according to the following three parameters:

• code: name of the account that first displayed the Smart Contract where the table
structure is defined.

• scope: basically the name (title) of the table.
• table: name of the table type.

For example, if you want to query a table in the blockchain with code=“user10”,
scope=“r2”, table=“robotEvent”, it means that the account that has deployed that contract
(the account that owns the table) is “user10”, the table is of type “robotEvent” and the table
being queried is called “r2”.

2. Materials and Methods
2.1. Use Case Description

Fernández et al. [8] present a novel method for performing the forensic analysis
on-running. At the same time, it may be used to detect anomalies in configuration modifi-
cations, preventing incidents and failures that need to be investigated. They mention that
industrial forensic analysis is dominated by techniques based on evaluating methods once
the malicious modifications are carried out. Moreover, they argue that those after-methods
do not avoid stopping industrial systems from generating losses in production-chain. Those
reasons made them develop a novel forensic analysis method called ChronoEOS.

This work introduces ChronoEOS 2.0, a new approach for complexing and securing
the method presented to ChronoEOS without affecting the hosting resources. This new
version of ChronoEOS is more complex and scalable due to the capability to incorporate
several robots simultaneously in the deployed traceability system. On the other hand,
security is obtained by incorporating a new module to generate a device fingerprinting
signature for each participating robot, which is essential to modify the traceability system.

In this way, to make any modification in the event log, it is necessary to provide two
keys, thus having a double security factor of the application:

• The private key [30] of the account that deployed the Smart Contract. In this use case,
there is an administrator account, which is in charge of making the calls to the EOSIO
blockchain to incorporate new events in the tables.

• The fingerprint of the device in question for which a new event is to be registered in
the blockchain.

In this case, ChronoEOS 2.0 is implemented in a concrete environment formed by
robotic arms, detailed in Section 3.1, for monitoring the new events that they generate due
to the new movements or different actions.

2.2. Universal Robots

Universal Robots (UR) Ltd. is an American company of Norwegian origin dedicated
to the manufacturing of collaborative robotic arms (Cobots) for industrial environments,
whether automotive, metallurgy, electronics, or food, allowing the automation and opti-
mization of repetitive industrial processes. UR has a simulation software of these robots
used for offline programming, called URSim, created to be used in the Linux operating
system. However, URSim allows the possibility of being executed on a Windows server,
provided that a virtual machine is used for this purpose.

This project is going to be developed using URSim simulation software, more specifi-
cally in URSim version 3.14.3. This simulator has some limitations concerning real robotic
arms. While the simulation of digital I/O is possible, some functionalities differ from the
real ones, such as the fact that the force mode does not work, there is no emergency stop, it
always performs perfect trajectories, or the fact that collisions with itself cannot occur.

Among the robotic arms to be used are the UR3, UR5 and UR10. All the robots have
six axes, with a rotation of 360º, except for the last axis of the UR3e, which has an infinite

Smart Cities 2023, 6 902

rotation. The main differences between the various versions lie in the dimensions, weight,
payload and reach of the different robots. The UR3 series of robots is the smallest, most
compact and lightest, making it ideal for use on work tables in small spaces. The UR5 series
has medium dimensions, with a slightly higher weight than the previous one and a longer
reach, allowing greater versatility, which allows it to adapt to a more significant number
of work environments. Finally, the UR10 series of robots is the largest while allowing
greater reach and payload, making them ideal for work environments related to machinery
maintenance. In addition, all robots are equipped with a programming console that allows
the control of the robots and their programming (https://www.universal-robots.com/
accessed on 30 January 2023). A summary of the main features of the robotic arms is shown
in Table 1.

Table 1. UR Robots characteristics.

UR3 UR5 UR10

Footprint 128 mm 149 mm 190 mm

Payload 3 kg 5 kg 10 kg

Reach 500 mm 850 mm 1300 mm

Weight 11.0 kg 18.4 kg 28.9 kg

Speed Movement

Base ±180 º/s ±180 º/s ± 120º/s

Shoulder ±180 º/s ±180 º/s ±120 º/s

Elbow ±180 º/s ±180 º/s ±180 º/s

Wrist 1 ±360 º/s ±180 º/s ±180 º/s

Wrist 2 ±360 º/s ±180 º/s ±180 º/s

Wrist 3 ±360 º/s ±180 º/s ±180 º/s

The working environment in which this project will be developed consists of an
industrial plant with 6 Cobots robotic arms, two of them from the UR3 series, two others
from the UR5 series, and the last two from the UR10 series.

