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Abstract: A microgrid energy management system (EMS) with several generation and storage units
is crucial in attaining stable and reliable operation. Optimal scheduling of energy resources in EMS
becomes arduous due to uncertainty in the forecasting of intermittent renewable sources, electricity
pricing, and load demand. However, with the demand response (DR) approaches the operational
benefits in the EMS framework can be maximized. In order to improve the cost-effectiveness of
the microgrid, a novel day-ahead energy management strategy is proposed for optimal energy
allocation of the distributed generators with environmental consideration. An incentive load control-
based demand response program is developed to improve the operational results. The forecasting
uncertainties are handled using probability-based Hong’s 2 m approximation method. The suggested
approach uses a metaheuristic genetic algorithm (GA) to solve the constrained convex problem in
determining optimal load shifting. Incentive pricing is developed to adapt to the demand shifting
for the benefit of the customers and utility operators. Two case studies with grid-connected and
islanded modes are studied to assess the strategy. Results indicate that the proposed technique
reduces the overall cost fitness by 12.28% and 18.91% in the two cases, respectively. The consistency
in operational parameters with popular methods confirms the effectiveness and robustness of the
method for day-ahead energy management.

Keywords: microgrid; demand scheduling; point estimate method; energy management; mixed
integer linear programming; genetic algorithm

1. Introduction

Increased population in recent years around the globe resulted in the over-exploitation
of fossil fuels, especially in the electricity generation and transportation sectors. An alarm-
ing effect on the environment is the depletion of the ozone layer with increased emission
of greenhouse gases (GHG), which led world governments to take action in reducing
the consumption of fossil fuels and replacing them with renewable energy sources (RES).
However, the penetration of RES results in instability in the operation [1] of its stochastic
nature. Thereby, energy storage systems (ESS) are opted to compensate for the intermittent
supply of renewable energy sources using power electronic converter controllers [2]. The
dynamic demand cannot be fully met by energy storage devices due to their expensive
investment and degradation factors. Hence, fuel-based generators are also introduced
to the network to support cost-effectiveness in operation and consistency. On the other
hand, there has been a steady increase in the utilization of electric vehicles (EVs) for their
ecological benefits. They also have the capability to act as reserves for the distributed
generators due to their storage capacity when connected to the grid [3]. Although, there is
a rising complication in the distribution system stability due to the inconsistent nature of
charging and discharging [4], thus increasing the complexity of the microgrid to control
with the integration of increasing components. The microgrid, which is an integral part
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of the smart grid, plays a key role in addressing the economic, environmental, efficiency,
reliability, security, and stability-related aspects through the microgrid energy management
system (MEMS).

An energy management system (EMS) is an automated software framework designed
for the optimal performance of the microgrid. EMS maintains the balance between genera-
tion and demand considering the market price and meteorological data [5]. Microgrid EMS
is a hierarchical architecture consisting of three levels: tertiary, secondary, and primary, each
with a different time scale of control [6]. Many approaches have been proposed to solve
the energy management in microgrids and a detailed review of the control approaches is
presented in [7]. To mention a few, an EMS is developed to analyze the power exchange
with the grid by particle swarm optimization (PSO) to optimally schedule the generation
and increase the profit margin [8]. Genetic algorithm (GA)-based energy management
is performed to increase the efficiency of the heating, ventilation, and air conditioning
(HVAC) loads integrated with PV, wind generation, and storage [9]. The thermal and
power demands are scheduled in an islanded microgrid, formulated as a MILP problem to
minimize the fuel cost and thermal comfort requirements [10]. Figure 1 shows a typical
energy management structure of a microgrid.
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Figure 1. A typical energy management structure. 
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Figure 1. A typical energy management structure.

Forecasting is a crucial element in developing an energy management schedule. The
prediction through historical data cannot provide accurate results as it consists of uncer-
tainty due to forecasting errors [11]. For uncertainty modeling in planning and operation,
stochastic programming is commonly employed [12]. In [13], the authors have provided
an updated evaluation of uncertainty modeling approaches in the energy management
system. The day ahead energy management can increase its cost benefits through the
inclusion of demand response.

Demand response (DR) is an extended part of EMS where the end-user response of
load utilization is used by the utility company to schedule the load based on dynamic
electricity pricing [14]. The demand response programs are divided into two categories:
incentive-based rates and time-based rates [15]. Direct load control (DLC), auxiliary services
market (A/S), interruptible/curtailable services (I/C), capacity market program (CAP),
emergency demand response program (EDRP), and demand bidding (DB) are incentive-
based programs [16]. Customers in incentive-based schemes, such as I/C and CAP, are
penalized if they do not curtail as directed. Consumers are encouraged to reduce loads
at a curtailable price under the DB program, while the auxiliary services program allows
customers to participate in the energy market via load curtailment. DLC and EDRP are
voluntary programs; participants are not punished if they do not reduce their usage [17].
The cost of time-based DR programs varies according to the cost of supplies for different
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time periods. Time-based and incentive-based systems can be combined to increase system
efficiency [18]. Algorithms have been developed [19] for the DR program with consideration
of limitations in their characteristics of modeling. A day-ahead shifting of load to acquire
the least cost price of power while implying scheduled sources as exchange [20], where
DLC is used with no end-user control.

