
Citation: Damadam, S.; Zourbakhsh,

M.; Javidan, R.; Faroughi, A. An

Intelligent IoT Based Traffic Light

Management System: Deep

Reinforcement Learning. Smart Cities

2022, 5, 1293–1311. https://doi.org/

10.3390/smartcities5040066

Academic Editor: Pierluigi Siano

Received: 15 August 2022

Accepted: 22 September 2022

Published: 27 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

An Intelligent IoT Based Traffic Light Management System:
Deep Reinforcement Learning
Shima Damadam 1 , Mojtaba Zourbakhsh 1, Reza Javidan 1,* and Azadeh Faroughi 2

1 Computer Engineering and IT Department, Shiraz University of Technology, Shiraz 71557-13876, Iran
2 Computer Engineering and IT Department, University of Kurdistan, Sanandaj 66177-15175, Iran
* Correspondence: javidan@sutech.ac.ir

Abstract: Traffic is one of the indispensable problems of modern societies, which leads to undesirable
consequences such as time wasting and greater possibility of accidents. Adaptive Traffic Signal
Control (ATSC), as a key part of Intelligent Transportation Systems (ITS), plays a key role in reducing
traffic congestion by real-time adaptation to dynamic traffic conditions. Moreover, these systems
are integrated with Internet of Things (IoT) devices. IoT can lead to easy implementation of traffic
management systems. Recently, the combination of Artificial Intelligence (AI) and the IoT has
attracted the attention of many researchers and can process large amounts of data that are suitable
for solving complex real-world problems about traffic control. In this paper, we worked on the
real-world scenario of Shiraz City, which currently does not use any intelligent method and works
based on fixed-time traffic signal scheduling. We applied IoT approaches and AI techniques to
control traffic lights more efficiently, which is an essential part of the ITS. Specifically, sensors such
as surveillance cameras were used to capture real-time traffic information for the intelligent traffic
signal control system. In fact, an intelligent traffic signal control system is provided by utilizing
distributed Multi-Agent Reinforcement Learning (MARL) and applying the traffic data of adjacent
intersections along with local information. By using MARL, our goal was to improve the overall
traffic of six signalized junctions of Shiraz City in Iran. We conducted numerical simulations for two
synthetic intersections by simulated data and for a real-world map of Shiraz City with real-world
traffic data received from the transportation and municipality traffic organization and compared
it with the traditional system running in Shiraz. The simulation results show that our proposed
approach performs more efficiently than the fixed-time traffic signal control scheduling implemented
in Shiraz in terms of average vehicle queue lengths and waiting times at intersections.

Keywords: adaptive traffic signal control; intelligent transportation systems; internet of things;
artificial intelligence; machine learning; multi-agent reinforcement learning

1. Introduction

In the age of the Internet of Things (IoT), there are complex systems and many intercon-
nected devices that produce large amounts of data. In recent years, Artificial Intelligence
(AI) has been used to handle these devices and data and to supply intelligent control for
complex scenarios due to its capacity and ability to manage complex tasks. Numerous
studies have attempted to assess the efficacy of artificial intelligence and the Internet of
Things (IoT) in relation to Intelligent Transportation Systems (ITS), which are crucial to the
development of smart cities and the quality of people’s daily lives [1–3].

On the other hand, traffic in urban areas is constantly increasing and the resulting
congestion is a major concern for transportation management. One of the most important
goals of research in the field of transportation at the global level is to optimize traffic
flow. According to a report by the U.S. Department of Transportation [4], many cities face
challenges in controlling traffic flows and reducing congestion. Thus, many algorithms and
approaches have been proposed to solve traffic signal control challenges. Many cities use

Smart Cities 2022, 5, 1293–1311. https://doi.org/10.3390/smartcities5040066 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities5040066
https://doi.org/10.3390/smartcities5040066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0002-5599-0609
https://orcid.org/0000-0002-7788-6597
https://doi.org/10.3390/smartcities5040066
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities5040066?type=check_update&version=2

Smart Cities 2022, 5 1294

a fixed-time traffic signal control system that works according to a predefined schedule.
Nevertheless, they are not optimal because they are not affected by the traffic conditions,
and traffic changes over time and is not constant. Hence, this method cannot adapt to the
dynamics and changes in the environment and results in traffic [5].

With the advent of sensors (for example, loop detectors, radar, cameras, etc.) at
intersections, it has become possible to implement Adaptive Traffic Signal Controllers
(ATSC) which aim to optimize traffic flows by accommodating signal timing based on
real-world traffic conditions. ATSC methods such as the Split, Cycle, Offset, Optimization
Technique (SCOOT) [6], and the Sydney Coordinated Adaptive Traffic System (SCATS) [7],
which are both centralized, have been used in many cities around the world to reduce
congestion. However, these methods have some problems: they need many sensors,
networks of computers for implementation, and a control center with a human operator
to manage. Considering the fact that implementation and preservation costs are too high,
it is not an optimal solution to deploy in metropolitan cities [8]. Optimization Policies
for Adaptive Control (OPAC) [9] and the Real-Time Hierarchical Optimized Distributed
Effective System (RHODES) [10], which are decentralized with wrapped computation [1]
and a PRODYN algorithm [11], are similar methods that have been used for traffic control,
but they have high computing costs. Although these controllers can change their phase
duration or sequence, they cannot do it in real-time and dynamically. Adaptive approaches
can potentially improve performance, but they are difficult to develop [12]. Reference [13]
compares these methods and discusses their advantages and disadvantages.

IoT, on the other hand, is an environment and a platform that links people, devices,
and computers by exchanging data through machine-to-machine or machine-to-human
interaction [14], which alone has many complex systems, network infrastructures, and a
large number of interconnected devices that generate vast amounts of data. In order to
not only handle these devices and traffic data but also to control complicated scenarios
intelligently, Machine Learning (ML) methods as AI techniques have been widely used
in recent years due to their ability to perform complex tasks [1]. The ML methods, such
as neuro-fuzzy [15], immune network algorithms [16], neural networks [17], and genetic
algorithms [18] have been used for ATSC in recent years. Nevertheless, these methods
require a lot of computational costs.

On the other hand, Reinforcement Learning (RL) is an effective ML approach among
all the ML algorithms that has the powerful advantage of learning from experience and is
used in the design of ATSC [19,20].

Although many Reinforcement Learning algorithms have been used to design ATSC,
centralized RL-based control methods are not suitable when there are numerous inter-
sections, because the state of all intersections must be collected as a general state and an
action must be applied at each intersection. This will increase the delay and, in turn, the
state space increases exponentially. Therefore, model training becomes difficult in such a
complex situation. This is why a decentralized method is needed [21]. By combining ML
and the decentralized nature of IoT, it is important to measure the usefulness of Machine
Learning-based ITS because the ITS depends on people’s daily lives and is one of the most
crucial aspects of creating a smart city [1].

The purpose of this research is to apply a combination of ML and IoT approaches to
provide an intelligent traffic signal control solution for multiple intersections. This is done
by using Reinforcement Learning techniques where the RL agent learns the best control
policy through collaboration with the environment. The observations of each intersection
are exchanged with its neighboring intersection in a distributed way to obtain the optimal
global schedule for the whole system [1]. Moreover, due to the limited communication
among agents, the exchange of information between intersections becomes difficult. There-
fore, a method of observations and fingerprints of neighboring agents is used to stabilize
each local agent’s learning [22]. To evaluate the effectiveness of the implemented algorithm,
we conducted numerical simulations for two synthetic intersections by simulated data
and a real-world map of Shiraz City (from the Open Street Map (Openstreetmap. [Online].

Smart Cities 2022, 5 1295

Available: https://www.openstreetmap.org (accessed on 1 January 2022)) (OSM)) with real-
world traffic data received from the transportation and municipality traffic organization.
The implementation is done on an opensource simulation platform, SUMO (Simulation
of Urban MObility) [23]. The simulation results indicated that our proposed approach
performs more efficiently than the fixed-time traffic signal control scheduling implemented
in Shiraz in terms of vehicle average queue lengths and waiting times at intersections.

The contributions of this article are as follows:

• IoT technology and Machine Learning methods have been used to make intelligent
traffic light control systems at Shiraz City intersections.

• Real traffic data have been used to implement a real-world scenario in Shiraz City to
localize the system and consider all the challenges of a real-world scenario.

• A distributed Multi-Agent Reinforcement Learning (MARL) algorithm has been used
at each intersection for traffic signal control.

• The cutting-edge advantage actor-critic (A2C) algorithm has been applied where deep
neural networks (DNN) are used for policy and value approximations.

• The currently running traffic control system of Shiraz City, which has been imple-
mented using SCATS, has been compared with the proposed method.

The remainder of this paper is structured as follows: Section 2 examines related works.
Background and formulations are described in Section 3. In Section 4, the proposed method
is introduced. Section 5 describes numerical experiments and evaluation results and finally,
in Section 6, conclusion of the research is outlined.

2. Related Work

Researchers have always been interested in traffic signal control systems. Studies on
this subject are divided into various traffic light control methods.

A. G. Sims et al. (1980) [24] introduced a system called SCATS, which is an urban
traffic control system. The system consists of several small computers in the control center
in Sydney. Specifically, it is an intelligent transportation system that manages real-time
signal timing in traffic lights and uses traffic light sensors to detect vehicles in each lane. In
this system, induction loops are used to detect the presence of vehicles. Information about
the passage of vehicles is collected at intersections and transmitted to the traffic control
center. The center analyzes this information then the appropriate green time, which is
the system output, is reached. The SCATS system offers many benefits by reducing travel
time, reducing accidents, saving fuel, and reducing air pollution. Moreover, implementing
this control method, in addition to the high cost of purchase and installation, requires a
human operator to control the system remotely, so it can be disrupted due to a lack of
proper maintenance.

Hosur et al. (2019) [25] proposed a framework using IoT technologies that evaluate
the traffic density via IR sensors to achieve dynamic timings for the traffic light. In their
proposed system, they considered some threshold distance when the sensor detects any
vehicle within this distance using IoT technologies. When other roads are empty of vehicles,
it switches to a green light. The IoT can help to access components from far places, and
their proposed system is beneficial for non-peak hours and saves power during non-peak
hours. The disadvantage of their work is that they do not consider peak hours because
most vehicles will only be present during these rush hours, which is an essential factor for
traffic system control.