2.3. Device Fingerprinting

The improvements of the solution in an environment containing multiple robots
generated the need for an identifier technology to distinguish and represent those robots in
the blockchain. The device fingerprinting technology for robots was the decided solution
because of the advantages it gives from the security side. This way, only the authentic robot
or the administrator that knows all the features of the original robots can introduce new
information in the event tracking system.

Device fingerprinting generates the signatures that represent the robots taking into
account the features that make the robots unique robots. In particular, in this work,
the presented use case works with specific robots introduced in Section 2.2. Moreover,
Section 2.3 compares the differences between the robot types participating in this use case.
Via this comparison and checking the configuration files of the robots, several parameters
were taken to generate the mentioned identification signature. Table 2 describes those
parameters; even it details the name of the file where they can be found.

Section 2.2 mentioned that six joints form each robot, and the parameter in Table 2
are features of them. Therefore, the robots have a vector of features per each parameter,
concretely, six values. Notice that those parameters would be the same in the case of two
same-model robots. In that case, with those selected parameters, both robots would share
the same device fingerprinting signature; therefore, the developed system does not identify
the robots correctly. Because of that, another parameter is necessary to differentiate the
robots that share the model. In this case, the decided extra parameter was the IP of the
robot, and then the signature contained both the IP and the technical information about the

https://www.universal-robots.com/

Smart Cities 2023, 6 903

robot. Table 3 shows the values of the selected parameters for each type of robot, i.e., the
values that the same robot models share.

Table 2. This table shows the parameters that are considered to generate the device fingerprint of
the robots.

Parameter Description

Mass [kg] The weight of each joint that forms the robot.

Center of Mass [m] The unique point where the weighted joint’s relative position of the distributed mass sums
to zero.

Rotor Inertia [kg × m2]
A scalar value which tells us how difficult a joint is to change the rotational velocity of the

object around a given rotational axis.

Winding Resistance [Ω] The resistance of a length of joint’s copper wires from one end to the other.

Winding Inductance [H] The tendency of an electrical conductor to oppose a change in the electric current flowing
through its joint.

Maximum Velocity [m
s] The maximum speed that a robot’s joint can reach.

Table 3. This table shows the values that the parameters introduced in Table 2 obtain according to
the robot model.

Parameter UR3 UR5 UR10

Mass [2, 3.42, 1.26, 0.8, 0.8, 0.35] [3.7, 8.393, 2.33, 1.219, 1.219, 0.1879] [7.1, 12.7, 4.27, 2, 2, 0.365]

Center of Mass
[0, −0.02, 0], [0.13, 0, 0.1157],
[0.05, 0, 0.0238], [0, 0, 0.01],

[0, 0, 0.01], [0, 0, −0.02]]

[0, −0.02561, 0.00193],
[0.2125, 0, 0.11336], [0.15, 0, 0.0265],

[0, −0.0018, 0.01634],
[0, 0.0018,0.01634], [0, 0, −0.001159]

[0.021, 0, 0.027], [0.38, 0, 0.158],
[0.24, 0, 0.068], [0, 0.007, 0.018],
[0, 0.007, 0.018], [0, 0, −0.026]

Rotor Inertia
[6 × 10−5, 6 × 10−5,

2.0767 × 10−5, 7 × 10−6,
7 × 10−6, 7 × 10−6]

[187.74 × 10−6, 187.74 × 10−6,
187.74 × 10−6, 2.0767 × 10−5,
2.0767 × 10−5, 2.0767 × 10−5]

[7 × 10−4, 7 × 10−4, 187.74 × 10−6,
6 × 10−5, 6 × 10−5, 6 × 10−5]

Winding Resistance [0.78, 0.78, 1.65, 2.394,
2.394, 2.394] [0.3, 0.3, 0.3, 1.65, 1.65, 1.65] [0.088, 0.088, 0.3, 0.78, 0.78, 0.78]

Winding Inductance
[15 × 10−4, 15 × 10−4,
25 × 10−4, 13 × 10−4,
13 × 10−4, 13 × 10−4]

[83 × 10−5, 83 × 10−5, 83 × 10−5,
25 × 10−4, 25 × 10−4, 25 × 10−4]

[33 × 10−5, 33 × 10−5, 83 × 10−5,
15 × 10−4, 15 × 10−4, 15 × 10−4]

Maximum Velocity [3.3416, 3.3416, 3.3416,
6.4832, 6.4832, 6.4832]

