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Abstract: The electricity market is particularly complex due to the different arrangements and
structures of its participants. If the energy price in this market presents in a conceptual and well-
known way, the complexity of the market will be greatly reduced. Drastic changes in the supply
and demand markets are a challenge for electricity prices (EPs), which necessitates the short-term
forecasting of EPs. In this study, two restructured power systems are considered, and the EPs of these
systems are entirely and accurately predicted using a Gaussian process (GP) model that is adapted
for time series predictions. In this modeling, various models of the GP, including dynamic, static,
direct, and indirect, as well as their mixture models, are used and investigated. The effectiveness and
accuracy of these models are compared using appropriate evaluation indicators. The results show
that the combinations of the GP models have lower errors than individual models, and the dynamic
indirect GP was chosen as the best model.

Keywords: electricity price forecasting; electricity market; re-structured power systems; time series
modeling; Gaussian processing

1. Introduction
1.1. Motivation

Electricity is an essential and critical need at all application levels. The inability of
technologies to store this energy on a large scale has made it more difficult for operation
plans. Therefore, the production of the electricity price (EP) in supply and demand is a
challenge in the electricity industry and markets [1]. The EP has a direct relationship with
the amount of consumed load, and all economic planning and management of utilities
depend on this relationship [2]. Moreover, the existence of regular and committed policies
in development plans should be considered. For instance, reliability is one of the tasks of
generation units, which along with other policies, such as environmental protection and the
development of appropriate infrastructure for the use of renewable energy, is so effective in
the quality of delivered energy [3]. For this purpose, optimal planning in the restructured
power systems is divided into three parts in terms of time, including the long term (more
than 10 years), the medium term (1 year), the short term (1 week to 1 month), and instant
planning (from 1 min to a few hours) [4]. In these plans, some data should be used, such
as load consumption and EPs, taking into account economic conditions and the average
annual EP. Additionally, another important parameter is the size of the demand load, which
is a nonlinear function of time and is studied daily (day or night), seasonally (hot or cold),
and with regard to climatic conditions of the region [5]. Electricity with different structures
and capabilities is always supplied and demanded in the electricity market. Therefore,
a competitive market in the field of production to consumption will be created [6]. The
reason for this competition can be summarized in the fact that electricity cannot be stored.
In other words, there is no shortage or excess of energy in a power system that can be stored
or consumed. On the other hand, the instability of the EPs results in more complications in
energy markets [7]. As a result, different patterns and levels of electricity demand will be
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created that are highly time-dependent (at least hourly). Each of the mentioned periods
contains valuable features that enhance management effectiveness. Among these periods,
short-term forecasting has the greatest effect on electricity pricing [5,6]. The most important
advantage of short-term forecasting is that it increases the quality of supply and demand
offers. Consequently, choosing the most accurate method, and at the same time quickly, for
the prediction of EPs is a significant and necessary issue.

1.2. Related Works

Short-term forecasting methods, which are the main goal of this study, can be divided
into two main categories. The first category contains the fitting analysis, and the second
category contains expert systems, Kalman filters, neural networks, and neural networks
combined with fuzzy systems. Each of these methods performed in various research has
drawbacks and advantages in the accuracy or proper analysis of the defined variables. In
other classifications, the prediction models could be grouped into three classes: statistical,
artificial intelligence, and combined methods.

In [8], a comprehensive review of various methods for forecasting EP has been investi-
gated. A hybrid EP forecasting model based on the chaotic sine–cosine algorithm and the
isolation forest algorithm is used in [9]. In other studies, hybrid models consist of various
combinations, and modified methods of the auto-regressive integrated moving average
(ARIMA) are proposed for the short-term forecasting of EP [10–12]. The statistical manners
could consist of Bayesian [13], vector auto-regression [14], and Kalman filters [15]. Artificial
intelligence algorithms (AIAs) are better than statistical methods because the AIAs can
obtain the nonlinear characteristics and fast variations of the variables [1].