The user agrees willingly to support demand fluctuation in accordance with the utility
demand response program. In [21], a detailed review of demand response programs is
mentioned A demand response pricing is developed to model the load shifting based
on demand response according to the users for urban microgrids with the user-defined
program [22]. The limitation of this strategy is not having fixed demand response pricing
but rather multi-user-based pricing which in practical scenarios can be affected by the
increased communication traffic and storage every day. These approaches have performed
demand response to control the home appliances through smart meter communication
from the control center.

This paper proposes a novel strategy for the optimal load shifting of demand for
day-ahead energy management with incentive/penalty pricing as support that allows
the users to decide with a cautionary update on the equipment to be operated. This
proposed methodology has the following key contributions; developing Hong’s two-
point estimate scheme for the uncertainty parameter estimation, hybrid energy sources
based multi-objective optimization approach to maintaining the state of charge in battery
energy storage system (BESS) and EV charging station (EVCS), and developing a power
management incentive pricing method for the optimization of shiftable demand response
using genetic algorithm.

The paper structure is as follows: Section 2 contains the problem formulation of
the microgrid energy management problem which discusses cost function, mathematical
modeling of the components, uncertain parameter, and optimization handling technique.
Section 3 consists of the proposed methodology approach. In Section 4, the results and
analysis of the proposed methodology are validated with comparison. Lastly, Section 5
summarizes the findings of the study.

2. Methodology

Microgrid energy management is an algorithm to control the dynamic demand–supply
balance under specified constraints. Generally, an EMS is formulated with one or many
objectives to be achieved and is solved considering it as a nonlinear NP problem. The
microgrid components need to be formulated into mathematical models for analysis. This
section introduces the mathematical formulation of microgrids, uncertainty modeling, and
methodologies opted. Figure 2 shows the methodology flow diagram.

Smart Cities 2023, 6, FOR PEER REVIEW  3 
 

voluntary programs; participants are not punished if they do not reduce their usage [17]. 

The cost of time-based DR programs varies according to the cost of supplies for different 

time periods. Time-based and incentive-based systems can be combined to increase sys-

tem efficiency [18]. Algorithms have been developed [19] for the DR program with con-

sideration of limitations in their characteristics of modeling. A day-ahead shifting of load 

to acquire the least cost price of power while implying scheduled sources as exchange 

[20], where DLC is used with no end-user control. 

The user agrees willingly to support demand fluctuation in accordance with the util-

ity demand response program. In [21], a detailed review of demand response programs is 

mentioned A demand response pricing is developed to model the load shifting based on 

demand response according to the users for urban microgrids with the user-defined pro-

gram [22]. The limitation of this strategy is not having fixed demand response pricing but 

rather multi-user-based pricing which in practical scenarios can be affected by the in-

creased communication traffic and storage every day. These approaches have performed 

demand response to control the home appliances through smart meter communication 

from the control center.  

This paper proposes a novel strategy for the optimal load shifting of demand for day-

ahead energy management with incentive/penalty pricing as support that allows the users 

to decide with a cautionary update on the equipment to be operated. This proposed meth-

odology has the following key contributions; developing Hong’s two-point estimate 

scheme for the uncertainty parameter estimation, hybrid energy sources based multi-ob-

jective optimization approach to maintaining the state of charge in battery energy storage 

system (BESS) and EV charging station (EVCS), and developing a power management 

incentive pricing method for the optimization of shiftable demand response using genetic 

algorithm. 

The paper structure is as follows: Section 2 contains the problem formulation of the 

microgrid energy management problem which discusses cost function, mathematical 

modeling of the components, uncertain parameter, and optimization handling technique. 

Section 3 consists of the proposed methodology approach. In Section 4, the results and 

analysis of the proposed methodology are validated with comparison. Lastly, Section 5 

summarizes the findings of the study. 

2. Methodology 

Microgrid energy management is an algorithm to control the dynamic demand–sup-

ply balance under specified constraints. Generally, an EMS is formulated with one or 

many objectives to be achieved and is solved considering it as a nonlinear NP problem. 

The microgrid components need to be formulated into mathematical models for analysis. 

This section introduces the mathematical formulation of microgrids, uncertainty model-

ing, and methodologies opted. Figure 2 shows the methodology flow diagram. 

PROBLEM 

FORMULATION

SELECTION OF 

SUITBLE METHOD
IMPLEMENTATION

RESULTS AND 

ANALYSIS

Generation:

• Grid

• Renewables(Solar 

and Wind)

• Diesel Generator

• Microturbine

• Battery

Loads:

• Residential, 

Commercial and 

Industrial

Uncertainty:

• Hong s 2m point 

estimate method

EV charging:

• Fuzzy Approach

Fitness Function:

• Genetic 

Algorithm

Software:

• MATLAB 

Schedule package:

• MILP 

Case studies:

• Grid connected 

Mode

• Islanded mode

Scenarios:

• Without Demand 

Response

• With Demand 

Response

 

Figure 2. Methodology approach flow diagram. Figure 2. Methodology approach flow diagram.