[3.3416, 3.3416, 3.3416, 3.3416,
3.3416, 3.3416]

[2.2944, 2.2944, 3.3416, 3.3416,
3.3416, 3.3416]

Those values and the respective IP are concatenated and flattened, obtaining a long
vector with all the corresponding values. This vector is injected in a sha-256 algorithm that
computes the signature identifying the respective robot. The generated signature is private,
and it is necessary to update the traceability of the robot’s events, i.e., only the robot, which
contains the essential information to generate the signature, and the administrator, who
knows the signature of the robot. The smart contract [31] to create this scenario is detailed
in Section 3, which allows maintaining the generated signature private and running it if the
petition contains the adequate signature.

3. Results

This section details the presented system ChronoEOS 2.0, concretely describes each
module of the system, and how those modules combine and their disposition. Moreover,
this system is evaluated in a concrete environment according to the consumed resources in
RAM, CPU, and DISK.

Smart Cities 2023, 6 904

3.1. ChronoEOS 2.0

In this paper, ChronoEOS 2.0 is developed, deployed, and evaluated. It tracks the
events generated according to the actions made by an industrial robot. In this way, it allows
analyzing the activities of the targeted robot in streaming; even the blockchain provides
the trust of the event registered there due to the invulnerability it gives to the information
it contains. The main difference between ChronoEOS 2.0 and the system presented by
Fernández et al. in [8], apart from the functionality of the system and the complexity
is a new device fingerprinting module introduced to increase the security of the system.
ChronoEOS 2.0 consists of the following modules: Device Fingerprinting, Lookout Agent,
Rest API, and Blockchain.

Device Fingerprinting module computes the fingerprint introduced in Section 2.3, which
consists of a hash signature. It is calculated using the configuration files looked at by the
module. Moreover, this module introduces the target robot’s IP in the computation to dis-
tinguish the signatures of the same types of robots since they have the same configurations.
The algorithm used to generate those signatures is sha-256, which gives a hexadecimal hash
according to the received input. That is, the generated fingerprints are unique per robot,
and because of that, they identify the respective robots. Therefore, the device fingerprinting
module looks at the desired configuration files and IP, computes the identification signature
through mentioned information, and outputs that fingerprint to the lookout agent module.

Lookout Agent module is deployed in the industrial robot and is in charge of detecting
the new events generated according to the activities of the targeted robot. This code is
executed in a scheduled process (cron job), so the events are saved with the timestamp
when the target robot runs the action. Identifying the robot is essential to register new
activity, and it is the signature generated by the Device fingerprinting module. That
module passes Lookout Agent the computed signature, in addition to the private key of
the administrator account, which has deployed the Smart Contract, allowing it to record
the newly detected events.

Rest API module is the interface where the operator (authorized user) can interact with
both the Smart Contract and the target information. The methods available in the API can
be divided into two sub-blocks: Blockchain EOS and Smart Contract. The first one contains
the two necessary methods to start and stop the production of blocks in EOSIO, another for
displaying the tracking of the targeted robot’s activities, showing the registered events, and
a method to obtain information on the transactions that have been recorded. The second
one contains functions to display the information for a given account and a method to
call the upsert function of the Smart Contract. This function registers desired events in
the blockchain.

Blockchain module, as mentioned previously, is used as an event repository, giving the
immutable property essential for the trustworthiness of traceability. Concretely, ChronoEOS
2.0 implements EOSIO private blockchain with three block-producing nodes. Moreover,
an API node and a seed node are incorporated. The API node listens to HTTP requests to
the blockchain, while the seed node stores in memory the information of all the blocks in
the case of any blockchain crash to recover it. Due to its immutability, the blockchain is
the key element in this application to ensure the recording of evidence and to carry out
forensic analysis with guarantees in this industrial environment. Otherwise, the desired
functionalities are incorporated into the mentioned blockchain by deploying a Smart
Contract. It uses multi-index tables to register the target information, which is a way of
caching status or data in RAM for fast access. The blockchain records the transactions, but
the multi-index tables allow the application data to be stored. Each robot has a particular
table with the event logs. In particular, in the Smart Contract deployed in ChronoEOS 2.0,
for each registered activity, the following information is stored:

1. Event Number: The number of the registered event.
2. Timestamp: Timestamp of the registered event.
3. Type: The type of the registered event. For example, it may be INFO, WARNING, and

so on.