Liang et al. (2019) [26] changed the traffic light signal durations according to the
discrete values of the actions. They collected the data from sensors and divided the whole
intersection into small grids [21]. The information received from these sensors is difficult to
process to find the duration of green and red lights. Such algorithms have low performance
in peak traffic conditions, and the main reason is to ignore the impact of the current phase
time on future traffic [27]. Value-based methods are more suitable for solving problems
with discrete states than with continuous states such as traffic flows [21].

https://www.openstreetmap.org

Smart Cities 2022, 5 1296

Lillicrap et al. (2015) [28] extended the idea of Q-learning to the continuous action
domain. Although their proposed algorithm was able to discover policies whose per-
formance was competitive with predefined scheduling algorithms due to the dynamics
of the environment, it required a complete state sequence to update the policy. In fact,
policy-based methods can work with continuous states, but the convergence of the training
process is complicated, which is an important factor for continuous traffic flow [21]. In
addition, this method has a high bias and variance [22].

Aslani et al. (2017) [29] proposed actor-critic adaptive traffic signal controllers to
optimize traffic signal controllers in the traffic network of Tehran city for 24 h. They also
developed different actor-critic algorithms based on different function approximations and
compared them with six different scenarios. They showed that actor-critic in ATSC with
centralized agents performed better than Q-learning. This work focused on discrete action
RL but did not realize continuous actions.

Chu et al. (2019) [22] proposed a decentralized and fully scalable MARL algorithm
for the deep RL agent called the advanced actor-critic (A2C) in the ATSC. They also
proposed two methods to improve learning by enhancing observability and reducing
learning difficulty for each local agent: the fingerprint of neighboring agents and spatial
discount factor. They compared their multi-agent A2C algorithm with the independent
A2C and IQL in both the synthetic traffic scenario and the real-world scenario of Monaco.
The results of their work showed the optimality of the proposed algorithm compared to
other decentralized MARL algorithms.

Wang et al. (2021) [21] also proposed an A2C algorithm, but they applied a region-
aware cooperative strategy based on a graph attention network to overcome the problem
of partial observability of each local agent.

Hongwei Ge et al. (2021) [30] proposed a MARL algorithm for traffic signal control.
They also proposed transfer and encoder paradigms to enhance the agent’s learning ability.
Specifically, they improved the cooperation strategies of the algorithm. Their focus in this
work was to increase the capability of agents to learn. They showed the robustness of their
algorithm, but it limits its implementation in real scenarios. According to the research
presented, Cases [24] attempted to control the traffic signals with SCATS which is an
adaptive traffic signal control, but it cannot do it in dynamic conditions. Moreover, Case [25]
proposed a framework using IoT. Cases [26,28,29] provided traffic light control based
on reinforcing learning methods. Cases [21,22,30] proposed multi-agent Reinforcement
Learning for traffic signal control. It should be mentioned that most previous research
focused mainly on single intersections and simulated data, while it is quite rational to use
real-world data from IoT sensors for multiple intersections. Moreover, there is no research
available in the literature for Shiraz City that addresses traffic signal control using Machine
Learning algorithms with real-world data.

In this paper, we used the Advantage Actor-Critic (A2C) algorithm combined with
IoT approaches for the global control of each local agent. We also used observations and
fingerprints inspired by neighboring agents in the state. Therefore, each local agent has
more additional information about the distribution of regional traffic and cooperative
strategy. In addition, this algorithm is implemented in a real-world scenario with six
intersections of Shiraz City to consider all the challenges of a real-world scenario.

3. Background
3.1. Machine Learning (ML)

Machine Learning is a subset of artificial intelligence with applications in all fields that
can learn from data and make predictions or decisions. There are three types of Machine
Learning: supervised, unsupervised, and Reinforcement Learning. Supervised learning
makes decisions based on labels of data during training. Unsupervised learning makes
decisions based on pattern-finding without prior knowledge of labels, and Reinforcement
Learning works based on the reward or penalty criteria it receives during training [31].

Smart Cities 2022, 5 1297

3.2. Deep Learning (DL)

Deep Learning or Deep Neural Network is a special Machine Learning scheme that
allows a computational model to receive raw data, such as images, text, etc., as input and
automatically discover the data representation for a variety of tasks. This computational
model can efficiently extract information from data with a large number of states since it has
numerous processing layers. Deep Learning works by using a back-propagation algorithm
to determine how the computational model should change its internal parameters to obtain
data at each layer that is used from the previous layer. These neural networks are initialized
with a set of parameters θ, and map an input vector to an output vector through a number
of hidden layers. Connections between neural network layer units (neurons) are known as
weights (model parameters). Deep neural networks (DNN) are a type of neural network
that have multiple hidden layers [32].

Deep Learning can be integrated with Reinforcement Learning, called Deep Rein-
forcement Learning, which is currently accepted as an advanced learning framework in
control systems. While Reinforcement Learning can solve difficult control problems, Deep
Learning also helps approximate nonlinear functions from complex data sets. Many Deep
Reinforcement Learning methods have recently been used in various ITS applications. On
the other hand, there is tremendous interest in control mechanisms like Reinforcement
Learning in ITS, such as traffic control systems. In the following subsection, RL is defined
in detail [31].

3.3. Reinforcement Learning (RL)

As mentioned, Reinforcement Learning is one of the types of Machine Learning that
can be combined with Deep Learning so that it can be used in problems with a large number
of states, such as the problem of traffic control, which is explained in detail below.

RL is a framework of MDP, a general mathematical framework of sequential decision-
making algorithms. MDP consists of five members in one tuple:

• A series of states S .
• A series of actions U .
• Transition function T(st+1|st, at) maps a state-action pair for each time t to the next

state st+1 distribution.
• Reward function that gives a reward when transitioning to the next state st+1 for

selecting action at from state st.
• Discount factor γ between 0 and 1 for future rewards [31].

Thus in a fully observable MDP, the agent at any time t observes the state of the
environment st ε S, and performs an action ut ε U based on a policy µ(u|s) . Then, enters
the next state using the transition function st+1 ∼ p(·|st, ut) and receives an immediate
reward rt = r(st, ut, st+1). The total future reward under policy π is defined as follows:

Rπ
t = ∑

∞

τ=t γτ−trτ , (1)

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function Qπ(s, u) = E[Rπ

t |st = s,
ut = u]. The optimal Q-function Q∗ = maxπ Qπ , which leads to an optimal greedy policy
π∗ (u|s): u ∈ argmaxu′ Q∗ (s, u′), is derived from solving the Bellman equation

Smart Cities 2022, 5, FOR PEER REVIEW 6

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function 𝑄 (s, u) = E[𝑅 |𝑠 = s, 𝑢 = u]. The optimal Q-function 𝑄∗ = 𝑚𝑎𝑥 𝑄 , which leads to an optimal greedy policy 𝜋∗ (u|s): u ∈ arg𝑚𝑎𝑥 𝑄∗ (s, 𝑢), is derived from solving the Bellman equation Ꞁ 𝑄∗ = 𝑄∗
according to the dynamic programming (DP) operator Ꞁ [33]:

Ꞁ Q(s, u) = r(s, u) + γ ∑ 𝑝(𝑠 |𝑠, 𝑢) 𝑚𝑎𝑥 𝒰 Q(𝑠 , 𝑢), (2)

where r(s, u) = 𝐸 r(s, u, 𝑠) is the expected reward. In practice, r and 𝑝 are unknown to
the agent, so RL performs DP based on the sampled experience (𝑠 , 𝑢 , 𝑠 , 𝑟) instead of
the above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries to
learn optimal control based on interacting with the environment. For complicated traffic
conditions, the methods of this approach can solve traffic congestion problems more ef-
fectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the opti-
mal actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff
from both value-based and policy-based while reducing the bias and variance of poli-
cy-based methods [37]. Actor-critic algorithms are divided into two categories: ac-
tor-network, and critic-network. The actor uses the policy function to predict the proba-
bility distribution of all available actions. In fact, it is used to select actions. The critic also
uses the value function to evaluate the performance of the action chosen by the actor so
that, in the next state, the actor can choose better actions [21]. Actor-critic is one of the
most complete and robust types of RL methods, which has the superiority of fast learning
and the potential to perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic
A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)

algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value 𝑉 based on the current state. The actor net-
work uses this 𝑉 to regularly update the parameter 𝜃 of the policy function and then
select the next action 𝑎 . The input of the actor-network is the local agent’s observa-
tions, and the output is the action. Specifically, there are two types of value function ap-
proximations; state-value 𝑉∗(𝑠) and action value 𝑄∗ (𝑠, 𝑎) which can be described as
follows: 𝑉∗(𝑠) 𝑄(𝑠, 𝓌) 𝑄∗ (𝑠, 𝑎) 𝑄(𝑠, 𝑎, 𝓌)

(3)

The following describes the distinction between action-value and state-value: 𝐴𝑑𝑣 = 𝑄(𝑠, 𝑎) − 𝑣(𝑠) (4)𝑣(𝑠) is state-value function at time step t, and 𝑄(𝑠, 𝑎) is the action-value function cor-
responding to an action at the current state. After the advantage between action-value
and state-value is obtained, the critic network is updated using the Mean Square Error
(MES) according to the following equation: ℒ(𝓌) = 12|𝐵| (𝑅 + 𝛾𝑉(𝑠) − 𝑉(𝑠) (5)

Q∗ = Q∗

according to the dynamic programming (DP) operator

Smart Cities 2022, 5, FOR PEER REVIEW 6

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function 𝑄 (s, u) = E[𝑅 |𝑠 = s, 𝑢 = u]. The optimal Q-function 𝑄∗ = 𝑚𝑎𝑥 𝑄 , which leads to an optimal greedy policy 𝜋∗ (u|s): u ∈ arg𝑚𝑎𝑥 𝑄∗ (s, 𝑢), is derived from solving the Bellman equation Ꞁ 𝑄∗ = 𝑄∗
according to the dynamic programming (DP) operator Ꞁ [33]:

Ꞁ Q(s, u) = r(s, u) + γ ∑ 𝑝(𝑠 |𝑠, 𝑢) 𝑚𝑎𝑥 𝒰 Q(𝑠 , 𝑢), (2)

where r(s, u) = 𝐸 r(s, u, 𝑠) is the expected reward. In practice, r and 𝑝 are unknown to
the agent, so RL performs DP based on the sampled experience (𝑠 , 𝑢 , 𝑠 , 𝑟) instead of
the above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries to
learn optimal control based on interacting with the environment. For complicated traffic
conditions, the methods of this approach can solve traffic congestion problems more ef-
fectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the opti-
mal actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff
from both value-based and policy-based while reducing the bias and variance of poli-
cy-based methods [37]. Actor-critic algorithms are divided into two categories: ac-
tor-network, and critic-network. The actor uses the policy function to predict the proba-
bility distribution of all available actions. In fact, it is used to select actions. The critic also
uses the value function to evaluate the performance of the action chosen by the actor so
that, in the next state, the actor can choose better actions [21]. Actor-critic is one of the
most complete and robust types of RL methods, which has the superiority of fast learning
and the potential to perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic
A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)

algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value 𝑉 based on the current state. The actor net-
work uses this 𝑉 to regularly update the parameter 𝜃 of the policy function and then
select the next action 𝑎 . The input of the actor-network is the local agent’s observa-
tions, and the output is the action. Specifically, there are two types of value function ap-
proximations; state-value 𝑉∗(𝑠) and action value 𝑄∗ (𝑠, 𝑎) which can be described as
follows: 𝑉∗(𝑠) 𝑄(𝑠, 𝓌) 𝑄∗ (𝑠, 𝑎) 𝑄(𝑠, 𝑎, 𝓌)

(3)

The following describes the distinction between action-value and state-value: 𝐴𝑑𝑣 = 𝑄(𝑠, 𝑎) − 𝑣(𝑠) (4)𝑣(𝑠) is state-value function at time step t, and 𝑄(𝑠, 𝑎) is the action-value function cor-
responding to an action at the current state. After the advantage between action-value
and state-value is obtained, the critic network is updated using the Mean Square Error
(MES) according to the following equation: ℒ(𝓌) = 12|𝐵| (𝑅 + 𝛾𝑉(𝑠) − 𝑉(𝑠) (5)

[33]:

Smart Cities 2022, 5, FOR PEER REVIEW 6

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function 𝑄 (s, u) = E[𝑅 |𝑠 = s, 𝑢 = u]. The optimal Q-function 𝑄∗ = 𝑚𝑎𝑥 𝑄 , which leads to an optimal greedy policy 𝜋∗ (u|s): u ∈ arg𝑚𝑎𝑥 𝑄∗ (s, 𝑢), is derived from solving the Bellman equation Ꞁ 𝑄∗ = 𝑄∗
according to the dynamic programming (DP) operator Ꞁ [33]:

Ꞁ Q(s, u) = r(s, u) + γ ∑ 𝑝(𝑠 |𝑠, 𝑢) 𝑚𝑎𝑥 𝒰 Q(𝑠 , 𝑢), (2)

where r(s, u) = 𝐸 r(s, u, 𝑠) is the expected reward. In practice, r and 𝑝 are unknown to
the agent, so RL performs DP based on the sampled experience (𝑠 , 𝑢 , 𝑠 , 𝑟) instead of
the above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries to
learn optimal control based on interacting with the environment. For complicated traffic
conditions, the methods of this approach can solve traffic congestion problems more ef-
fectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the opti-
mal actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff
from both value-based and policy-based while reducing the bias and variance of poli-
cy-based methods [37]. Actor-critic algorithms are divided into two categories: ac-
tor-network, and critic-network. The actor uses the policy function to predict the proba-
bility distribution of all available actions. In fact, it is used to select actions. The critic also
uses the value function to evaluate the performance of the action chosen by the actor so
that, in the next state, the actor can choose better actions [21]. Actor-critic is one of the
most complete and robust types of RL methods, which has the superiority of fast learning
and the potential to perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic
A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)

algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value 𝑉 based on the current state. The actor net-
work uses this 𝑉 to regularly update the parameter 𝜃 of the policy function and then
select the next action 𝑎 . The input of the actor-network is the local agent’s observa-
tions, and the output is the action. Specifically, there are two types of value function ap-
proximations; state-value 𝑉∗(𝑠) and action value 𝑄∗ (𝑠, 𝑎) which can be described as
follows: 𝑉∗(𝑠) 𝑄(𝑠, 𝓌) 𝑄∗ (𝑠, 𝑎) 𝑄(𝑠, 𝑎, 𝓌)

(3)

The following describes the distinction between action-value and state-value: 𝐴𝑑𝑣 = 𝑄(𝑠, 𝑎) − 𝑣(𝑠) (4)𝑣(𝑠) is state-value function at time step t, and 𝑄(𝑠, 𝑎) is the action-value function cor-
responding to an action at the current state. After the advantage between action-value
and state-value is obtained, the critic network is updated using the Mean Square Error
(MES) according to the following equation: ℒ(𝓌) = 12|𝐵| (𝑅 + 𝛾𝑉(𝑠) − 𝑉(𝑠) (5)

Q(s, u) = r(s, u) + γ ∑s′εS p(s′|s, u) maxu′εU Q
(
s′, u′

)
, (2)

where r(s, u) = E
′
s r(s, u, s′) is the expected reward. In practice, r and p are unknown to the

agent, so RL performs DP based on the sampled experience (st, ut, s′t, rt) instead of the
above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries
to learn optimal control based on interacting with the environment. For complicated

Smart Cities 2022, 5 1298

traffic conditions, the methods of this approach can solve traffic congestion problems more
effectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the optimal
actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff from
both value-based and policy-based while reducing the bias and variance of policy-based
methods [37]. Actor-critic algorithms are divided into two categories: actor-network, and
critic-network. The actor uses the policy function to predict the probability distribution
of all available actions. In fact, it is used to select actions. The critic also uses the value
function to evaluate the performance of the action chosen by the actor so that, in the next
state, the actor can choose better actions [21]. Actor-critic is one of the most complete and
robust types of RL methods, which has the superiority of fast learning and the potential to
perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic

A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)
algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value Vs based on the current state. The actor network
uses this Vs to regularly update the parameter θ of the policy function and then select the
next action at+1. The input of the actor-network is the local agent’s observations, and the
output is the action. Specifically, there are two types of value function approximations;
state-value V∗π(s) and action value Q∗π(s, a) which can be described as follows:

V∗π(s)≈ Q(s,

Smart Cities 2022, 5, FOR PEER REVIEW 6

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function 𝑄 (s, u) = E[𝑅 |𝑠 = s, 𝑢 = u]. The optimal Q-function 𝑄∗ = 𝑚𝑎𝑥 𝑄 , which leads to an optimal greedy policy 𝜋∗ (u|s): u ∈ arg𝑚𝑎𝑥 𝑄∗ (s, 𝑢), is derived from solving the Bellman equation Ꞁ 𝑄∗ = 𝑄∗
according to the dynamic programming (DP) operator Ꞁ [33]:

Ꞁ Q(s, u) = r(s, u) + γ ∑ 𝑝(𝑠 |𝑠, 𝑢) 𝑚𝑎𝑥 𝒰 Q(𝑠 , 𝑢), (2)

where r(s, u) = 𝐸 r(s, u, 𝑠) is the expected reward. In practice, r and 𝑝 are unknown to
the agent, so RL performs DP based on the sampled experience (𝑠 , 𝑢 , 𝑠 , 𝑟) instead of
the above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries to
learn optimal control based on interacting with the environment. For complicated traffic
conditions, the methods of this approach can solve traffic congestion problems more ef-
fectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the opti-
mal actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff
from both value-based and policy-based while reducing the bias and variance of poli-
cy-based methods [37]. Actor-critic algorithms are divided into two categories: ac-
tor-network, and critic-network. The actor uses the policy function to predict the proba-
bility distribution of all available actions. In fact, it is used to select actions. The critic also
uses the value function to evaluate the performance of the action chosen by the actor so
that, in the next state, the actor can choose better actions [21]. Actor-critic is one of the
most complete and robust types of RL methods, which has the superiority of fast learning
and the potential to perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic
A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)

algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value 𝑉 based on the current state. The actor net-
work uses this 𝑉 to regularly update the parameter 𝜃 of the policy function and then
select the next action 𝑎 . The input of the actor-network is the local agent’s observa-
tions, and the output is the action. Specifically, there are two types of value function ap-
proximations; state-value 𝑉∗(𝑠) and action value 𝑄∗ (𝑠, 𝑎) which can be described as
follows: 𝑉∗(𝑠) 𝑄(𝑠, 𝓌) 𝑄∗ (𝑠, 𝑎) 𝑄(𝑠, 𝑎, 𝓌)

(3)

The following describes the distinction between action-value and state-value: 𝐴𝑑𝑣 = 𝑄(𝑠, 𝑎) − 𝑣(𝑠) (4)𝑣(𝑠) is state-value function at time step t, and 𝑄(𝑠, 𝑎) is the action-value function cor-
responding to an action at the current state. After the advantage between action-value
and state-value is obtained, the critic network is updated using the Mean Square Error
(MES) according to the following equation: ℒ(𝓌) = 12|𝐵| (𝑅 + 𝛾𝑉(𝑠) − 𝑉(𝑠) (5)

)

Q∗π(s, a)≈ Q(s, a,

Smart Cities 2022, 5, FOR PEER REVIEW 6

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function 𝑄 (s, u) = E[𝑅 |𝑠 = s, 𝑢 = u]. The optimal Q-function 𝑄∗ = 𝑚𝑎𝑥 𝑄 , which leads to an optimal greedy policy 𝜋∗ (u|s): u ∈ arg𝑚𝑎𝑥 𝑄∗ (s, 𝑢), is derived from solving the Bellman equation Ꞁ 𝑄∗ = 𝑄∗
according to the dynamic programming (DP) operator Ꞁ [33]:

Ꞁ Q(s, u) = r(s, u) + γ ∑ 𝑝(𝑠 |𝑠, 𝑢) 𝑚𝑎𝑥 𝒰 Q(𝑠 , 𝑢), (2)

where r(s, u) = 𝐸 r(s, u, 𝑠) is the expected reward. In practice, r and 𝑝 are unknown to
the agent, so RL performs DP based on the sampled experience (𝑠 , 𝑢 , 𝑠 , 𝑟) instead of
the above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries to
learn optimal control based on interacting with the environment. For complicated traffic
conditions, the methods of this approach can solve traffic congestion problems more ef-
fectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the opti-
mal actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff
from both value-based and policy-based while reducing the bias and variance of poli-
cy-based methods [37]. Actor-critic algorithms are divided into two categories: ac-
tor-network, and critic-network. The actor uses the policy function to predict the proba-
bility distribution of all available actions. In fact, it is used to select actions. The critic also
uses the value function to evaluate the performance of the action chosen by the actor so
that, in the next state, the actor can choose better actions [21]. Actor-critic is one of the
most complete and robust types of RL methods, which has the superiority of fast learning
and the potential to perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic
A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)

algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value 𝑉 based on the current state. The actor net-
work uses this 𝑉 to regularly update the parameter 𝜃 of the policy function and then
select the next action 𝑎 . The input of the actor-network is the local agent’s observa-
tions, and the output is the action. Specifically, there are two types of value function ap-
proximations; state-value 𝑉∗(𝑠) and action value 𝑄∗ (𝑠, 𝑎) which can be described as
follows: 𝑉∗(𝑠) 𝑄(𝑠, 𝓌) 𝑄∗ (𝑠, 𝑎) 𝑄(𝑠, 𝑎, 𝓌)

(3)

The following describes the distinction between action-value and state-value: 𝐴𝑑𝑣 = 𝑄(𝑠, 𝑎) − 𝑣(𝑠) (4)𝑣(𝑠) is state-value function at time step t, and 𝑄(𝑠, 𝑎) is the action-value function cor-
responding to an action at the current state. After the advantage between action-value
and state-value is obtained, the critic network is updated using the Mean Square Error
(MES) according to the following equation: ℒ(𝓌) = 12|𝐵| (𝑅 + 𝛾𝑉(𝑠) − 𝑉(𝑠) (5)

)
(3)

The following describes the distinction between action-value and state-value:

Advt = Q(s, a)− v(s) (4)

v(s) is state-value function at time step t, and Q(s, a) is the action-value function corre-
sponding to an action at the current state. After the advantage between action-value and
state-value is obtained, the critic network is updated using the Mean Square Error (MES)
according to the following equation:

L(

Smart Cities 2022, 5, FOR PEER REVIEW 6

where 0 ≤ γ ≤ 1 is a discount factor which is a trade-off between future and immediate
rewards. The total expected reward is also shown as its Q-function 𝑄 (s, u) = E[𝑅 |𝑠 = s, 𝑢 = u]. The optimal Q-function 𝑄∗ = 𝑚𝑎𝑥 𝑄 , which leads to an optimal greedy policy 𝜋∗ (u|s): u ∈ arg𝑚𝑎𝑥 𝑄∗ (s, 𝑢), is derived from solving the Bellman equation Ꞁ 𝑄∗ = 𝑄∗
according to the dynamic programming (DP) operator Ꞁ [33]:

Ꞁ Q(s, u) = r(s, u) + γ ∑ 𝑝(𝑠 |𝑠, 𝑢) 𝑚𝑎𝑥 𝒰 Q(𝑠 , 𝑢), (2)

where r(s, u) = 𝐸 r(s, u, 𝑠) is the expected reward. In practice, r and 𝑝 are unknown to
the agent, so RL performs DP based on the sampled experience (𝑠 , 𝑢 , 𝑠 , 𝑟) instead of
the above equation.

RL is a good choice for learning ATSC based on real-world traffic data [34]. It tries to
learn optimal control based on interacting with the environment. For complicated traffic
conditions, the methods of this approach can solve traffic congestion problems more ef-
fectively [35]. Three methods of Reinforcement Learning are value-based (critic-only),
policy-based (actor-only), and actor-critic.

In value-based methods, we train a neural network to learn a value-function. Then,
we choose the action with the highest value. Although this method has low variance in
estimating the returns, it requires an optimization method in each state to find the opti-
mal actions in different states [29].

Policy-based methods directly optimize a policy without using a value function [36].
This method has the problem of high variance and slow learning.

Finally, the Actor-Critic (AC) method aims to take advantage of all the good stuff
from both value-based and policy-based while reducing the bias and variance of poli-
cy-based methods [37]. Actor-critic algorithms are divided into two categories: ac-
tor-network, and critic-network. The actor uses the policy function to predict the proba-
bility distribution of all available actions. In fact, it is used to select actions. The critic also
uses the value function to evaluate the performance of the action chosen by the actor so
that, in the next state, the actor can choose better actions [21]. Actor-critic is one of the
most complete and robust types of RL methods, which has the superiority of fast learning
and the potential to perform precisely in unseen traffic situations [29].

3.4. Advantage of Actor-Critic
A2C is the synchronous version of the asynchronous advantage actor-critic (A3C)

algorithm [38], and both of them update the policy gradient using the critic network. This
network calculates the optimal state-value 𝑉 based on the current state. The actor net-
work uses this 𝑉 to regularly update the parameter 𝜃 of the policy function and then
select the next action 𝑎 . The input of the actor-network is the local agent’s observa-
tions, and the output is the action. Specifically, there are two types of value function ap-
proximations; state-value 𝑉∗(𝑠) and action value 𝑄∗ (𝑠, 𝑎) which can be described as
follows: 𝑉∗(𝑠) 𝑄(𝑠, 𝓌) 𝑄∗ (𝑠, 𝑎) 𝑄(𝑠, 𝑎, 𝓌)

(3)

The following describes the distinction between action-value and state-value: 𝐴𝑑𝑣 = 𝑄(𝑠, 𝑎) − 𝑣(𝑠) (4)𝑣(𝑠) is state-value function at time step t, and 𝑄(𝑠, 𝑎) is the action-value function cor-
responding to an action at the current state. After the advantage between action-value
and state-value is obtained, the critic network is updated using the Mean Square Error
(MES) according to the following equation: ℒ(𝓌) = 12|𝐵| (𝑅 + 𝛾𝑉(𝑠) − 𝑉(𝑠) (5)

) =
1

2|B| ∑tεB
(Rt + γV

(
s′
)
−V(s)2 (5)

Meanwhile, the loss function of actor-network needs to be updated.

L(θ) = − 1
|B| ∑tεB

log πθ(st, at)Advt (6)

3.5. Multi-Agent Reinforcement Learning

Many real-world issues involve controlling multiple intersections simultaneously.
Therefore, the issue of cooperation between intersections in urban traffic networks is very
important because the action of each intersection affects the traffic volume of the others.
Therefore, cooperation makes the vehicles cross the intersections more smoothly and faster.
The issue of cooperation between traffic signals has recently been addressed using the
multi-agent Reinforcement Learning (MARL) technique [39]. MARL can discover the

Smart Cities 2022, 5 1299

optimal policy, which in turn enables the vehicles to leave the multi-intersection in the
shortest time [40]. In ATSC, multiple agents cooperate to optimize global network traffic
targets. Consider a multi-agent network G(V , E), where each agent i ε V performs a discrete
action that communicates to a neighbor agent via the edge ij ε E , and shares the global
reward r(s, u). Then, the joint action space for this network is U = xiεVUi.

A Reinforcement Learning agent can be added to a network and distributedly compute
actor-critic on top of each node. Each local agent can work independently to perform the
optimal action and cooperate with other agents. Through network connections, neighbors’
information can be shared in MARL. Information that is more than one hop distant can
also be propagated throughout the network by exchanging messages through the hop
connections to obtain an approximate global optimization [1]. Moreover, by increasing
the observability and lowering the learning difficulty of each local agent, the fingerprint
method has been used to stabilize the learning process. In this way, we incorporate the
observations and fingerprints of the neighboring agents in the state so that each local agent
is better informed about the regional traffic distribution and the cooperation strategy of
the neighboring agent. In fact, in the fingerprint method, the recent real-time policy of
neighbors is given to each local agent rather than the long-term behavior of neighbors. This
is based on two facts in ATSC: (1) Traffic state in short windows changes slowly; therefore,
the current step policy is quite similar to the last step. (2) According to the given current
state and policy, the dynamics of the traffic state are Markovian.

4. The Proposed Method

Shiraz is one of Iran’s most crowded metropolitan cities, with 63 junctions. One of the
cons of the city is that there are still fixed-time traffic light systems that are implemented
with the SCATS system and work according to a predefined schedule that causes increased
travel time, fuel consumption, and air pollution, in addition to which, heavy traffic behind
red lights causes psychological damage to the driver. Therefore, in order to intelligently
control the intersections and examine this issue more closely, six real-world intersections
were selected to be examined in this research.

The area between Imam Ali Bridge and Deh Bozorgi Bridge, according to the data
received from the Transportation and Traffic Organization of Shiraz Municipality, consists
of four Bridges, including six intersections, which have heavy traffic congestion due to
their proximity to offices, parks, historical gardens, and tourist attractions. Thus, it requires
efficient traffic control measures such as traffic signal controls. Therefore, this area of Shiraz
has been chosen as the study area due to the fact that the traffic output of one intersection
affects the traffic volume of another intersection.

In order to implement real-world intersections, an agent-based traffic simulator was
used. Therefore, in this paper, the Simulation of Urban MObility (SUMO) was used for
agent-based traffic simulation, which is an open-source, highly portable, microscopic, and
ongoing multi-modal traffic simulation package that is built to handle massive networks.

In this section, different features of the traffic simulation are explained. Moreover,
six real-world intersections of Shiraz City, along with the Reinforcement Learning control
method that was applied for multi-agent Reinforcement Learning, are described. The goal
is to design challenging and real-world traffic environments.

4.1. Environment, Agents and Traffic Demands

The environment is the traffic network, consisting of streets, vehicles, intersections, and
agents interacting with each other. Agents are also considered in this article as signalized
intersections or traffic signals.

The study area of Shiraz is shown in Figure 1, and includes four bridges, two of which
have north- and south-signalized intersections, as shown in Figure 2.

Smart Cities 2022, 5 1300

Smart Cities 2022, 5, FOR PEER REVIEW 8

and ongoing multi-modal traffic simulation package that is built to handle massive net-
works.

In this section, different features of the traffic simulation are explained. Moreover,
six real-world intersections of Shiraz City, along with the Reinforcement Learning control
method that was applied for multi-agent Reinforcement Learning, are described. The
goal is to design challenging and real-world traffic environments.

4.1. Environment, Agents and Traffic Demands
The environment is the traffic network, consisting of streets, vehicles, intersections,

and agents interacting with each other. Agents are also considered in this article as sig-
nalized intersections or traffic signals.

The study area of Shiraz is shown in Figure 1, and includes four bridges, two of
which have north- and south-signalized intersections, as shown in Figure 2.

Figure 1. Shiraz traffic network.

Figure 2. North and south intersections.