2.1. Problem Formulation

This section discusses on mathematical modeling of the microgrid elements for energy
management. Microgrid renewable consists of wind and solar generation. Renewable en-
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ergy sources are intermittent sources that will depend on several parameters, among others:
sunshine, temperature, wind speed, wind direction, season, etc. The microgrid analysis
with intermittency, power converters, energy storage devices, dispatchable generators, and
fluctuating load demand for energy management needs mathematical modeling of these
components. This section provides an initial step toward an energy management frame-
work with modeling elements of the microgrid. The study for a typical day is generated
through the random behavior of the different renewable resources. For the case study,
the hourly solar generation, wind generation, demand, and electricity price forecasting
uncertainties are modeled by the probability density functions (PDF). From the forecasted
data, the mean and standard deviation for each time segment is calculated, and from them,
probability density functions are generated for each hour.

Wind generation is dependent on the velocity of the wind (v) and the power curve
of the wind turbine [23]. For solar, the power generation depends on irradiance (R) and
ambient air temperature (T) of the location the photovoltaic (PV) panels are installed [10].
The power generated for solar (PPV) and wind (Pwd) at time period “t” is calculated using
Equation (1) to Equation (4). The variables of velocity (vi,vo,vr) represent, cut-in, cut-off,
and rated wind speeds(m/s). In solar, k represents the manufacturer’s temperature power
coefficient W/◦C. Rr represents the irradiance of the PV (1000 W/m2). The efficiency of the
power electronic converter and solar panel is represented as ηPEC and ηPV, respectively.

Pwd
t = ηwd

PEC


0 v ≤ vi, v ≥ vo

Pwd
max

(v−vi)
3

(vr−vi)
3 vi ≤ v ≤ vr

Pwd
max vr ≤ v ≤ vo

(1)

f (k|v, λ) =


(

k
λ

)( v
λ

)k−1e−(
v
λ )

k
, k ≥ 0

0 , k < 0
(2)

PPV
t = ηPV

PECηpvPPV
r

(
Rc

Rr

)
[1 + k(Tc − T)] (3)

f (k|a, b) =
Γ(a + b)
Γ(a)Γ(b)

ka−1(1− k)b−1 (4)

Battery storage or energy storage systems (BESS) in the microgrid support renewable
sources’ intermittent power supply. Energy storage systems allow for obtaining benefits
both in the technical area, including capacity markets [19], as well as help to effectively use
surplus energy with the use of coin-mining [14]. The ESS charges or discharges according
to the economic and energy requirements in the grid. The battery characteristics are
based upon their SOCt (state of charge at t) which can be derived from the (5) and power
consumed by the energy storage devices PESS,t as (6).

SOCESS,t = SOCESS,t−1 ×
1

Ccapacity

∫
Icharge (5)

PESS,t = PESS,t−1 + ηcPcharge,t −
1
ηd Pdischarge,t (6)

Fuel-based generators comprise microturbine (MT), fuel cell (FC), and diesel genera-
tors (DE). These dispatchable sources are used to meet the demand in case of deficiency.
These generators (Pi) use the fuel as the driving force and the cost consumption is calculated
as in Equation (7), where ai, bi, and ci are the fuel cost coefficients.

C f
i = aiP2

i,t + biPi,t + ci (7)

The EVs are approximated to batteries during their operations at a charging station,
the state of charge and energy consumption is calculated in an as single point as described
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in the Equations (8) and (9). The available storage capacity of an EV charging station is
determined by various uncertain elements, such as the behavior of EV users, the arrival
and departure timings of the cars, the distance traveled prior to their arrival, and the state
of charge. An assumption is considered that the charging station participates as storage
during the peak hours of traffic, i.e., during 07.00–21.00 h. A detailed driving pattern of
PEV drivers is taken and represented as a normal PDF, which includes arrival, time of
departure, and travel distance [24].

PEV,t =


Pµgrid

t
ηv2g

Pµgrid
t ηg2v

, Pµgrid
t < 0(discharge, d)

, Pµgrid
t ≥ 0(charge, c)

(8)

SOCEVs,t =
1

NEV

NEV

∑
k=1

SOCEV (9)

f (k|µ, σ2) =
1

σ
√

2π
exp

[
−1

2

(
k− µ

σ

)2
]

(10)

The end users provide some flexibility in DR programs over to the aggregators for
minimizing the billing cost or during the grid offline. Appliances can be categorized as
shiftable or non-shiftable, which are controlled by independent smart meters for the period
of usage. A maximum of about 30% of the total appliances in a microgrid can participate in
a demand response program [25].

In this article, a distribution system direct load control-based demand response pro-
gram, which is an incentive-based model with dynamic pricing is considered. The user
can use the controllable device with penalized price or use it for an incentive period. Im-
plementation of the proposed DR program would curtail consumption in peak hours and
increase prices. The dynamic price is modified according to the load shiftable (11). Table 1
shows the devices that engage in demand response as well as their utilization times [26].

ETPt = ETPt(1− ∆PL,t) (11)

Table 1. Controllable devices that participate in demand response.