Smart Cities 2023, 6 905

4. Event: The new event generated by the targeted robot.

That Smart Contract incorporates an upsert function, which receives the mentioned
information as inputs, allowing the event’s registration in the table. The event number is
obtained directly in the function, while the timestamp and type are given with the event
information. An important feature added to the contract is that the upsert function can
only be called by the entity that knows the fingerprint of the respective robot or the robot
itself and the private key of the account that first deployed the Smart Contract. For this
reason, the other entities, which do not know the fingerprint of the robot and the private
key, would not be able to add new events in the blockchain, making the proposed system
more secure.

Figure 1 shows how ChronoEOS 2.0 incorporates the presented modules. The lookout
agent module constantly checks if any new event registration is generated. In case of any
activity is detected, the lookout agent module asks for the targeted robot’s fingerprint to
the device fingerprinting module. It consults the configuration files of the target robot and
takes the values of the concrete features of the target robot defined in Section 2.3. The device
fingerprinting module computes the signature, using obtained values and the target robot’s
IP, and sends it to the lookout agent module. Once the lookout agent module receives
the new events, the private key and the robot fingerprint, it calls the upsert function of
the Rest API module. This function of the rest API module activates the function upsert
incorporated previously in the blockchain module via the deployed Smart Contract.

Figure 1. The diagram of ChronoEOS 2.0, considering the simplest scenario.

3.2. Evaluation

The environment created to deploy the ChronoEOS 2.0 is formed by six industrial
robots mentioned in Section 2.2, two by type. Concretely, Table 4 details the IP and the
robot type of each robot participating in the environment.

Table 4. This table shows the type and IP of each robot according to the robot ID.

Robot ID Type IP

R0 UR3 192.168.20.10
R1 UR5 192.168.20.15
R2 UR10 192.168.20.12
R3 UR3 192.168.20.3
R4 UR5 192.168.20.18
R5 UR10 192.168.20.7

Smart Cities 2023, 6 906

Once those properties were fixed and looking at the configurations presented in
Section 2.3 by robot type, the fingerprint of each robot can be computed. Therefore, the
following signatures are the fingerprints of each robot participating in the environment:

• R0: 0ba67836a6ca85dbf5a09f09de667fb790bc4f3a54eb4b3b2b1d1030d31f76b4
• R1: f282b657121fa12c7b89c0ee9c5f65a42b394b544ba735a817031e6ed228c34b
• R2: 22a05b03c0abd15b4862f89362f1a77cad55dc90862c3ef856879cc06274ec4b
• R3: c2da0202b891511b9d64c373d571d2056169137f9197f1f5b7481658ebfced45
• R4: 0d73df4b99813ebbf475386edab6b28c4abfafbdae25ddee99d802e204934f36
• R5: 5bccbcbde9fb780aa90785e7e1012f29e0b2eefa7dc783cbc9893d0e9cc9546b

Those signatures were incorporated into the Smart Contract, making them essential to
update the traceability of the respective robot. Therefore, once those fingerprints were intro-
duced in the Smart Contract, it was deployed in the Blockchain module, giving the desired
functionalities to it. The details of the Smart Contract are mentioned in Section 3.1. After
that, the six lookout agent modules, one per robot, were deployed, and each was responsi-
ble for recording the newly generated events of each robot. The presented environment is
shown in Figure 2.

The steps required to deploy ChronoEOS 2.0 are presented below:

1. To deploy a private blockchain based on EOSIO, with three producer nodes, one
HTTP node and one Seed node.

2. To create the account that will deploy the Smart Contract. This account will possess a
private key, which should not be shared with others, as it is needed to make changes
to the event tables.

3. To deploy the Smart Contract using the account created in the previous step, adding
the fingerprints of the six robots in the environment.

4. To deploy the REST API on a secure server, accessible to the robots on which the
events are to be stored.

5. To deploy the Lookout Agent for each robot so it can access the information needed
to generate the robot’s fingerprint and the event log. This will also allow calling the
upsert function of the Smart Contract.

6. To deploy in each robot environment the Device Fingerprinting Module, so that the
Lookout Agent can access the fingerprint of each robot when a new event must be
added to the blockchain.