There are several types of research for EP forecasting that use various forms of AIAs,
such as different models of the artificial neural network (ANN) [16–20], extreme learning
machine (ELM) [21], and support vector machine (SVM) [22]. In [22], an advanced structure
of neural networks is used for the prediction of the EP based on the repetition of the
production of multilayer neural networks. In a recent study [1], the improved multi-
objective sine–cosine algorithm was able to improve electricity market management in
addition to the prediction of the EPs. The multi-structured improved neural network
method has been proposed in [23], which is able to estimate the EP well and has shown to
be more effective than other conventional ANNs. In [24], a novel hybrid future selector in
smart grids is proposed based on the SVM, and then, a new model for predicting the EP is
presented using the differential evolution algorithm (DEA).

Conventional individual models cannot extract the whole main characteristics of the
EPs. Some hybrid methods are studied in several types of research that are pointed out in
this section. In [25], a hybrid manner using the gravitational search algorithm, SVM, and
wavelet transform (WT) is created for EP prediction in the electricity markets. In a similar
work, the WT and ELM are combined for EP forecasting [26]. The authors of [27] proposed
a hybrid model using WT, modified ANN, and generalized autoregressive conditional
heteroskedasticity (GARCH) for the prediction of EP in the Spanish electricity market.
The decomposition methods are developed for data mining applications and have been
employed for several predictions in various fields. Wind power [28,29] and electrical
load [2,30] are examples of these methods.

The time series models have been employed in several forecasting applications. These
models can be classed into four main groups as follows:

1. WT decomposition models: These models can decompose the main data of the problem
into sub-data that contain various frequencies. Therefore, the outputs with low errors
are extracted in the time domain. However, the WT model has a weakness as it needs
more prior data for various decomposition levels [1]. Additionally, this model has
few applications because it is a non-compatible approach [31].

2. Singular Spectrum Analysis (SSA): this method eliminates the noises from the time
series data [32], but its parameters are difficult to set or optimize. In other words,
when the each of parameters was modified, the precision of the forecasting changed.
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3. Empirical Mode Decomposition (EMD): this algorithm in the original mode needs low
hyper-parameters (HPs) that can find the local oscillations in the main data [33].

4. Variational Mode Decomposition (VMD): this method is better than the three previous
methods because of low data mining, easy modification of parameters, and better
findings in the local oscillations, as reported in various studies [1,9,34]. However, this
method cannot obtain acceptable accuracy in forecasting.

As mentioned in the above-summarized cases, the forecasting of any data needs faster,
lower parameters, and a more accurate method for enhancing the performance of systems.
The Gaussian process (GP), as reported in several kinds of research [35–38], could overcome
the above problems. For example, in [35], the electricity consumption, photovoltaic power
generation, and the net demand of the smart grid are forecasted using GP models. In [36],
the authors obtained more effective results for wind power forecasting. Finally, the solar
irradiation for the daily period is predicted using the employed GP method.

1.3. Contributions

In this paper, two restructured systems will be considered, and the EPs in these systems
will be examined using the GP models. The used method is based on strong probabilistic
mathematics that can be used by adapting to time series-based data. In this method,
various models are used to train and test the data, which are very effective in increasing the
accuracy of the output data. In general, this research proposes the following innovations:

1. Using the robust method as the GP adapted to the time series to increase the accuracy
of EP forecasting in a restructured system, which has not been accomplished before.
The proposed method is based on the Gaussian distribution and can overcome to
complicated problems, such as the prediction of wind speed, weather conditions, and
electricity loads. In this paper, we used this method for EP forecasting.

2. Using various GP models, including dynamic, static, direct, and indirect, and their
combinations, to evaluate the models. The proposed models in the electricity markets
of Spain and the United States (US) are simulated and examined in different seasons
for a full investigation of the proposed method.

3. Different covariance functions (CFs) are used to find the best one, unlike the previous
papers, which used CF singularly. Finally, all models are validated using a comparison
of the performance evaluation metrics in terms of accuracy and error.

4. The results show that the best method is the dynamic indirect GP, which has the
highest accuracy in comparison with the other methods. The proposed method is also
compared to SVM and its accuracy is shown.

1.4. Paper Organization

The rest of the paper is organized as follows: in Section 2, the methodology of the
paper is presented; Section 3 shows the results of EP forecasting in both the Spanish and
the US electricity markets; in Section 4, the results are evaluated with metrics and the best
model is appointed; and finally, Section 5 describes the conclusion.