The four Bridges are as follows:
• Imam Ali Bridge: It has two intersections, north and south, both of them have two

phases, and the duration of the green phase is 27 s in the existing static configura-
tion. At the northern intersection, the first phase is N–S and S–N, which means that
vehicles are allowed to pass from north to south and south to north. The second
phase of the northern intersection is W–E. At the southern intersection, the first
phase is N–S, the second phase is E–W and W–E.

Figure 1. Shiraz traffic network.

Smart Cities 2022, 5, FOR PEER REVIEW 8

and ongoing multi-modal traffic simulation package that is built to handle massive net-
works.

In this section, different features of the traffic simulation are explained. Moreover,
six real-world intersections of Shiraz City, along with the Reinforcement Learning control
method that was applied for multi-agent Reinforcement Learning, are described. The
goal is to design challenging and real-world traffic environments.

4.1. Environment, Agents and Traffic Demands
The environment is the traffic network, consisting of streets, vehicles, intersections,

and agents interacting with each other. Agents are also considered in this article as sig-
nalized intersections or traffic signals.

The study area of Shiraz is shown in Figure 1, and includes four bridges, two of
which have north- and south-signalized intersections, as shown in Figure 2.

Figure 1. Shiraz traffic network.

Figure 2. North and south intersections.

The four Bridges are as follows:
• Imam Ali Bridge: It has two intersections, north and south, both of them have two

phases, and the duration of the green phase is 27 s in the existing static configura-
tion. At the northern intersection, the first phase is N–S and S–N, which means that
vehicles are allowed to pass from north to south and south to north. The second
phase of the northern intersection is W–E. At the southern intersection, the first
phase is N–S, the second phase is E–W and W–E.

Figure 2. North and south intersections.

The four Bridges are as follows:

• Imam Ali Bridge: It has two intersections, north and south, both of them have two
phases, and the duration of the green phase is 27 s in the existing static configuration.
At the northern intersection, the first phase is N–S and S–N, which means that vehicles
are allowed to pass from north to south and south to north. The second phase of the
northern intersection is W–E. At the southern intersection, the first phase is N–S, the
second phase is E–W and W–E.

• Hejrat Bridge: It also has two intersections, and the duration of the green phase is 42 s
for both of them. At the northern intersection, the first phase is N–S and S–E, and
the second phase is W–E. At the southern intersection, the first phase is N–S, and the
second phase is E–W.

• Safa Garden Bridge: It has one intersection with two phases; the first phase is N–S,
which, due to the congestion on this side, has a longer duration for the green phase of
70 s. The second phase is W–E, which lasts 24 s.

• Deh Bozorgi Bridge: It has a three-phase intersection; the first phase is W–E for 30 s,
the second phase is east to west for 29 s, and the third phase is N-S which lasts for 22 s.

We should mention that the yellow phase duration is considered 3 s for all of the
intersections in existing static configuration. In addition, the phases are shown in Figure 3.

Smart Cities 2022, 5 1301

Smart Cities 2022, 5, FOR PEER REVIEW 9

• Hejrat Bridge: It also has two intersections, and the duration of the green phase is 42
s for both of them. At the northern intersection, the first phase is N–S and S–E, and
the second phase is W–E. At the southern intersection, the first phase is N–S, and the
second phase is E–W.

• Safa Garden Bridge: It has one intersection with two phases; the first phase is N–S,
which, due to the congestion on this side, has a longer duration for the green phase
of 70 s. The second phase is W–E, which lasts 24 s.

• Deh Bozorgi Bridge: It has a three-phase intersection; the first phase is W–E for 30 s,
the second phase is east to west for 29 s, and the third phase is N-S which lasts for 22
s.
We should mention that the yellow phase duration is considered 3 s for all of the

intersections in existing static configuration. In addition, the phases are shown in Figure
3.

Figure 3. Phases implemented in Shiraz City: (a) east to west, (b) north to south, (c) north to south,
(d) south to north, (e) west to east. (f) west to east.

To take into account all of the challenges of the real world, four groups of
time-varying traffic flows were simulated. For all four groups, traffic flows that entered
the intersections from arterial streets were also considered.
• The first group had a traffic flow that covered the entire route. This stream entered

the Imam Ali Bridge and exited the Deh Bozorgi Bridge through Hejrat and Safa
Garden Bridges.

• The second group of flows also covered the entire route, but unlike the first group, it
entered from the Deh Bozorgi Bridge and passed through the Safa Garden and
Hejrat Bridge, and exited the Imam Ali Bridge.

• The third flow group entered from the north of the Deh Bozorgi Bridge and exited
from its south, and vice versa. The same flow was defined for Safa Garden Bridge.

• Finally, the fourth group included the flows from the north of the northern Hejrat
intersection to the south of the southern intersection of Hejrat Bridge and vice versa,
from the south to the north of the southern intersection to the northern intersection
of the Hejrat Bridge. The same flow was defined for Imam Ali Bridge.
We defined these flow rates according to information from the Transportation and

Traffic Organization of Shiraz Municipality at different times of the day.

Figure 3. Phases implemented in Shiraz City: (a) east to west, (b) north to south, (c) north to south,
(d) south to north, (e) west to east. (f) west to east.

To take into account all of the challenges of the real world, four groups of time-varying
traffic flows were simulated. For all four groups, traffic flows that entered the intersections
from arterial streets were also considered.

• The first group had a traffic flow that covered the entire route. This stream entered
the Imam Ali Bridge and exited the Deh Bozorgi Bridge through Hejrat and Safa
Garden Bridges.

• The second group of flows also covered the entire route, but unlike the first group, it
entered from the Deh Bozorgi Bridge and passed through the Safa Garden and Hejrat
Bridge, and exited the Imam Ali Bridge.

• The third flow group entered from the north of the Deh Bozorgi Bridge and exited
from its south, and vice versa. The same flow was defined for Safa Garden Bridge.

• Finally, the fourth group included the flows from the north of the northern Hejrat
intersection to the south of the southern intersection of Hejrat Bridge and vice versa,
from the south to the north of the southern intersection to the northern intersection of
the Hejrat Bridge. The same flow was defined for Imam Ali Bridge.

We defined these flow rates according to information from the Transportation and
Traffic Organization of Shiraz Municipality at different times of the day.

4.2. IoT Agents as MA2C for Traffic Signal Control

In this paper, we employed RL, a data-driven method for adaptive traffic signal
control in intricate urban traffic networks, and because our simulation scenario included
four bridges with six interconnected intersections of Shiraz City, we could not use the
centralized RL. Therefore, the multi-agent RL (MARL) was used, which can overcome
the scalability issue. This means that more intersections could be controlled. Distributed
MARL was installed in the traffic light system in such a way that an RL agent was located at
each intersection to manage the local traffic lights for vehicles in all directions. Surveillance
cameras, which were IoT sensors, were also placed on each side to capture the queue
lengths of the vehicles. Additionally, the agent gathered local traffic data that was tracked
by cameras and recorded the information in a local IoT database. As an IoT technique,
agents also gathered information from neighbors by exchanging information across network
connections. Neighbor data were also kept in the same database, as seen in Figure 4.
Based on the data in the database, the actor-critic algorithm, which is an RL type, selects

Smart Cities 2022, 5 1302

the optimal control action from a list of predefined actions, and the IoT actuator, such
as a traffic light, applies the selected action to the environment. Moreover, in order to
better communicate and coordinate between intersections, the combination of MARL and
A2C (MA2C) was used in this paper, which makes each intersection not only aware of
its own policy but also aware of the policy of other intersections. Therefore, the traffic
impact of neighboring intersections can be controlled at the desired intersection. Finally,
in order to stabilize the learning procedure by improving the observability of each local
agent, the fingerprint method of neighboring agents was incorporated. This means that
observations and fingerprints of neighboring agents were included in the local agent state.
In the fingerprint method, we incorporated the most recent neighborhood policies πt−1,
Ni =

[
πt−1, j

]
j∈Ni

in the DNN inputs, where Ni is the neighborhood of agent i. The local
policy is calculated as:

πt, i = πθ−i
(·
∣∣∣st, Vi , πt−1 , Ni) (7)

Smart Cities 2022, 5, FOR PEER REVIEW 10

4.2. IoT Agents as MA2C for Traffic Signal Control
In this paper, we employed RL, a data-driven method for adaptive traffic signal

control in intricate urban traffic networks, and because our simulation scenario included
four bridges with six interconnected intersections of Shiraz City, we could not use the
centralized RL. Therefore, the multi-agent RL (MARL) was used, which can overcome the
scalability issue. This means that more intersections could be controlled. Distributed
MARL was installed in the traffic light system in such a way that an RL agent was located
at each intersection to manage the local traffic lights for vehicles in all directions. Sur-
veillance cameras, which were IoT sensors, were also placed on each side to capture the
queue lengths of the vehicles. Additionally, the agent gathered local traffic data that was
tracked by cameras and recorded the information in a local IoT database. As an IoT
technique, agents also gathered information from neighbors by exchanging information
across network connections. Neighbor data were also kept in the same database, as seen
in Figure 4. Based on the data in the database, the actor-critic algorithm, which is an RL
type, selects the optimal control action from a list of predefined actions, and the IoT ac-
tuator, such as a traffic light, applies the selected action to the environment. Moreover, in
order to better communicate and coordinate between intersections, the combination of
MARL and A2C (MA2C) was used in this paper, which makes each intersection not only
aware of its own policy but also aware of the policy of other intersections. Therefore, the
traffic impact of neighboring intersections can be controlled at the desired intersection.
Finally, in order to stabilize the learning procedure by improving the observability of
each local agent, the fingerprint method of neighboring agents was incorporated. This
means that observations and fingerprints of neighboring agents were included in the lo-
cal agent state. In the fingerprint method, we incorporated the most recent neighborhood
policies 𝜋 , 𝒩 = 𝜋 , ∈𝒩 in the DNN inputs, where 𝒩 is the neighborhood of
agent 𝑖. The local policy is calculated as: 𝜋 , = 𝜋 (· |𝑠 ,𝒱 , 𝜋 , 𝒩) (7)

Figure 4. IoT and MARL approach for ATSC.

Therefore, each local intersection contains more information on neighbors’ policies
in addition to the regional traffic distribution and cooperation strategy.

The following is a definition of state, action, and reward based on [22].
 State Definition

We define each state as follows:

Figure 4. IoT and MARL approach for ATSC.