Residential
Devices

Expected
Schedule

Commercial
Devices Expected Schedule Industrial Devices Expected

Schedule

Dryer 18:10–19:20 Water dispenser 9:00–9:30 Water 16:00–20:00
Dishwasher 20:10–22:10 Auxiliary Fans 10:00–18:30 Welding 08:00–13:00
Washing machine 17:20–18:00 Secondary Lights 18:00–22:00 Kettle 15:00–21:00
Oven 18:30–18:40 Oven 12:10–12:20; 12:30–12:40 Auxiliary Fans 10:00–16:00
Vacuum cleaner 19:30–20:00 Dryer 14.00–15:00 Arc Furnace 12:00–18:00
kettle 19:00–19:10 Coffee maker 11:00–11:10 Induction motor 15:00–21:00
Coffee maker 7:00–7:40 Kettle 14:00–14:10 DC motor 13:00–15:00
Steam iron 17:40–17:50

2.2. Fitness Function

The energy management in this paper is a multi-objective NP minimizing problem
with three aspects to handle as shown in (12), the first term is the overall cost which includes
distribution generation startup and maintenance cost, the second term is the total power
loss, and the third term is the greenhouse gases emissions from the generation units [27].
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Each objective is assigned weights (γ, υ, ψ) and their totality is unity, the weights prioritized
(γ > υ > ψ) for the optimal performance of the system.

min
N

∑
t=1

( fµgrid) =
N

∑
t=1

(
γ

Ng

∑
g=1

Cg,t + υ
z

∑
n=1

i2R + ψ{
Ne

∑
s=1

Es,t}
)

(12)

The objective function is analyzed with constraints of the power balance between the
generator, storage, and demand as shown in (13), the power flow for the optimal power
is performed using modified Newton Raphson as it gives faster convergence [28]. The
constraint for active power flow is shown in (14), the demand shift is shown in (15), the
power exchange of energy storage systems in (16), and the power and state of charge of
electric vehicles in (17) and (18), and voltage limit in (19).

PD,t × (1− φ) + Ploss,t + Pc
ESS,t + Pc

EV,t =

Pgrid,t + PPV,t + PWT,t + PDE,t + PFC,t + PMT,t + Pd
ESS,t + Pd

EV,t
(13)

Pmax
t ≤ Pt ≤ Pmin

t (14)

0 ≤ PDR,t ≤ αPD,t (15)

Pc
ESS,t ≤ Pc,max

ESS,t ; Pd
ESS,t ≤ Pd,max

ESS,t (16)

Pc
EV,t ≤ Pc,max

EV,t ; Pd
EV,t ≤ Pd,max

EV,t (17)

SOCmin
EV,t ≤ SOCEV,t ≤ SOCmax

EV,t (18)

Vmin
z,t ≤ Vz,t ≤ Vmax

z,t (19)

2.3. Hong’s Two Point 2 m Estimate Method

Point estimate methods (PEM) are developed to compute the statistical moments of
random variables by evaluating the distribution function of an uncertainty variable. The
PEM uses the statistical data of input random variables to find the concentrations or central
moments on K points of the variable. The uncertainty in forecasted values differs from the
real value as an error and function F transmits the input random variables to the output
variable. Such that the function f can be represented as, F(20), where v is a set of variables
and pl (l = 1, . . . , m) of input uncertainty variable with probability distribution PD. The X
and Y represent the input and output values of the function.

F(X, Y) = f (v, p1, . . . , pm) (20)

The Kth concentration (pl,k, wl,k), composes of location pl,k, and weight wl,k. In Hongs
PEM, each random variable of pl in the function F is solved for K times. The difference in
the solution of each pl is the location pl,k, and the remaining input variables are assigned
with their corresponding means. The total number of solutions for the function F is
K × m [29]. Hong’s 2 m method indicates the status of the location of the output parameters
by producing two probability concentrations for each variable namely the weight factor and
the location of the input random variable. For instance, consider pl as the input parameter
with certain probability distribution [30].

To implement Hong’s 2 m method, initially specify the number of inputs m. Then,
define the value E(Yj) = 0 for the two moments, i.e., k = 2. Select the uncertain parameter pl
where l states the uncertain variables in the system. Calculate the skewness of the system
as in (21),

λl,3 =
E[(pl − µpl)

3]

(σpl)
3 (21)
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where E[(pl − µpl)
3] = ∑ M

i=1(pl,i − µpl)× P(pl,i), M is the observations and P is the prob-
ability of the uncertain parameter pl [31]. With the skewness available, calculate the two
standards and the estimated locations using (22) and (23), respectively.

ζl,k =
λl,3

2
+ (−1)3−k

√
m +

(
λl,3

2

)2
∀k = 1, 2 (22)

pl,k = µpl + ξl,k × σpl (23)

Once the locations are obtained the deterministic function F(µp1, . . . pl,k, . . . , µpm) for
the kth value is estimated and then the weights are calculated (24) and (25).

wl,1 = − 1
m
×

ζl,2

ζk,1 − ζk,2
(24)

wl,2 =
1
m
×

ζl,1

ζl,1 − ζl,2
(25)

The updated values of the first and second moment are calculated for the output Y as
shown in (26). This gives us the value for an uncertain variable, repeat a similar procedure
for the remaining variables. Finally, the predicted values and standard deviation of the
output parameter are calculated using Equations (27) and (28) as the outcomes.