2. Methodology

Electricity as a commodity has features that distinguish it from other commodities in
terms of instantaneous price forecasting. Electricity supply and demand must always be
in balance. Power generation and consumption take place at the same time and there is
no storage capacity for this product in the network. These reasons allow price forecasting
to be performed in three time horizons, which are the short term, medium term, and
long term, and the medium-term forecast provides for the program. The planning of
production units for repairs, water-heating units, and pumped water units, as well as long-
term forecasting can have great impacts on the decision making for pre-purchase contracts
and future contracts between buyers and sellers. In the meantime, price forecasting in the
short term has the greatest impact on the pricing strategy compared to the medium- and
long-term forecasts, so it has one of the most important advantages in the industry. The
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short-term forecast improves the bidding strategies of customers and sellers of electricity in
the restructured electricity market. From the information available for accurate forecasting,
the price is very important.

One of the most important advantages of short-term forecasting is the strategy for
improving the supply and customers in the electricity market of the restructured power
systems. Moreover, in a competitive market, the time series of EP consists of the high-
frequency signal, mean, and variance values of the variable and multiple seasonal variations.
Moreover, they are affected by the calendar, such as weekends and public holidays, high
oscillations, and a high percentage of abnormal prices, mainly during periods with high
demand [39]. These characteristics increase the complexity of EP forecasting. The EPs are
inherently volatile, which makes market participation risky. In general, the factors affecting
the EP can be classified as shown in Figure 1.
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2.1. The Gaussian Processes Models

The GP is a well-known stochastic method that could be described as a set of time
variables and space parameters. Additionally, the subset of the mentioned parameters is
predefined as a mixture of multi-variation Gaussian distribution by two main functions,
including the means function and covariance matrix. The calculations of ELM methods are
often hard, and the variables should be forecasted [40]. To describe the performance of the
GP, the following supposition is considered:

f (x1) CB f (x2) 7→ < (δ, K) (1)

where x1 and x2 are the random variables, f is the estimated function, < is the Gaussian
distribution function, δ is mean function, and K is the CF. Additionally, CB shows the
jointing operator, and 7→ indicates the supervision operator. If the number of random
variables is more than two, the GP could cover them by using the matrix of CFs, as follows:

K(x, x) =



k(x1, x1) k(x1, x2) · · · · · · k(x1, xN)
...

...
. . . . . .

...
k(xi, x1) · · · k(xi, xj) · · · k(xi, xN)

...
...

. . . . . .
...

k(xN , x1) k(xN , x2) · · · · · · k(xN , xN)

 (2)

where N is the number of variables, K(x, x) is the matrix of CF that includes the set of
correlational relations of any two variables of xi and xj, i.e., k(xi, xj), 1 ≤ i, j ≤ N. To learn
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the HPs in the GP that describe the CF behaviors, the following probability function should
be maximized:

log p( f |x,H) = −1
2

f TK−1 f − 1
2

log|K| − N
2

log(2π) (3)

whereH shows the HPs vector, and p is the multivariate Gaussian distribution as follows:

p(f(x)) = < (δ(x), K(x, x)) (4)

The descriptions of various models of the GP, i.e., dynamic, static, direct, and indirect,
are rendered in [36].

2.2. GP for Time Series Modeling

The GP could be used for time series analysis with an autoregressive setting. When a
new observation, such as x′, is added to the dataset of GP models, the CFs are redefined
as follows:

K(x′, x) =
{

k(x′, x1), k(x′, x2), . . . , k(x′, xN)
}

(5)

In the time series, the set of x′ could be modified as the test data, i.e., x′ = xt. To
complete the vector of prior observations (or test data), and considering P and i as the
number of prior observations and time instances in the past, respectively, this vector could
be proposed as xt–i = (yt–1–i, yt–2–i, yt–3–i, . . . , yt–P–i). Therefore, the train data should be
described as x = (xt–1, xt–2, xt–3, . . . , xt–N)T. The CFs matrix for the mentioned test and train
data will be changed to the following:

K(x, x) =


k(xt−1, xt−1) · · · k(xt−1, xt−N)
k(xt−2, xt−1) · · · k(xt−2, xt−N)

...
. . .