Therefore, each local intersection contains more information on neighbors’ policies in
addition to the regional traffic distribution and cooperation strategy.

The following is a definition of state, action, and reward based on [22].

v State Definition

We define each state as follows:

st, i = {waitt[l], wavet[l]}ji∈ε, l∈Lji
, (8)

where l is the incoming lanes of the intersection i. wait[s] is the cumulative delay of the first
vehicle, and the wave[veh] measures the total number of vehicles entering the intersection
lanes. Both wait and wave are measured as shown in Figure 2 by using induction-loop
detectors (ILD) marked in blue. LaneAreaDetector in SUMO is also used to obtain this
information.

v Action Definition

In this paper, we define the action for an intersection of all possible phase combinations
of traffic lights. This definition allows the agent to control the traffic signal more flexibly.
In other words, a set of all existing static phases of Shiraz is defined for each intersection
so that the RL agent chooses one of them that lasts for ∆t at each step; in which ∆t is the
interaction period between each agent and the traffic environment.

Smart Cities 2022, 5 1303

v Reward Definition

The reward should be measurable and evaluable, directly dependent on the state and
indicating to the agent whether the chosen action is good or bad. In this paper, the queue
length at each incoming lane and the average waiting time of drivers are considered as a
reward and measured at time t + ∆t.

rt, i = ∑
ji∈ε, l∈Lji

(queuet+∆t[l] + a· waitt+∆t[l]), (9)

where a[veh/s] is a tradeoff factor. This reward definition emphasizes traffic congestion
and trip delay.

4.2.1. DNN Structure

The traffic flows are complicated spatial–temporal data, so MDP may become non-
stationary if the agent only knows the current state. One direct strategy is to include all
historical states as A2C input. However, this dramatically increases the dimension of the
state and may reduce A2C’s attention to recent traffic conditions. Fortunately, long–short
term memory (LSTM) is a potential DNN layer that keeps hidden states to memorize brief
history. Therefore, we used LSTM as the last hidden layer to extract representations from
various types of states. We defined the states for each input line as the input of neural
networks, which include the number of input vehicles at the intersection and their waiting
time within 50 m of the intersection. In addition to the wave and wait as state, we also
included a neighbor policies node as input. Then we processed these values with a fully
connected layer. Finally, we concatenated the output in an array and then normalized
them. In order to select the best action from the available actions, we used the Softmax as
an activation function, and for the critic we also used the linear relation as an activation
function to return the reward [22]. Figure 5 shows the DNN architecture in actor-network
and critic-network.

Smart Cities 2022, 5, FOR PEER REVIEW 12

tions of all agents. After that, each agent receives a reward, then we enter the new state,
and these steps are repeated again. The model is trained at any given time based on the
data given to it. Moreover, due to intersection cooperation, neighboring information can
be shared via network connections of IoT devices. By exchanging messages through the
hop connections, information that is more than one hop away can also be propagated
throughout the network to achieve an approximate global optimization. Additionally, by
increasing the observability and lowering the learning difficulty of each local agent, the
fingerprint method has been utilized to stabilize the learning process. In this way, we in-
clude the latest policies or the last actions of the neighboring agents in the state so that
each local agent is better informed about the regional traffic distribution and the cooper-
ation technique of the neighboring agent.

Figure 5. The DNN architecture and training.

4.2.2. Normalization
Normalization is a crucial factor in DNN training. A greedy policy is applied for

each wave and wait state to gather statistics relevant to a certain traffic environment and
use them to produce an accurate normalization. To avoid the gradient explosion, all
normalized states are clipped to [0, 2]. Similarly, to stabilize the mini-batch updating, we
normalized the reward and clipped it to [−2, 2] Also, the wave and wait normalization
factors are 5 veh and 100 s, respectively [22].

5. Numerical Experiments and Evaluation Results
As mentioned in Section 4, we executed our traffic signal control method in the

SUMO [23] simulation, which can model microscopic traffic conditions. We also used
Traffic Control Interface (TraCI) (https://sumo.dlr.de/docs/TraCI.html (accessed on 1
January 2022)) as an API, which gives online access from Python to traffic simulation to
retrieve simulated objects’ values and manipulate their behavior. We train the MA2C
algorithm over 1M steps, which is around 1400 episodes. Then we evaluate the obtained
model over 10 episodes. Additionally, 10 distinct seeds are used to create various training
and evaluation episodes. For MDP, we set 𝛾 = 0.99. Four time-varying traffic flow

Figure 5. The DNN architecture and training.

DNN Training

In our method, agents learn their policy since each agent is distributed within the
six intersections. Therefore, as shown in Figure 5, each agent has its actor-network and

Smart Cities 2022, 5 1304

critic-network. We train the actor and the critic of the DNN separately. The input of
each actor-network is the local agent’s observations or state (Equation (8)). Based on the
model that has been trained so far, it performs an action which has predefined phases
that are mentioned in sub-Section 4.1. These phases have been obtained from the Shiraz
transportation organization and municipality. Based on the selected action, each agent
obtains a reward from the environment (Equation (9)), and based on it, the critic-network
examines whether the selected action is appropriate for the existing conditions or not,
and then the weights are updated. During the training process, the input of each critic-
network includes not only the global states of all intersections but also the global actions
of all agents. After that, each agent receives a reward, then we enter the new state, and
these steps are repeated again. The model is trained at any given time based on the data
given to it. Moreover, due to intersection cooperation, neighboring information can be
shared via network connections of IoT devices. By exchanging messages through the
hop connections, information that is more than one hop away can also be propagated
throughout the network to achieve an approximate global optimization. Additionally,
by increasing the observability and lowering the learning difficulty of each local agent,
the fingerprint method has been utilized to stabilize the learning process. In this way,
we include the latest policies or the last actions of the neighboring agents in the state
so that each local agent is better informed about the regional traffic distribution and the
cooperation technique of the neighboring agent.

4.2.2. Normalization

Normalization is a crucial factor in DNN training. A greedy policy is applied for each
wave and wait state to gather statistics relevant to a certain traffic environment and use
them to produce an accurate normalization. To avoid the gradient explosion, all normalized
states are clipped to [0, 2]. Similarly, to stabilize the mini-batch updating, we normalized
the reward and clipped it to [−2, 2] Also, the wave and wait normalization factors are 5 veh
and 100 s, respectively [22].

5. Numerical Experiments and Evaluation Results

As mentioned in Section 4, we executed our traffic signal control method in the
SUMO [23] simulation, which can model microscopic traffic conditions. We also used Traffic
Control Interface (TraCI) (https://sumo.dlr.de/docs/TraCI.html (accessed on 1 January
2022)) as an API, which gives online access from Python to traffic simulation to retrieve
simulated objects’ values and manipulate their behavior. We train the MA2C algorithm
over 1M steps, which is around 1400 episodes. Then we evaluate the obtained model
over 10 episodes. Additionally, 10 distinct seeds are used to create various training and
evaluation episodes. For MDP, we set γ = 0.99. Four time-varying traffic flow groups are
designed as unit flows of 325 veh/hr. This traffic flow strongly matches into the real world.
The general configurations of the simulation are shown in Tables 1–3.

Table 1. The parameter values of the proposed model.

Model_Config Values
Gamma 0.99

Batch_size 40
Reward_norm 1.0
Reward_clip 2.0

https://sumo.dlr.de/docs/TraCI.html

Smart Cities 2022, 5 1305

Table 2. The train configuration.

Train_Config Values
Total_step 1 × 106

Test_interval 2 × 104

Log_interval 1 × 104

Table 3. The environment configuration.

Env_Config Values
Clip_wave 2.0
Clip_wait 2.0

Agent MA2C
Episode_length_sec 1400

Norm_wave 5.0
Norm_wait 100.0
Flow_rate 325

Yellow_interval_sec 3

We evaluated MA2C-based ATSC in two traffic environments: two synthetic traffic
grids for evaluating the results with synthetic data and a real-world six-intersection traffic
network extracted from Shiraz City for evaluation with real data.

5.1. Synthetic Traffic Grid

As illustrated in Figure 6, two synthetic intersections are formed by three lanes with a
speed limit of 8.89 m/s, and vehicles with 5 m length are defined for it. The action space for
two intersections contains four possible phases: E–W straight phase, E–W left-turn phase,
and N–S straight phase, N–S left-turn phase. Moreover, each vehicle’s route is generated
randomly during run-time.

Smart Cities 2022, 5, FOR PEER REVIEW 13

groups are designed as unit flows of 325 veh/hr. This traffic flow strongly matches into
the real world. The general configurations of the simulation are shown in Tables 1–3.

We evaluated MA2C-based ATSC in two traffic environments: two synthetic traffic
grids for evaluating the results with synthetic data and a real-world six-intersection traf-
fic network extracted from Shiraz City for evaluation with real data.

Table 1. The parameter values of the proposed model.

Model_Config Values
Gamma 0.99

Batch_size 40
Reward_norm 1.0
Reward_clip 2.0

Table 2. The train configuration.

Train_Config Values
Total_step 1 × 106

Test_interval 2 × 104
Log_interval 1 × 104

Table 3. The environment configuration.

Env_Config Values
Clip_wave 2.0
Clip_wait 2.0

Agent MA2C
Episode_length_sec 1400

Norm_wave 5.0
Norm_wait 100.0
Flow_rate 325

Yellow_interval_sec 3

5.1. Synthetic Traffic Grid
As illustrated in Figure 6, two synthetic intersections are formed by three lanes with

a speed limit of 8.89 m/s, and vehicles with 5 m length are defined for it. The action space
for two intersections contains four possible phases: E–W straight phase, E–W left-turn
phase, and N–S straight phase, N–S left-turn phase. Moreover, each vehicle’s route is
generated randomly during run-time.

Figure 6. A traffic grid with two synthetic intersections. Figure 6. A traffic grid with two synthetic intersections.

Smart Cities 2022, 5 1306

5.1.1. Training Results

Figure 7 plots the training curve.

Smart Cities 2022, 5, FOR PEER REVIEW 14

5.1.1. Training results
Figure 7 plots the training curve.

Figure 7. MA2C training curve for synthetic traffic grid.

As Reinforcement Learning learns from accumulated experience and eventually
reaches the local optimum, the learning curve initially rises and then converges. There-
fore, this algorithm has achieved a good result.

5.1.2. Evaluation Results
The network’s average queue length for each simulation step is shown in Figure 8.

Figure 8. Average queue length in synthetic traffic grid.