E(Y j) ∼=
m

∑
L=1

K

∑
k=1

wl,k × [F(µp1, . . . pl,k, . . . , µpm)]
j (26)

µY = E(Y) (27)

σY =
√

E(Y2)− µ2
Y (28)

Hong’s 2 m method is adopted in this work for its simplicity, low computational
burden, and real-value solutions for the concentration.

2.4. Fuzzy Approach for EVs Fleets Scheduling

Estimating the quantity of the charge/discharge power of the electric vehicles reduces
the computational burden of the problem. The microgrid CC estimates the pattern of
consumption and supply from the forecasted data of cost, load utilized, renewable gen-
eration, state of charge in batteries, and electric vehicle charging station as part of the
decision-making process [32].

A fuzzy inference system is designed for making decisions on charging/discharging
according to the state of charge (SOCEVCS) of EVs, estimated total price (ETP), and estimated
load remaining (ELR) during the period. The fuzzy membership functions are modeled in
degrees of the input pattern and output pattern. The fuzzy inference consists of 36 rules
written for the process, ELR and EEP have 3 functions high, medium, low (H, M, L), and
SOCEV has 4 functions very low, low, average, high (VL, L) and output observes 3 functions
charge, neutral, discharge (C, N, D). The priorities of the fuzzy rule set for charging when
SOC is low, ELR and discharging to high SOC, ELR with ETP being allocated to medium or
low on prior and high to latter set. The output fuzzy set is calculated by the fuzzy inference
engine, and the charging and discharging rate is obtained through the defuzzification
process to prepare the output signal using the center of mass method

2.5. Multi Objective Genetic Algorithm

Genetic algorithm is an evolution-based natural selection optimization, it has three
main operations namely, crossover, mutation, and selection. In every iteration of the
problem, it uses generated population as solutions which are created randomly at the initial
step. A chromosome or string is the encoded version of each solution with either a single or



Smart Cities 2023, 6 498

a sequence of values. Each chromosome in the population is assigned a fitness value using
fitness evaluation, which is used for selecting the fittest chromosomes in the population for
the mating pool. The crossover of the two chromosomes produces an offspring or a new
solution through swapping. Crossover improves the convergence while exploiting the
search space with a high probability rate (0.8–0.95). The new chromosomes kept in the
offspring pool are randomly changed by flipping genes. The further randomness operation
is a mutation that has a low probability (0.001–0.05). The high crossover and low mutation
probability provide a high degree of mixing and exploitation and lower exploration, in
other terms, it has faster convergence and reaches global optimum [33].

The generated new solution is subjected to fitness evaluation of the desired objectives
of the problem. The selection of the fittest chromosome provides the best solution to the
population and is further passed on to the next generation known as elitism. The elite
pool gives the best solution and the other chromosomes that are present are replaced by
chromosomes of the offspring pool. Randomly generated chromosomes are introduced if
the offspring pool has a deficiency of chromosomes. The continuous process of generations
provides the best fittest candidate for the solution at the termination of the optimization.
In [34], the author has provided different methods and operations involving crossover,
mutation, and selection (either by elitism or replacement).

In this paper, GA is induced for the demand shifting for the day period, i.e., for 24 h
with population size [10,24] and Rowlette wheel selection with a maximum deviation in
a change of 0.3 to minimize the total cost fitness of the problem. Out of many algorithms, the
GA is chosen for faster convergence and a robust approach. At every iteration, the algorithm
generates a new population of demand shifted with the minimized objective function.

3. Proposed Strategy

Energy management of microgrids is a complex NP problem with forecasted errors,
hence a strategy is proposed for direct load control-based demand scheduling and gen-
eration scheduling with uncertainty. To solve the multi-objective of demand shifting and
minimize the fitness cost genetic algorithm, (GA) is considered. The inclusion of uncer-
tainty is handled with Hong’s 2 m point estimate method and the deterministic solution is
obtained by branch and bound in generation scheduling according to the demand shifted.
The mixed integer linear programming is a branch and bound method that provides a gen-
eration dispatch solution formulated in MILP with the objective of minimizing the overall
cost, power loss, and emission cost. The variables, which are the distributed generators, are
fixed with weights to determine the fitness cost function. This method is chosen as it pro-
vides a global solution. Figure 3 shows the flow diagram of the proposed strategy. Table 2.
Provides the GA parameters used in proposed methodology. A stepwise implementation
of the proposed methodology is given.

Table 2. Initial values of the proposed methodology.