...
k(xt−N , xt−1) · · · k(xt−N , xt−N)


K(xt, x) = {k(xt, xt−1), k(xt, xt−2), . . . , k(xt, xt−N)}

(6)

2.3. The CFs for Time Series

There are various CFs used in previous studies. In this paper, we employed some
main CFs to benchmark them: squared exponential (SE), Matérn 3 (M3), Matérn 5 (M5),
and combinations of these main CFs as follows:

CF1
SE(r) = σ2

f exp
(
− r2

2`2

)
(7)

CF2
M3(r) = σ2

f

(
1 +

√
3r
`

)
exp

(
−
√

3r
`

)
(8)

CF3
M5(r) = σ2

f

(
1 +

√
3r
`

+
5r2

3`2

)
exp

(
−
√

5r
`

)
(9)

CF4
SE·M3(r) = σ2

f

(
1 +

√
3r
`

)
exp

(√
3r3

2`3

)
(10)

CF5
SE+M3(r) = σ2

f

{
exp

(
− r2

2`2

)
+

(
1 +

√
3r
`

)
exp

(
−
√

3r
`

)}
(11)

CF6
SE+M5(r) = σ2

f

{
exp

(
− r2

2`2

)
+

(
1 +

√
3r
`

+
5r2

3`2

)
exp

(
−
√

5r
`

)}
(12)
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where σ2
f > 0 is the signal variance and ` > 0 is the length scale of the HPs. Moreover, r is

desired as follows:
r = ‖x− x′‖ (13)

The flowchart of the proposed method is presented in Figure 2.
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3. Results
3.1. Performance Metrics

For evaluation of the proposed models, their results should be benchmarked with
ability and errors in prediction as follows:

MAPE =
1
T

T

∑
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ (14)
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NRMSE =

√√√√ 1
T

T

∑
t=1

(
ŷt − yt

max(y)−min(y)

)2
(15)

PICP =
1
T

T

∑
t=1

ξt , ξt =

{
1 Lt ≤ yt ≤ Ut

0 otherwise
(16)

PINAW =
1

WT

T

∑
t=1

(Ut − Lt) (17)

IS =
1
T

T

∑
t=1

ŷt −min(y)
max(y)−min(y)

(18)

TIC =


√√√√ 1

T

T

∑
t=1

(ŷt − yt)
2

/


√√√√ 1

T

T

∑
t=1

(ŷt)
2 +

√√√√ 1
T

T

∑
t=1

(yt)
2

 (19)

ACE = PICP− PINC (20)

In this paper, to evaluate the prediction accuracy, five metrics are used: the mean
absolute percentage error (MAPE), normalized root mean square error (NRMSE), prediction
interval coverage probability (PICP), interval sharpness (IS), and prediction interval nor-
malized average width (PINAW). Moreover, Theil’s inequality coefficient (TIC) and average
coverage error (ACE) are employed to measure the method’s ability for prediction. It pro-
vides a measure of how well a time series of estimated values compares to a corresponding
time series of observed values. In (14)–(20), T is the length of the time series, ŷt is the
forecasted value, yt is the actual value, and y is the time series value. Additionally, Lt and
Ut are the lower and upper bands of the prediction interval (PI), and PINC is considered as
the PI nominal confidence with a variation between 10 and 90%. In this paper, the value
of PINC is considered to be 80%. Finally, in (19), the value of W is the PI average width,
which indicates the maximum and minimum difference between the observed value.

3.2. Data
3.2.1. The Spanish Electricity Market

The Spanish electricity market is one of the largest physical markets in the world,
providing daily market services to market participants. The data used in this paper are
quarterly and related to 2019 [27]. The required data for the interval are given in Table 1.
Moreover, the time series of EP in all seasons are presented in Figure 3 [41]. As seen in
Figure 3, the electricity market of Spain fluctuates sharply and includes variable variance.

Table 1. The studied period in 2019 for the electricity market of Spain.