This figure represents the total number of vehicles at all junctions at red lights. First,
because the number of vehicles is small, the queue length is also short, then as the num-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (v
eh

)

Simulation time (sec)

Figure 7. MA2C training curve for synthetic traffic grid.

As Reinforcement Learning learns from accumulated experience and eventually
reaches the local optimum, the learning curve initially rises and then converges. Therefore,
this algorithm has achieved a good result.

5.2. Evaluation Results

The network’s average queue length for each simulation step is shown in Figure 8.

Smart Cities 2022, 5, FOR PEER REVIEW 14

5.1.1. Training results
Figure 7 plots the training curve.

Figure 7. MA2C training curve for synthetic traffic grid.

As Reinforcement Learning learns from accumulated experience and eventually
reaches the local optimum, the learning curve initially rises and then converges. There-
fore, this algorithm has achieved a good result.

5.1.2. Evaluation Results
The network’s average queue length for each simulation step is shown in Figure 8.

Figure 8. Average queue length in synthetic traffic grid.

This figure represents the total number of vehicles at all junctions at red lights. First,
because the number of vehicles is small, the queue length is also short, then as the num-

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 200 400 600 800 1000 1200 1400

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 (v
eh

)

Simulation time (sec)

Figure 8. Average queue length in synthetic traffic grid.

This figure represents the total number of vehicles at all junctions at red lights. First,
because the number of vehicles is small, the queue length is also short, then as the number

Smart Cities 2022, 5 1307

of vehicles in the middle of the simulation time increases, the queue length also increases
and again decreases with the decreasing number of vehicles.

5.3. Shiraz Traffic Network with Real Data

We exported the map of Imam Ali Bridge to Deh Bozorgi Bridge in Shiraz City from
Open Street Map (OSM) as shown in Figure 9. The map was converted into SUMO-
compatible topology by the netconvert tool as shown in Figure 1.

Smart Cities 2022, 5, FOR PEER REVIEW 15

ber of vehicles in the middle of the simulation time increases, the queue length also in-
creases and again decreases with the decreasing number of vehicles.

5.2. Shiraz Traffic Network with Real Data
We exported the map of Imam Ali Bridge to Deh Bozorgi Bridge in Shiraz City from

Open Street Map (OSM) as shown in Figure 9. The map was converted into SUMO-
compatible topology by the netconvert tool as shown in Figure 1.

Figure 9. A map of Imam Ali Bridge to Deh Bozorgi Bridge downloaded from OSM.

After conversion, we applied the algorithm we used to each traffic light in Figure 1.
Along with the real-world map, we also used real-world traffic data, which are the im-
plemented phases in Shiraz that are obtained from the transportation and municipality
traffic organization of Shiraz City. In totally, there were six signalized intersections: five
were two-phase, and the last one had three phases. In addition, as stated in Section 4, four
time-varying traffic flow groups were designed as unit flows of 325 veh/hr to simulate
the peak-hour traffic and to take into account real-world challenges and evaluate the
robustness and optimality of the algorithm.

5.2.1. Training Results
Figure 10 plots the training curves of the MA2C algorithm. It converges to reasona-

ble policy and has a stable convergence.

Figure 9. A map of Imam Ali Bridge to Deh Bozorgi Bridge downloaded from OSM.

After conversion, we applied the algorithm we used to each traffic light in Figure 1.
Along with the real-world map, we also used real-world traffic data, which are the im-
plemented phases in Shiraz that are obtained from the transportation and municipality
traffic organization of Shiraz City. In totally, there were six signalized intersections: five
were two-phase, and the last one had three phases. In addition, as stated in Section 4, four
time-varying traffic flow groups were designed as unit flows of 325 veh/hr to simulate the
peak-hour traffic and to take into account real-world challenges and evaluate the robustness
and optimality of the algorithm.

5.3.1. Training Results

Figure 10 plots the training curves of the MA2C algorithm. It converges to reasonable
policy and has a stable convergence.

Smart Cities 2022, 5, FOR PEER REVIEW 16

Figure 10. MA2C training curve for Shiraz traffic network.

5.2.2. Evaluation Results
Figures 11 and 12 represent the average queue length of vehicles and their waiting

time (average intersection delay) over the simulation time, respectively, in which our
proposed system was compared with the traditional traffic control system of Shiraz City
using the fixed-time traffic signal control system.

As shown in Figure 11, the MA2C algorithm performed better than Shiraz City’s
traditional traffic control system, which uses fixed-time scheduling and does not consider
environmental traffic conditions. The main reason for the efficiency of this system is that
by taking into account the traffic volume on each side of the intersection using IoT tech-
nologies, it switches the traffic light into green for that side and into red if the traffic on
the opposite road is less congested, or free of vehicles. Furthermore, the robustness of our
system appears during peak hours because it works according to traffic conditions.
Therefore, as seen in the figure, the MA2C algorithm can manage the queue length of
vehicles more effectively.

Figure 10. MA2C training curve for Shiraz traffic network.

Smart Cities 2022, 5 1308

5.3.2. Evaluation Results

Figures 11 and 12 represent the average queue length of vehicles and their waiting time
(average intersection delay) over the simulation time, respectively, in which our proposed
system was compared with the traditional traffic control system of Shiraz City using the
fixed-time traffic signal control system.

Smart Cities 2022, 5, FOR PEER REVIEW 17

Figure 11. Average queue length in Shiraz traffic network.

Figure 12. Average intersection delay in Shiraz traffic network.

As the results show in Figure 12, our system could reduce and then maintain inter-
section delays by coordinating and distributing traffic homogeneously among neigh-
boring intersections, specifically when the local traffic flow is maximized greedily in the
middle of the simulation time. Therefore, the MA2C algorithm can significantly reduce
vehicle waiting time compared to the fixed-time traffic signal control system of Shiraz
City.

6. Conclusions
In this paper, we proposed a method using the MARL algorithm to reduce the traffic

at six signalized junctions of Shiraz City by changing their phases in real-time. Also, we
utilized real-world traffic data received from the transportation and municipality traffic
organization of Shiraz City. The proposed method was then applied to two scenarios: (1)
two fictitious intersections and (2) a real-world map of Shiraz City received from OSM. In
fact, we compared our proposed algorithm with the traditional system of Shiraz that uses
fixed-time scheduling for traffic signal control. In order to solve the challenges of coop-

Figure 11. Average queue length in Shiraz traffic network.

Smart Cities 2022, 5, FOR PEER REVIEW 17

Figure 11. Average queue length in Shiraz traffic network.

Figure 12. Average intersection delay in Shiraz traffic network.

As the results show in Figure 12, our system could reduce and then maintain inter-
section delays by coordinating and distributing traffic homogeneously among neigh-
boring intersections, specifically when the local traffic flow is maximized greedily in the
middle of the simulation time. Therefore, the MA2C algorithm can significantly reduce
vehicle waiting time compared to the fixed-time traffic signal control system of Shiraz
City.

6. Conclusions
In this paper, we proposed a method using the MARL algorithm to reduce the traffic

at six signalized junctions of Shiraz City by changing their phases in real-time. Also, we
utilized real-world traffic data received from the transportation and municipality traffic
organization of Shiraz City. The proposed method was then applied to two scenarios: (1)
two fictitious intersections and (2) a real-world map of Shiraz City received from OSM. In
fact, we compared our proposed algorithm with the traditional system of Shiraz that uses
fixed-time scheduling for traffic signal control. In order to solve the challenges of coop-

Figure 12. Average intersection delay in Shiraz traffic network.

As shown in Figure 11, the MA2C algorithm performed better than Shiraz City’s
traditional traffic control system, which uses fixed-time scheduling and does not consider
environmental traffic conditions. The main reason for the efficiency of this system is that by
taking into account the traffic volume on each side of the intersection using IoT technologies,
it switches the traffic light into green for that side and into red if the traffic on the opposite
road is less congested, or free of vehicles. Furthermore, the robustness of our system
appears during peak hours because it works according to traffic conditions. Therefore, as

Smart Cities 2022, 5 1309

seen in the figure, the MA2C algorithm can manage the queue length of vehicles more
effectively.

As the results show in Figure 12, our system could reduce and then maintain intersec-
tion delays by coordinating and distributing traffic homogeneously among neighboring
intersections, specifically when the local traffic flow is maximized greedily in the middle
of the simulation time. Therefore, the MA2C algorithm can significantly reduce vehicle
waiting time compared to the fixed-time traffic signal control system of Shiraz City.

6. Conclusions

In this paper, we proposed a method using the MARL algorithm to reduce the traffic
at six signalized junctions of Shiraz City by changing their phases in real-time. Also, we
utilized real-world traffic data received from the transportation and municipality traffic
organization of Shiraz City. The proposed method was then applied to two scenarios: (1)
two fictitious intersections and (2) a real-world map of Shiraz City received from OSM.
In fact, we compared our proposed algorithm with the traditional system of Shiraz that
uses fixed-time scheduling for traffic signal control. In order to solve the challenges of
cooperation between multiple intersections, the fingerprint method was used to improve
their observability. Results showed that using the MARL approach with data from IoT
sensors would decrease the average queue length and waiting time at the intersection
compared to the fixed-time scheduling implemented in Shiraz. Moreover, the importance
of this method was more pronounced with the higher number of vehicles during peak
hours. For future work, more intersections should be considered for deployment of the
traffic networks to implement the proposed system in the real-world Shiraz City. Moreover,
considering the impact of pedestrians on the traffic signal control system would more
efficiently improve traffic management.

Author Contributions: Project administration, S.D.; Writing & editing, S.D.; Data curation, M.Z.;
Supervision, R.J.; review, A.F. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: My manuscript has no associated data.

Conflicts of Interest: All Authors declare that they have no conflict of interest.