Initial Variables Values

Population size 100
Variables 24

Crossover and crossover probabilities 30, 0.8
Mutation and mutation probabilities 30, 0.2

Selection of new chromosomes Tournament
Fitness scaling Linear rank-based

Step 1: Set the values of the GA algorithm; population size at 100, variables 24, crossover
and mutation are 30, crossover and mutation probabilities are 0.8 and 0.2, define lower and
upper limits are 0 and 0.3, respectively. Selection of new chromosomes is by tournament
and fitness scaling is linear rank-based scaling.
Step 2: Randomly generate the initial position with the population within the feasible range.
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Step 3: Implement Hong’s 2 m method for the uncertain variable and formulate the location
and weights.
Step 4: Repeat for all uncertain variables l.
Step 5: Calculate the first and second moments for the deterministic scheduling with
constraints (2)–(11).
Step 6: Obtain the updated best chromosomes with moments of the cost function.
Step 7: Assign a new population from the parent chromosomes through reproduction.
Step 8: Update the population with mutation and crossover function with their characteristics.
Step 9: Obtain the updated new solution through tournament selection.
Step 10: Repeat steps 3 to 5.
Step 11: Update the population with fitness scaling.
Step 12: Repeat steps 3 to 5 for the expected cost function from the 2 m method.
Step 13: The best subjected to the elitism of a random generation population.
Step 14: Objective fitness is obtained by repeating steps 3 to 5.
Step 15: Go to step 6 and repeat until the maximum number of iterations.
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4. Results

This section provides the results of two case studies based on the above-mentioned
strategy. The simulation study of energy management is grid-connected with two scenarios
on utilization of demand response while the latter case study is in islanded mode with
similar scenario studies. This section presents simulation outcomes with GA and MILP
for the hybrid energy management of the microgrid considering uncertainties. These
uncertainties are handled by Hong’s 2 m point estimate method. For analysis of the
above methodologies, CIRGE European benchmark 14-bus low voltage microgrid test
distribution system is taken [35]. Aggregated load demand consists of residential users with
a consumption of 150 kW, a medium industrial workshop with 100 kW, and a commercial
user of 50 kW as per the test system. For generalization of the urban microgrid, an EV
charging station is assumed to be located in a commercial area with 25 charging ports in
mode 2 of operation, i.e., a 6.6 kW battery is fully charged in 4 h considering no charge.
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4.1. Test System

The microgrid distribution system includes a 50 kW diesel generator, 10 kW fuel cell,
20 kW microturbine, two 50 kW wind turbines, a 0.1 MW PV array, and four 25 kWh
batteries connected in parallel. The overall energy storage devices have a charging and
discharging capacity of 100 kW, while the electric car station has a charging and discharging
power of 10 kW. The total load is 2 MW at peak and the total energy demand for an average
weekday day is 3488 kWh. The power factor of all loads is assumed to be 0.85 [36]. Figure 4
shows 14 bus CIRGE low-voltage microgrid.
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Figure 4. Study case microgrid LV test system.

The cost functions of the distributed generators along with the electric vehicle charg-
ing station are also included. It is assumed that the energy storages and electric vehicles
are vulnerable and discharged only during the islanded or emergency mode [37]. The
forecasted data consists of solar irradiance, and wind velocity taken for the average fore-
casted month of 10 March 2022 in the West Godavari region, and hourly electricity price is
taken from the online pricing platform [38]. Table 3 provides the minimum and maximum
generation, startup/running, bid coefficients, and the emissions quantity of the DG’s in
the microgrid [36]. In Figure 5, the forecasted solar generation, wind generation, demand
consumption, and demand bidding of electricity pricing for 24 h are shown.

Table 3. Distributed generators’ power cost and emission rate.

No TYPE
Power (kW) Cost (cent/kWh) Emission (g/kWh)

Min Max Start/Running ai bi ci CO2 SO2 NOx

1 PV (1) 0 100 0/5 - - - - - -
2 WT (2) 0 50 0/5 - - - - - -
3 DE (1) 0 50 3/3 0.00104 0.0304 1.3 697 0.22 0.5
4 MT (1) 0 20 2/3 0.00051 0.0397 0.4 670 0.0036 0.186
5 FC (1) 0 10 1.5/3 0.00024 0.0297 0.38 441 0.0022 0.0136
6 BT (4) −25 25 0/5 - - - - - -
7 EV −10 10 0/5 - - - - - -
8 GRID ~ ~ - - - - 884 1.8 1.6
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4.2. Analysis

In grid-connected mode, the DGs work under the constraints of fulfilling the hourly
demand. In this methodology, the utility is connected. Two scenarios are examined in
light of the demand routing application. As the objective function for the assessment, the
emission rate, cost, and power loss are evaluated accordingly. The state of charge of the
energy storage systems and electric vehicles are taken as the reference limit constraints for
the system to perform optimally in the islanded mode, considering the degradation and
vulnerability of batteries this condition is assumed. The proposed methodology case study
is performed in MATLAB with CPLEX integration using an i5 processor with 8 GB of RAM.

Scenario I: In this case, the microgrid undergoes energy management for 24 h period
with demand scheduling and generation scheduling is performed optimally using the
MILP. In this scenario, the scheduling is performed to reduce the dependency of the utility
and compensate it with the dispatchable generators operating at optimum in consideration
of the cost reduction. The total fitness cost of the problem is USD 1720.15 with an overall
cost of the microgrid operation is USD 343.33 mean and standard deviation of 4.67%. The
emission and power losses are 1533 kg and 140.61 kW as mean values with a standard
deviation of 2.45% and 3.45%, respectively. The generation scheduling for a 24 h period is
shown in Figure 6a.