Input Period Period for Forecasting Season

10 January to 20 February 21 to 27 February Winter

10 April to 21 May 22 to 28 May Spring

10 July to 20 August 21 to 27 August Summer

10 October to 20 November 21 to 27 November Autumn
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3.2.2. The US Electricity Market

The training and testing data of the electricity market of the US for 2018 are given in
Table 2. Moreover, the hourly ahead data for the considered data of all seasons are shown
in Figure 4 [42]. As seen in Figure 4, the variation in EPs for the electricity market of the US
is less than that in Spain.

Smart Cities 2022, 5, FOR PEER REVIEW  10 
 

 
Figure 4. The hourly training and testing data for the electricity market of the US in 2018. 

3.2.3. Data Analysis 
By examining Figures 3 and 4, the following results can be seen: 

1. The EP decreases at the beginning of the day and increases at night; 
2. On different days of each week, the EP is different and declines towards the the week-

end; 
3. The price in the early hours of midnight on weekdays is low. As daylight approaches, 

the EP increases, and in the middle of the day it reaches the maximum value. There-
fore, it will be more useful if the main power system is divided into several subsys-
tems to enhance the model’s performance; 

4. The EP on holidays is lower than on weekdays, due to lower consumption from large 
industrial factories. 
In order to obtain a high accuracy of results, the multi-step GP is used. In this method, 

the time series shown in Figures 3 and 4 is decomposed into one main component and 
three harmonic components. The advantage of this decomposition is that the detail of EP 
could be achieved at any moment. 

3.3. The Forecasting of the Training Data 
3.3.1. The Spanish Electricity Market 

The first evaluation of the proposed methods is the forecasting of the training data. 
As mentioned before, the data of EPs will be divided into main and harmonic components. 
The forecasting of EPs in the training step for the main component is shown in Figure 5. 
In this figure, all seasons are presented, and the various models of the GP are tested. As 
shown in Figure 5a–d, the predicted results of all models are acceptable. 

Figure 6 shows the prediction results of the sum of harmonic components of train 
data using all proposed models. In order to indicate clear results, each plot consists of four 
subplots that show the results of two weeks. Similar to the main components, the results 

Figure 4. The hourly training and testing data for the electricity market of the US in 2018.



Smart Cities 2022, 5 897

Table 2. The studied period in 2018 for the electricity market of the US.

Input Period Period for Forecasting Season

5 January to 15 February 16 to 22 February Winter

5 April to 16 May 17 to 23 May Spring

5 July to 15 August 16 to 22 August Summer

5 October to 15 November 16 to 22 November Autumn

3.2.3. Data Analysis

By examining Figures 3 and 4, the following results can be seen:

1. The EP decreases at the beginning of the day and increases at night;
2. On different days of each week, the EP is different and declines towards the weekend;
3. The price in the early hours of midnight on weekdays is low. As daylight approaches,

the EP increases, and in the middle of the day it reaches the maximum value. Therefore,
it will be more useful if the main power system is divided into several subsystems to
enhance the model’s performance;

4. The EP on holidays is lower than on weekdays, due to lower consumption from large
industrial factories.

In order to obtain a high accuracy of results, the multi-step GP is used. In this method,
the time series shown in Figures 3 and 4 is decomposed into one main component and
three harmonic components. The advantage of this decomposition is that the detail of EP
could be achieved at any moment.

3.3. The Forecasting of the Training Data
3.3.1. The Spanish Electricity Market

The first evaluation of the proposed methods is the forecasting of the training data. As
mentioned before, the data of EPs will be divided into main and harmonic components.
The forecasting of EPs in the training step for the main component is shown in Figure 5.
In this figure, all seasons are presented, and the various models of the GP are tested. As
shown in Figure 5a–d, the predicted results of all models are acceptable.
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Figure 5. The forecasting of the main component of training data of EP using various models for the
electricity market of Spain: (a) winter, (b) spring, (c) summer, (d) autumn.

Figure 6 shows the prediction results of the sum of harmonic components of train
data using all proposed models. In order to indicate clear results, each plot consists of four
subplots that show the results of two weeks. Similar to the main components, the results
of the harmonic components have high accuracies, as seen in Figure 6a–d. Moreover, the
detailed evaluations are rendered in Section 4.
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Figure 6. The forecasting of the sum of harmonic components of training data of EP using various
models for the electricity market of Spain: (a) winter, (b) spring, (c) summer, (d) autumn.