7. Execute the Lookout Agent script in a scheduled process (cron, for example).

To evaluate the performance of ChronoEOS 2.0, a strategy similar to that used in the
previous version [8] was followed. In this way, the resources consumed by the tool in
terms of CPU, RAM and network packet transmission when calling the API have been
measured. It is important to remember that it is critical that the application does not require
high resource consumption since the equipment and devices in an industrial environment
usually have limited and exclusive resources for the execution of their tasks. That is why it
is necessary that the application is as light as possible, otherwise it could not be deployed.
In addition, the memory required by the blockchain to store the generated information
has been measured. The Lookout Agent has been installed as a cron process that runs
every minute. In addition, the psutil python library has been used to obtain the resources
consumed by the running processes. Thus, the calls to the Lookout Agent are in seconds
(see Figures 3–6): 20, 80, 140, 200, 260.

The graphs show how in each minute there are different peaks in the resources
consumed, especially in CPU and packets received. This is due to the fact that when the
Lookout Agent is executed, it must query the blockchain for the table data, observe in the
robot’s event file if new events have occurred, generate a fingerprint for the robot and call
the upsert function for each new event.

Compared to the first version of ChronoEOS, the CPU consumption is significantly
higher when running, but not excessive. The reason is mainly that in this new version
fingerprint generation is added, which requires several operations and calculations. In

Smart Cities 2023, 6 907

addition, it can also be observed how the received data peaks suffer more variations than
in the previous version. This is due to the fact that in the one-minute interval between one
Lookout Agent execution and another, the number of new events generated by the robot is
more disparate. For example, in the last iteration, the peak of data received is more than
double the previous peak, because between one peak and the other, the new events that
have occurred are very different (more in the last peak).

Figure 2. The diagram of the selected environment, where ChronoEOS 2.0 was deployed to be evaluated.

Smart Cities 2023, 6 908

Figure 3. CPU & RAM usage for ChronoEOS 2.0.

Figure 4. Data I/O for ChronoEOS 2.0.

Figure 5. CPU & RAM usage for ChronoEOS.

Figure 6. Data I/O for ChronoEOS.

Smart Cities 2023, 6 909

4. Discussion

The results and tests carried out, together with those performed on the first version
of ChronoEOS, demonstrate the validity of this system to complete the traceability of
events occurring in an industrial environment. Thus, ChronoEOS 2.0 allows a secure,
immutable and reliable record of the events that occur in multiple robotic arms in an
industrial environment.

These security and immutability features are mainly provided by using blockchain
technology, EOSIO in this case. However, the modifications and the design made allow
providing an extra layer of security, which makes ChronoEOS a reliable tool in Forensic
Analysis procedures. This is so for two main reasons:

1. Because of the structure of the Smart Contract that records the events, which only
allows new modifications to the account that has deployed the Smart Contract since it
is necessary to have his private key to call the upsert function.

2. For the inclusion of the Device Fingerprinting module. In case an attacker wants to
make malicious use of the system and has the private key of the admin account, he
will not be able to make changes in the blockchain without the Fingerprint of the
robot he wants to modify. In other words, there is a double security factor, unlike the
first version of ChronoEOS, which only checks the private key.

Compared to the previous version of ChronoEOS, the improvement in terms of appli-
cation security is clear, as the Device Fingerprinting module adds an extra layer of security
that is difficult for a potential attacker to overcome.

On the other hand, regarding the results obtained, in relation to the consumption
of system resources, it is observed that the results are similar to those obtained with the
previous version. Thus, it is shown that the application is lightweight, which is a very
important aspect in industrial environments. This is so because if the application is to be
deployed in the same robot software, it is necessary that it must interfere minimally with
the performance of the robot, i.e., not occupy system resources (which are usually limited)
that the robot may need to perform its tasks.

As an aspect to be improved to make the tool more reliable and with better perfor-
mance, it is desirable to improve the security of the blockchain itself. In other words, the
EOSIO blockchain must be protected so that it does not suffer unexpected crashes or attacks
that could compromise the persistence of the data recorded there. For this reason, it is
proposed for future versions choose another blockchain technology with greater intrinsic
security, since this is the most important aspect when choosing one type of blockchain or
another. Aspects such as the speed of transactions are not particularly critical in forensic
analysis tasks.

Another important problem to be solved in the near future is the management of
the private key of the users with permission to use the application, i.e., those for whom
the Smart Contract has been deployed on the blockchain. The private key is an essential
parameter in the security of the system since it is one of the two methods to ensure that
ChronoEOS is not being used fraudulently, together with the Device Fingerprinting module.