Scenario II: GA-based direct load control of DR application is performed in this case.
With demand shifting the distributed generators are optimally scheduled which is shown
in Figure 6b. The total fitness cost of the problem is USD 1685.64 with the overall cost of the
system reduced by 12.28%, emission by 1.76%, and power loss by 7.14%. The generation
cost and emission of gases for the duration are shown in Figure 7. The change in the fitness
cost in both scenarios is given in Figure 8. Figure 9 shows the percentage change in demand
and the new prices for the consumers according to the demand response.
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Figure 9. Change in demand with DR and new prices for the consumers.

In the islanded mode, the DGs operate within the limits to meet the hourly demand
where utility is not connected in this mode of operation. The battery backs up the remaining
load. The EV’s connected in the commercial area participate in energy exchange during
their charging. The scenario of EV’s charging discharging is discussed. Similar to the
above method case study, two scenarios are analyzed considering the demand scheduling
application. The emission rate, cost, power loss, SOCEVCS and SOCBESS with 50% initially
are taken into consideration as objective parameters for the assessment.

Scenario I: In this case, the microgrid undergoes energy management for a 24 h period
with demand scheduling and generation scheduling is performed optimally using the
MILP. In this scenario, the scheduling is performed with the dispatchable generators,
energy storage, EV’s operating at optimum in consideration of the cost reduction. The total
fitness cost of this problem is USD 1335.36 with the overall cost of the islanded microgrid
operation being USD 314.53 mean with a standard deviation of 5.67%. The emission and
power losses are 1069 kg and 140.61 kW. The generation scheduling for a 24 h period is
shown in Figure 10a.
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Figure 11. Comparison of emission and generation cost. 

Figure 10. (a) Generation schedule before DR. (b) Generation schedule after DR.

Scenario II: GA-based direct load control of DR application is performed in this case.
With demand shifting the distributed generators are optimally scheduled as shown in
Figure 10b. The generation cost and emission of gases for the duration are shown in
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Figure 11. The estimated cost comparison between the two scenarios is shown in Figure 12.
The state of charge for BESS and EVCS of both scenarios are shown to be within the
parameter limits as in Figure 13. The total fitness cost of the problem is USD 1224.15 with
the overall cost of the system reduced by 18.91%, emission by 9.52%, and power loss by
9.65%. The change in demand for new pricing for this case is shown in Figure 14.
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4.3. Discussion and Validation

This section provides the analysis of the case studies and validation required for the
proposed methodology. The grid-connected and islanded mode of energy management
with demand response operations analysis is discussed in Table 4. It is observed that
with an increasing number of trails, the standard deviation is reducing but for optimality,
50 trails were run for the calculation of expected cost. In every case we discussed, the second
scenario has reduced the operating cost and other objective parameters with respect to the
previous scenario or the initial scenario. This shows the effectiveness of the strategy. Based
on these results, the provided approach could be used to determine optimal operating
costs reliably.

Table 4. Expected values of the proposed methodology for day-ahead schedule.

Case Studies Grid Connected Islanded Mode

Scenarios without DR with DR without DR with DR

Objectives Mean SD Mean SD Mean SD Mean SD

Total cost of operation, USD 343.33 13.52 332.86 12.35 314.53 9.25 297.67 10.23 314.53
Total power loss, kWh 140.61 14.12 138.24 16.21 140.61 11.21 127.03 8.21 140.61

Emission, kg 1533.64 120.44 1506.02 22.02 1069 63.01 967.16 44.21 1069
Fitness function cost, USD 1717.91 11.698 1506.02 18.26 1681.85 13.25 1363.33 15.21 1681.85

Hong’s 2 m method is performed for the proposed methodology as an uncertainty
handling technique. In [36,39], the current test system is considered for the uncertainty
of energy management. Hence the proposed method is compared with the above works
and Monte Carlo simulation for the effective validation of the consistency in the approach.
Table 5. shows the comparison results with the proposed approach for the expected cost of
the approach of the grid-connected scenario.

Table 5. Expected cost values of the proposed methodology for the uncertainty validation.

Method [36] Method [39] Monte Carlo Proposed

Expected operation
cost (USD) 343 335 328 332

Standard deviation 13.24 12.15 12.85 12.63
Mean Time (s) 0.138 0.131 38.21 0.144
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For Further analysis of the methodology, the author compared the proposed technique
with popular algorithms such as particle swarm optimization (PSO) and firefly algorithm
(FFA). The results of the comparison study are shown in Table 6.

Table 6. Comparison study of the proposed methodology.