3.3.2. The US Electricity Market

The predicted values of the main components of EP for the US electricity market
using all models are plotted in Figure 7. Moreover, the forecasting results of the sum of
harmonic components are shown in Figure 8. The subplots of Figure 8a–d include two
weeks. The results of all methods are approximately closed. The complete investigations of
Figures 7 and 8 are presented in Section 4 and are evaluated by the metrics of Table 1.
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Figure 7. The forecasting of the main component of training data of EP using various models for the
electricity market of the US: (a) winter, (b) spring, (c) summer, (d) autumn.
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Figure 8. The forecasting of the sum of harmonic components of training data of EP using various
models for the electricity market of the US: (a) winter, (b) spring, (c) summer, (d) autumn.
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3.4. The Forecasting of the Testing Data

In this step, the test data of both US and Spain are forecasted. Based on the de-
composition of the curves into main and harmonic components, the forecasting of these
components is carried out. Finally, these components are composed, and the initial curves
are obtained. All of these mentioned steps are followed for both the actual and predicted
data in all seasons.

3.4.1. The Spanish Electricity Market

The forecasted results for all seasons of Spain, using various models, are carried out
and presented in Figure 9a–d. As shown in all figures, the best forecaster method is the
combination of the dynamic and indirect GP. Additionally, the dynamic GP is better than
other individual models.
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Figure 9. The forecasting of test data of EP using various models for the electricity market of Spain:
(a) winter, (b) spring, (c) summer, (d) autumn.

3.4.2. The US Electricity Market

The predicted results for all seasons of the US are shown in Figure 10a–d. As shown in
these figures, the dynamic indirect GP is better than other combination methods. Further
evaluation of the results is presented in the next section.
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Figure 10. The forecasting of test data of EP using various models for the electricity market of the US:
(a) winter, (b) spring, (c) summer, (d) autumn.

4. Discussion

The time series related to EPs in different seasons has decomposed into harmonic
components. The main component has a non-linear instinct; however, the harmonic
components are linear.

By analyzing the time series of the main component of EP in the winter of Spain
(see Figure 5a), it can be seen that the EP at the beginning of the season has higher price
fluctuations compared to the last days of the season. Additionally, the harmonic component
has more fluctuations and amplitudes at the beginning of the season (see Figure 6a). By
analyzing the time series of the main component of EP in the summer of Spain, according
to Figure 5c, this component has uniform fluctuations and amplitudes, which is also seen in
the harmonic component (see Figure 6c). With analyzing the time series of all components
of the EP in the spring of Spain, there are several non-uniform fluctuations with a large
amplitudes, as shown in Figures 5b and 6b. This problem is also cleared in autumn; its time
series are plotted in Figures 5d and 6d.

The time series of both the main and harmonic components of EPs in winter in the US
show that it has a linear behavior and has uniform fluctuations and amplitude during the
season. This claim could be found in Figures 7a and 8a, and also it could be expanded to
summer and autumn, based on Figures 7c,d and 8c,d. Finally, using a simple analysis of
the time series of the main and harmonic components of EPs in spring of the US, according
to Figures 7b and 8b, there are several fluctuations and non-uniform amplitudes in the
time series. The results of the evaluation metrics of all methods for all presented data are
shown in the following figures for both Spain and the US. Additionally, in these figures,
the abbreviations of Win., Spr., Sum., and Aut. indicate the winter, the spring, the summer,
and the autumn, respectively. In addition, the abbreviations of DY, ST, DI, and IN indicate
the dynamic, static, direct, and indirect, respectively.