Currently, from the LookOut Agent, calls to the EOSIO blockchain API are made
by inserting the private key in the body of the call. This can be a weak point of the
application since if the call is intercepted, the attacker could know the private key of this
user. For this reason, we are considering adding a more secure method to make API calls
in the future, instead of using the private key. The option proposed is to deploy an IdP
(Identity Provider), which allows managing permissions to make API calls, applying some
authorization protocol, such as OAuth2, which can be very useful in this use case. Thus, as
a header in the API call, an authorization token would have to be introduced, provided by
the IdP and applying the OAuth2 protocol.

Smart Cities 2023, 6 910

5. Conclusions

The main conclusion that can be drawn from this project is that the inclusion of the
Device Fingerprinting module provides an extra layer of security compared to the first
version of ChronoEOS. By applying Device Fingerprinting, any attacker who wants to
modify the EOSIO blockchain to add or change the events of the robot must know both
the private key of the administrator’s account and the robot’s fingerprint. In addition, this
new version has been tested in a more complex industrial environment, with six industrial
robots, unlike the first application, which was only applied in an environment with a single
robot. Another point where ChronoEOS is improved is that, although the Lookout Agent is
still running in a cron process, there is no chance of missing new events, as the timestamp
of the last event recorded in the blockchain is always compared with the timestamp of the
new events generated by the robot.

With this, ChronoEOS 2.0 is an application that can be used in an industrial envi-
ronment for Forensic Analysis with guaranteed security and reliability. In addition, the
type of blockchain used (EOSIO) is fully adapted to this type of task, thanks mainly to its
high block production rate, which allows events to be recorded quickly. The high block
production rate is mainly due to the fact that it uses Delegated Proof of Stake (dPOS) as a
consensus protocol.

On the other hand, as in the first version of ChronoEOS, the REST API provides
significant ease of use and flexibility for authorized users. From the REST API, it is possible
to interact with the blockchain quickly to deploy Smart Contracts, resume/stop block
production, query the status of the blockchain, and consult tables.

Moreover, despite introducing a new module to calculate the robot’s fingerprint every
time a new event is introduced in the blockchain, the resources consumed (CPU, RAM
and network packet transmission) are not altered compared to the results obtained with
the first version of ChronoEOS. Only the CPU consumption is altered, although it is far
from being worrying for the correct performance of the system. A slight increase in CPU
consumption is sacrificed in exchange for the increased security offered by the addition of
the fingerprinting module.

As for future lines of improvement, the aim is to continue fine-tuning the different
elements of the application. In particular, the blockchain technology on which to work
could be changed. In other words, instead of creating the ecosystem on EOSIO, we could
work on another blockchain, such as Ethereum, and analyze the differences in performance
between the two. Another possible point of improvement would be to try to develop
a module that detects attempted attacks on the system. That is, to have a system that
analyses attempts to modify blockchain events and tries to predict the attack in order to
take solutions before it happens.

Author Contributions: Conceptualization, J.Á.F.-C., X.E.-B. and F.Z.; Introduction, J.Á.F.-C. and X.E.-
B.; Materials and Methods, J.Á.F.-C., X.E.-B. and D.P.-G.; Results, J.Á.F.-C.; Discussion, J.Á.F.-C., X.E.-B.
and D.P.-G.; Writing–original draft preparation, J.Á.F.-C.; Writing—review and editing, J.Á.F.-C.,
X.E.-B. and D.P.-G.; Supervision, R.O.-U. and F.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: This work has been partially supported by the Basque Country Government
under the ELKARTEK program, project REMEDY (KK-2021/00091), and by the Spanish Centre
for the Development of Industrial Technology (CDTI) under the project ÉGIDA (EXP 00122721/
CER-20191012).

Conflicts of Interest: The authors declare no conflict of interest.

Smart Cities 2023, 6 911

References
1. Gurunath, R.; Agarwal, M.; Nandi, A.; Samanta, D. An Overview: Security Issue in IoT Network. In Proceedings of the 2018

2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile,
Analytics and Cloud) (I-SMAC), Palladam, India, 30–31 August 2018; pp. 104–107. [CrossRef]

2. Mishra, N.; Pandya, S. Internet of things applications, security challenges, attacks, intrusion detection, and future visions: A
systematic review. IEEE Access 2021, 9, 59353–59377. [CrossRef]

3. Jović, M.; Tijan, E.; Aksentijević, S.; Čišić, D. An Overview of Security Challenges of Seaport IoT Systems. In Proceedings of the
2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),
Opatija, Croatia, 20–24 May 2019; pp. 1349–1354. [CrossRef]