References
1. Liu, Y.; Liu, L.; Chen, W.P. Intelligent traffic light control using distributed multi-agent Q learning. In Proceedings of the IEEE

Conference on Intelligent Transportation Systems, Proceedings, ITSC, Yokohama, Japan, 16–19 October 2017. [CrossRef]
2. Lin, Y.; Jia, H.; Yang, Y.; Tian, G.; Tao, F.; Ling, L. An improved artificial bee colony for facility location allocation problem of

end-of-life vehicles recovery network. J. Clean. Prod. 2018, 205, 134–144. [CrossRef]
3. Zhang, C.; Tian, G.; Fathollahi-Fard, A.M.; Wang, W.; Wu, P.; Li, Z. Interval-valued intuitionistic uncertain linguistic cloud petri

net and its application to risk assessment for subway fire accident. IEEE Trans. Autom. Sci. Eng. 2020, 19, 163–177. [CrossRef]
4. U.S. Department of Transportation, Smart City Challenge: Lessons for Building Cities of the Future. Available online: https:

//ops.fhwa.dot.gov/publications/fhwahop08024/index.htm#toc (accessed on 3 February 2021).
5. Gao, J.; Shen, Y.; Liu, J.; Ito, M.; Shiratori, N. Adaptive traffic signal control: Deep reinforcement learning algorithm with

experience replay and target network. arXiv 2017, arXiv:1705.02755.
6. Hunt, P.B.; Robertson, D.I.; Bretherton, R.D.; Royle, M.C. The SCOOT on-line traffic signal optimisation technique. Traffic Eng.

Control. 1982, 23, 1982.
7. Luk, J.Y.K. Two traffic-responsive area traffic control methods: SCAT and SCOOT. Traffic Eng. Control. 1984, 25, 14.
8. Kao, Y.-C.; Wu, C.-W. A self-organizing map-based adaptive traffic light control system with reinforcement learning. In

Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA, USA, 28–31 October
2018; pp. 2060–2064.

9. Gartner, N.H. Demand-Responsive Decentralized Urban Traffic Control. Part I: Single-Intersection Policies. 1982. Available
online: https://trid.trb.org/view/1410964 (accessed on 3 February 2021).

10. Sen, S.; Head, K.L. Controlled optimization of phases at an intersection. Transp. Sci. 1997, 31, 5–17. [CrossRef]
11. Henry, J.-J.; Farges, J.L.; Tuffal, J. The PRODYN real time traffic algorithm. In Control in Transportation Systems; Elsevier:

Amsterdam, The Netherlands, 1984; pp. 305–310.

http://doi.org/10.1109/ITSC.2017.8317730
http://doi.org/10.1016/j.jclepro.2018.09.086
http://doi.org/10.1109/TASE.2020.3014907
https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm#toc
https://ops.fhwa.dot.gov/publications/fhwahop08024/index.htm#toc
https://trid.trb.org/view/1410964
http://doi.org/10.1287/trsc.31.1.5

Smart Cities 2022, 5 1310

12. Genders, W.; Razavi, S. Asynchronous n-step Q-learning adaptive traffic signal control. J. Intell. Transp. Syst. 2019, 23, 319–331.
[CrossRef]

13. Fehon, K.; Peters, J. Adaptive Traffic Signals, Comparison and Case Studies. 2010. Available online: https://www.semanticscholar.
org/paper/Adaptive-Traffic-Signals-%2C-Comparison-and-Case-Fehon-Peters/3a0da73ec54249b3366158663c8b4c834e6646c1
(accessed on 3 February 2010).

14. Dubey, A.; Lakhani, M.; Dave, S.; Patoliya, J.J. Internet of Things based adaptive traffic management system as a part of Intelligent
Transportation System (ITS). In Proceedings of the 2017 International Conference on Soft Computing and its Engineering
Applications (icSoftComp), Changa, India, 1–2 December 2017; pp. 1–6.

15. Bingham, E. Reinforcement learning in neurofuzzy traffic signal control. Eur. J. Oper. Res. 2001, 131, 232–241. [CrossRef]
16. Darmoul, S.; Elkosantini, S.; Louati, A.; Said, L.B. Multi-agent immune networks to control interrupted flow at signalized

intersections. Transp. Res. Part C Emerg. Technol. 2017, 82, 290–313. [CrossRef]
17. Srinivasan, D.; Choy, M.C.; Cheu, R.L. Neural networks for real-time traffic signal control. IEEE Trans. Intell. Transp. Syst. 2006, 7,

261–272. [CrossRef]
18. Sánchez-Medina, J.J.; Galán-Moreno, M.J.; Rubio-Royo, E. Traffic signal optimization in ‘La Almozara’ district in Saragossa under

congestion conditions, using genetic algorithms, traffic microsimulation, and cluster computing. IEEE Trans. Intell. Transp. Syst.
2009, 11, 132–141. [CrossRef]

19. Bazzan, A.L.C. Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Auton. Agents
Multi-Agent Syst. 2009, 18, 342–375. [CrossRef]

20. Qu, Z.; Pan, Z.; Chen, Y.; Wang, X.; Li, H. A distributed control method for urban networks using multi-agent reinforcement
learning based on regional mixed strategy Nash-equilibrium. IEEE Access 2020, 8, 19750–19766. [CrossRef]

21. Wang, M.; Wu, L.; Li, J.; He, L. Traffic Signal Control With Reinforcement Learning Based on Region-Aware Cooperative Strategy.
IEEE Trans. Intell. Transp. Syst. 2021, 23, 3774–3785. [CrossRef]

22. Chu, T.; Wang, J.; Codecà, L.; Li, Z. Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 1086–1095. [CrossRef]

23. Krajzewicz, D.; Erdmann, J.; Behrisch, M.; Bieker, L. Recent development and applications of SUMO-Simulation of Urban
MObility. Int. J. Adv. Syst. Meas. 2012, 5, 128–138.

24. Sims, A.G.; Dobinson, K.W. The Sydney coordinated adaptive traffic (SCAT) system philosophy and benefits. IEEE Trans. Veh.
Technol. 1980, 29, 130–137. [CrossRef]

25. Hosur, J.; Rashmi, R.; Dakshayini, M. Smart Traffic light control in the junction using Raspberry PI. In Proceedings of the 2019
3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 27–29 March 2019; pp.
153–156.

26. Liang, X.; Du, X.; Wang, G.; Han, Z. A deep reinforcement learning network for traffic light cycle control. IEEE Trans. Veh. Technol.
2019, 68, 1243–1253. [CrossRef]

27. Wang, T.; Cao, J.; Hussain, A. Adaptive Traffic Signal Control for large-scale scenario with Cooperative Group-based Multi-agent
reinforcement learning. Transp. Res. Part C Emerg. Technol. 2021, 125, 103046. [CrossRef]

28. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

29. Aslani, M.; Mesgari, M.S.; Wiering, M. Adaptive traffic signal control with actor-critic methods in a real-world traffic network
with different traffic disruption events. Transp. Res. Part C Emerg. Technol. 2017, 85, 732–752. [CrossRef]

30. Ge, H.; Gao, D.; Sun, L.; Hou, Y.; Yu, C.; Wang, Y.; Tan, G. Multi-agent transfer reinforcement learning with multi-view encoder
for adaptive traffic signal control. IEEE Trans. Intell. Transp. Syst. 2021, 23, 12572–12587. [CrossRef]

31. Haydari, A.; Yilmaz, Y. Deep reinforcement learning for intelligent transportation systems: A survey. IEEE Trans. Intell. Transp.
Syst. 2020, 23, 11–32. [CrossRef]

32. Garg, D.; Chli, M.; Vogiatzis, G. Deep reinforcement learning for autonomous traffic light control. In Proceedings of the 2018 3rd
IEEE International Conference on Intelligent Transportation Engineering (ICITE), Singapore, 3–5 September 2018; pp. 214–218.

33. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684. [CrossRef]
34. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, UK, 2018.
35. Wu, T.; Zhou, P.; Liu, K.; Yuan, Y.; Wang, X.; Huang, H.; Wu, D.O. Multi-agent deep reinforcement learning for urban traffic light

control in vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 8243–8256. [CrossRef]
36. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8,

229–256. [CrossRef]
37. Konda, V.R.; Tsitsiklis, J.N. Actor-critic algorithms. NIPS 2000, 12, 7.
38. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for Deep

Reinforcement Learning Volodymyr. Int. Conf. Mach. Learn. 2013, 48, 1928–1937.

http://doi.org/10.1080/15472450.2018.1491003
https://www.semanticscholar.org/paper/Adaptive-Traffic-Signals-%2C-Comparison-and-Case-Fehon-Peters/3a0da73ec54249b3366158663c8b4c834e6646c1
https://www.semanticscholar.org/paper/Adaptive-Traffic-Signals-%2C-Comparison-and-Case-Fehon-Peters/3a0da73ec54249b3366158663c8b4c834e6646c1
http://doi.org/10.1016/S0377-2217(00)00123-5
http://doi.org/10.1016/j.trc.2017.07.003
http://doi.org/10.1109/TITS.2006.874716
http://doi.org/10.1109/TITS.2009.2034383
http://doi.org/10.1007/s10458-008-9062-9
http://doi.org/10.1109/ACCESS.2020.2968937
http://doi.org/10.1109/TITS.2021.3062072
http://doi.org/10.1109/TITS.2019.2901791
http://doi.org/10.1109/T-VT.1980.23833
http://doi.org/10.1109/TVT.2018.2890726
http://doi.org/10.1016/j.trc.2021.103046
http://doi.org/10.1016/j.trc.2017.09.020
http://doi.org/10.1109/TITS.2021.3115240
http://doi.org/10.1109/TITS.2020.3008612
http://doi.org/10.1512/iumj.1957.6.56038
http://doi.org/10.1109/TVT.2020.2997896
http://doi.org/10.1007/BF00992696

Smart Cities 2022, 5 1311

39. Wei, H.; Xu, N.; Zhang, H.; Zheng, G.; Zang, X.; Chen, C.; Zhang, W.; Zhu, Y.; Xu, K.; Li, Z. Colight: Learning network-level
cooperation for traffic signal control. In Proceedings of the CIKM’19: The 28th ACM International Conference on Information
and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 1913–1922.

40. Song, J.; Jin, Z.; Zhu, W. Implementing traffic signal optimal control by multiagent reinforcement learning. In Proceedings of the
2011 International Conference on Computer Science and Network Technology, Harbin, China, 24–26 December 2011; Volume 4,
pp. 2578–2582.

	Introduction
	Related Work
	Background
	Machine Learning (ML)
	Deep Learning (DL)
	Reinforcement Learning (RL)
	Advantage of Actor-Critic
	Multi-Agent Reinforcement Learning

	The Proposed Method
	Environment, Agents and Traffic Demands
	IoT Agents as MA2C for Traffic Signal Control
	DNN Structure
	Normalization

	Numerical Experiments and Evaluation Results
	Synthetic Traffic Grid
	Training Results

	Evaluation Results
	Shiraz Traffic Network with Real Data
	Training Results
	Evaluation Results

	Conclusions
	References