Cases with DR Method Objective Function
Cost (USD)

Total Cost
(USD)

Total Emission
(kg)

Total Power
Loss (kW)

Convergence
(Iterations)

Grid-connected
mode

GA 1710.24 332.32 1506.98 138.08 150
PSO 1721.85 365.19 1537.71 141.57 180
FFA 1796.69 345.76 1512.64 139.11 160

Islanded mode
GA 1363.33 297.67 967.16 127.03 120
PSO 1396.26 358.59 924.65 129.37 180
FFA 1365.79 387.23 835.87 127.88 230

5. Conclusions

With demand response (DR) in the day ahead of energy management, the cost fitness
of the optimal microgrid operations is improved. This article proposes day-ahead energy
management through optimal demand shifting with suggestive incentive/penalty pricing
at uncertainty. The pricing for the demand response program is developed so that the
customers can choose the utilization of appliances with new pricing. The equipment’s con-
trollability is updated to the user by the utility company providing him with an opportunity
in making incentives. This strategy encourages the customers to manage their electricity
billing while reducing the overall operating cost of the microgrid EMS. The uncertainties
of forecasted data in renewable sources and load demand are handled by probability ap-
proximations using Hong’s 2 m PEM. The presented strategy is implemented on a typical
microgrid over two cases of grid-connected and islanded mode. The results show that with
the integration of load shifting-based DR strategy, there is an enhancement in objectives
obtained when compared to the untampered scenario. The overall cost, power loss, and
greenhouse emissions are reduced by 3.2%, 1.42%, and 1.76% in grid-connected cases and
10.5%, 9.2%, and 9.54% in islanding cases when compared. The effective management of
the SOC in battery and charging stations shows the adaptivity of the system performance
considering their degradation effects.

The proposed strategy could provide the operator with optimal DR to be operated with
the uncertainties effect and how to tackle them. The practicality of the proposed method
depends on the microgrid control center and the customer’s agreement to manage the
utilities either manually through pricing or through intelligent utility control. The proposed
method’s cost-effectiveness is compared with existing methodologies for validation and
shows appreciable outcomes. To conclude, the proposed strategy benefits the control
operator and the customer adopting the DR day-ahead energy management improves the
intended objectives with the likely effect of uncertainties. The accuracy of the demand-
side management could be improved with the inclusion of customer-side participation in
defining the utilization of appliances and developing an estimated communication latency,
which is considered for future extension.

Author Contributions: Conceptualization, A.R.B. and S.V.; methodology, S.R.S.; software, A.R.B.;
validation, A.R.B., S.V. and S.R.S.; formal analysis, A.R.B.; investigation, S.V.; resources, S.R.S.; data
curation, A.R.B.; writing—original draft preparation, A.R.B.; writing—review and editing, A.R.B.,
S.V. and S.R.S.; visualization, A.R.B.; supervision, S.V. and S.R.S.; project administration, A.R.B.;
funding acquisition, S.V. and S.R.S. All authors have read and agreed to the published version of
the manuscript.

Funding: Woosong University’s Academic Research Funding–2023.



Smart Cities 2023, 6 507

Data Availability Statement: The data used to support the findings of this study are available
online openly, and any further information required is available from the corresponding author
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Ploss,t Power loss at time “t”, kW.
Pgrid,t Grid utility power at time “t”, kW.
PPV,t, PWT,t Solar and Wind power at time “t”, kW.
PDE,t, PFC,t,
PMT,t

Fuel based power output at time “t”, kW.

PDG,t Power of distributed generators at time “t”, kW.

Psh f t
D,t Power demand shift at “t”, kW.

PDR
t Power of demand response, kW.

Rc, RT Irradiance of the PV in W/m2, irradiance (1000 W/m2).
SOCt State of charge at time “t” (%).
SOCEVs

t state of charge of combined station at time “t”.
SOCEV,t State of charge of EV at time “t”.
Tc, TPV Temperature (25 ◦C), PV temperature (◦C).
Vt Voltage profile at time “t”
v, vi, vo, vr Wind speed, cut-in, cut-off, rated wind speeds(m/s).
wk,i Weights of the kth concentration.
ηc, ηd Charging and discharge efficiency
ηv2g, ηg2v Efficiency of EV power exchange during grid to vehicle and vice versa

v, λ Scale and shape of Weibull distribution
µ, σ Mean and standard deviation for normal distribution.
γ, υ, ψ Weights of the objective function
φ Controllable load ratio
α Fraction of shifted load
xi,k Uncertain parameter
µx,k Mean of the concentration
ξk,i Standard location of the concentration
σx,k Standard deviation of the moment
λk,3 skewness
DE Diesel Generator
ESS Energy storage system
EV Electric Vehicle
EVCS Electric vehicle charging station
FC Fuel cell
MT Micro turbine
NP Nondeterministic polynomial time
PV Photo voltaic
SD Standard deviation
WT Wind turbine
a, b Shape parameters for beta distribution.
ai, bi, ci Generator cost coefficients.
Ccapacity Battery capacity, Wh
Cg,t Operating cost of system at time “t”.
ELRt Expected load remaining (kW).
ETPt Electricity Price (cents) at hour “t”.
Es,t Emission of pollutants at time “t”.
Icharge Charge consumed, A.
k Manufacturer’s temperature power coefficient W/◦C.
N Total time (24 h)
Ng Number of generator units.
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Ne Number of emissions generating units.
NEV Number of electric vehicles at charging station.
PPV

r Rated PV power at time “t”.
Pwd

max Maximum wind power output (kW).
P f

t Fuel based generators output, kW.
Pi,t Power of ith generator at time “t”, kW.
PESS,t Power of energy storage systems at “t”, kW.
Pcharge,t, Pdischarge,t Charging and discharging power at “t”, kW.
PEV

t EV power at charging station at time “t”, kW.
Pµgrid

t Microgrid power at “t”, kW
PDemand Electricity demand of the system.
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