4. Kuang, B.; Fu, A.; Susilo, W.; Yu, S.; Gao, Y. A survey of remote attestation in Internet of Things: Attacks, countermeasures, and
prospects. Comput. Secur. 2022, 112, 102498. [CrossRef]

5. Servida, F.; Casey, E. IoT forensic challenges and opportunities for digital traces. Digit. Investig. 2019, 28, S22–S29. [CrossRef]
6. Zheng, Z.; Xie, S.; Dai, H.; Chen, X.; Wang, H. An Overview of Blockchain Technology: Architecture, Consensus, and Future

Trends. In Proceedings of the 2017 IEEE International Congress on Big Data (BigData Congress), Boston, MA, USA, 11–14
December 2017; pp. 557–564. [CrossRef]

7. Al-Khateeb, H.; Epiphaniou, G.; Daly, H. Blockchain for modern digital forensics: The chain-of-custody as a distributed ledger.
In Blockchain and Clinical Trial: Securing Patient Data; Springer: Cham, Switzerland, 2019; pp. 149–168.

8. Fernandez-Carrasco, J.A.; Egues-Arregui, T.; Zola, F.; Orduna-Urrutia, R. ChronoEOS: Configuration Control System Based on
EOSIO Blockchain for On-Running Forensic Analysis. In Blockchain and Applications, Proceedings of the 4th International Congress,
L’Aquila, Italy, 13–15 July 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 37–47.

9. Xu, Q.; Zheng, R.; Saad, W.; Han, Z. Device Fingerprinting in Wireless Networks: Challenges and Opportunities. IEEE Commun.
Surv. Tutorials 2016, 18, 94–104. [CrossRef]

10. Sharaf-Dabbagh, Y.; Saad, W. On the authentication of devices in the Internet of things. In Proceedings of the 2016 IEEE 17th
International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), Coimbra, Portugal, 21–24 June
2016; pp. 1–3. [CrossRef]

11. Pu, H.; He, L.; Zhao, C.; Yau, D.K.; Cheng, P.; Chen, J. Detecting replay attacks against industrial robots via power fingerprinting.
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Virtual Event, Japan, 16–19 November 2020;
pp. 285–297.

12. Divith Devaiah, M.; Metre, P.B. Survey on current Digital forensic practicess. Int. J. Comput. Eng. Res. Trends 2017, 4, 180–184.
13. Beebe, N. Digital forensic research: The good, the bad and the unaddressed. In Proceedings of the Advances in Digital Forensics

V: Fifth IFIP WG 11.9 International Conference on Digital Forensics, Orlando, FL, USA, 26–28 January 2009; Revised Selected
Papers 5; Springer: Berlin/Heidelberg, Germany, 2009; pp. 17–36.

14. Stoyanova, M.; Nikoloudakis, Y.; Panagiotakis, S.; Pallis, E.; Markakis, E.K. A survey on the internet of things (IoT) forensics:
Challenges, approaches, and open issues. IEEE Commun. Surv. Tutorials 2020, 22, 1191–1221. [CrossRef]

15. Pollitt, M. A history of digital forensics. In Proceedings of the Advances in Digital Forensics VI: Sixth IFIP WG 11.9 International
Conference on Digital Forensics, Hong Kong, China, 4–6 January 2010; Revised Selected Papers 6; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 3–15.

16. Giova, G. Improving chain of custody in forensic investigation of electronic digital systems. Int. J. Comput. Sci. Netw. Secur. 2011,
11, 1–9.

17. Hofmann, F.; Wurster, S.; Ron, E.; Böhmecke-Schwafert, M. The immutability concept of blockchains and benefits of early
standardization. In Proceedings of the 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITUK), Nanjing, China,
27–29 November 2017; IEEE: New York, NY, USA, 2017; pp. 1–8.

18. Cebe, M.; Erdin, E.; Akkaya, K.; Aksu, H.; Uluagac, S. Block4forensic: An integrated lightweight blockchain framework for
forensics applications of connected vehicles. IEEE Commun. Mag. 2018, 56, 50–57. [CrossRef]

19. Brotsis, S.; Kolokotronis, N.; Limniotis, K.; Shiaeles, S.; Kavallieros, D.; Bellini, E.; Pavué, C. Blockchain solutions for forensic
evidence preservation in IoT environments. In Proceedings of the 2019 IEEE Conference on Network Softwarization (NetSoft),
Paris, France, 24–28 June 2019; IEEE: New York, NY, USA, 2019; pp. 110–114.

20. Wang, Z.; Wang, L.; Xiao, F.; Chen, Q.; Lu, L.; Hong, J. A traditional chinese medicine traceability system based on lightweight
blockchain. J. Med. Internet Res. 2021, 23, e25946. [CrossRef] [PubMed]

21. Chiacchio, F.; Compagno, L.; D’Urso, D.; Velardita, L.; Sandner, P. A decentralized application for the traceability process in the
pharma industry. Procedia Manuf. 2020, 42, 362–369. [CrossRef]

22. Zheng, W.; Zheng, Z.; Dai, H.N.; Chen, X.; Zheng, P. XBlock-EOS: Extracting and exploring blockchain data from EOSIO. Inf.
Process. Manag. 2021, 58, 102477. [CrossRef]

23. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260.
24. Vujičić, D.; Jagodić, D.; Rand̄ić, S. Blockchain technology, bitcoin, and Ethereum: A brief overview. In Proceedings of the 2018

17th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 21–23 March 2018
IEEE: New York, NY, USA, 2018; pp. 1–6.

25. Huang, Y.; Wang, H.; Wu, L.; Tyson, G.; Luo, X.; Zhang, R.; Liu, X.; Huang, G.; Jiang, X. Understanding (Mis)Behavior on the
EOSIO Blockchain. Proc. ACM Meas. Anal. Comput. Syst. 2020, 4, 1–28. [CrossRef]

http://doi.org/10.1109/I-SMAC.2018.8653728
http://dx.doi.org/10.1109/ACCESS.2021.3073408
http://dx.doi.org/10.23919/MIPRO.2019.8757206
http://dx.doi.org/10.1016/j.cose.2021.102498
http://dx.doi.org/10.1016/j.diin.2019.01.012
http://dx.doi.org/10.1109/BigDataCongress.2017.85
http://dx.doi.org/10.1109/COMST.2015.2476338
http://dx.doi.org/10.1109/WoWMoM.2016.7523532
http://dx.doi.org/10.1109/COMST.2019.2962586
http://dx.doi.org/10.1109/MCOM.2018.1800137
http://dx.doi.org/10.2196/25946
http://www.ncbi.nlm.nih.gov/pubmed/34152279
http://dx.doi.org/10.1016/j.promfg.2020.02.063
http://dx.doi.org/10.1016/j.ipm.2020.102477
http://dx.doi.org/10.1145/3392155

Smart Cities 2023, 6 912

26. Nguyen, C.T.; Hoang, D.T.; Nguyen, D.N.; Niyato, D.; Nguyen, H.T.; Dutkiewicz, E. Proof-of-stake consensus mechanisms for
future blockchain networks: Fundamentals, applications and opportunities. IEEE Access 2019, 7, 85727–85745. [CrossRef]

27. Sheikh, S.; Azmathullah, R.; Rizwan, F. Proof-of-work vs. proof-of-stake: A comparative analysis and an approach to blockchain
consensus mechanism. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 786–791.

28. Liu, J.; Zheng, W.; Lu, D.; Wu, J.; Zheng, Z. Understanding the Decentralization of DPoS: Perspectives from Data-Driven Analysis
on EOSIO. arXiv 2022, arXiv:2201.06187.

29. Xu, B.; Luthra, D.; Cole, Z.; Blakely, N. EOS: An architectural, performance, and economic analysis. Retrieved June 2018, 11, 2019.
30. Bellare, M.; Yee, B. Forward-security in private-key cryptography. In Proceedings of the Topics in Cryptology—CT-RSA 2003:

The Cryptographers’ Track at the RSA Conference 2003 San Francisco, CA, USA, 13–17 April 2003; Springer: Berlin/Heidelberg,
Germany, 2003; pp. 1–18.

31. He, N.; Zhang, R.; Wu, L.; Wang, H.; Luo, X.; Guo, Y.; Yu, T.; Jiang, X. Security analysis of EOSIO smart contracts. arXiv 2020,
arXiv:2003.06568.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2925010

	Introduction
	Device Fingerprinting Description
	Blockchain in Forensic Analysis
	EOSIO Blockchain
	Consensus Protocol
	EOSIO's Architecture
	Multi Index Tables in EOSIO

	Materials and Methods
	Use Case Description
	Universal Robots
	Device Fingerprinting

	Results
	ChronoEOS 2.0
	Evaluation

	Discussion
	Conclusions
	References