4.1. Results Evaluation of Spain

As seen in Figure 11, the value of MAPE for all models in the training data is close to
zero, which shows a high ability to make predictions. However, the robust method in the
training step is related to the dynamic indirect GP in the main component of winter, which
is 0.00%. This means that all obtained data by this method equal actual data. Moreover,
the dynamic GP is better than the other individual models, i.e., static, direct, and indirect.
For instance, the MAPE in the summer of the test step with the dynamic GP is obtained
as 2.15%, which is lower by about 5.5% than the static and the direct GP, and about 2.2%
lower than the indirect GP. The results show that with a combination of the two robust
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individual models, the results are better than those from these individual models. The
dynamic and indirect GP models are better than the static and direct models, and the results
of all evaluated data are better than both the dynamic and indirect models. In addition, the
proposed method is better than SVM. The results of SVM could be compared with ST–DI,
ST–IN, and DI.
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Figure 11. The results of MAPE (%) for Spain: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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The results of NRMSE are presented in Figure 12. In this figure, the lowest values
are related to the dynamic indirect GP. Other methods are weak in comparison with this
method. Additionally, the best result obtained by the dynamic indirect GP in the test data is
related to the winter with 0.43%. In addition, the NRMSE results of SVM are much higher
than those of DY–IN, and are close to the DI and ST models.
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Figure 12. The results of NRMSE (%) for Spain: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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The value of PICP should be higher than the PI confidence, which is considered 80%.
The obtained values for this metric in Figure 13 show the robustness of the GP. Moreover,
the PICP of the dynamic indirect GP is higher than that in other models, especially in test
analysis. All the values of PICP with the DY–IN are much higher than those of SVM.
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Figure 13. The results of PICP (%) for Spain: (a) Main Component in training step, (b) Harmonic
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The minimum values of PINAW are the best results that are shown in Figure 14.
Similar to the other previous metrics, the best results are reached in the dynamic indirect
GP, and its highest PINAW is related to the autumn test data, i.e., 9.28%. However, it is
lower than the other models by at least 2%. It should be noted that the closest model to this
model in Figure 14 is the dynamic GP. As seen in Figure 14, the results obtained by SVM
could be placed between the results of ST and DI. However, the other models of GP are
better than SVM.

Smart Cities 2022, 5, FOR PEER REVIEW  24 
 

The minimum values of PINAW are the best results that are shown in Figure 14. 
Similar to the other previous metrics, the best results are reached in the dynamic indirect 
GP, and its highest PINAW is related to the autumn test data, i.e., 9.28%. However, it is 
lower than the other models by at least 2%. It should be noted that the closest model to 
this model in Figure 14 is the dynamic GP. As seen in Figure 14, the results obtained by 
SVM could be placed between the results of ST and DI. However, the other models of GP 
are better than SVM. 

(a) 

 
(b) 

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

D Y S T D I I N D Y – D I D Y – I N S T – D I S T – I N S V M

PI
N

A
W

  (
%

) 

Main component in training step Win. Main component in training step Spr.

Main component in training step Sum. Main component in training step Aut.

8

9

10

11

12

13

14

15

D Y S T D I I N D Y – D I D Y – I N S T – D I S T – I N S V M

PI
N

A
W

  (
%

) 

Harmonic component in training step Win. Harmonic component in training step Spr.

Harmonic component in training step Sum. Harmonic component in training step Aut.

Figure 14. Cont.



Smart Cities 2022, 5 911Smart Cities 2022, 5, FOR PEER REVIEW  25 
 

 
(c) 

Figure 14. The results of PINAW (%) for Spain: (a) Main Component in training step, (b) Har-
monic Component in training step, (c) Test step 

Based on (18), the results of average IS for Spain are shown in Figure 15. Based on 
this figure, the highest values are cleared in the dynamic indirect GP model. Moreover, 
the lowest value is –8.55, related to the static GP in the autumn of the test step, while the 
corresponding value for the dynamic indirect GP is –0.95. In addition, by comparing the 
results of DY–IN and SVM in Figure 15, it can be found that the proposed method is better 
than SVM. 

 
(a) 

8

9

10

11

12

13

14

15

16

17

D Y S T D I I N D Y – D I D Y – I N S T – D I S T – I N S V M

PI
N

A
W

  (
%

) 

Test step Win. Test step Spr. Test step Sum. Test step Aut.

-7

-6

-5

-4

-3

-2

-1

0

D Y S T D I I N D Y – D I D Y – I N S T – D I S T – I N S V M

IS
 

Main component in training step Win. Main component in training step Spr.

Main component in training step Sum. Main component in training step Aut.

Figure 14. The results of PINAW (%) for Spain: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.

Based on (18), the results of average IS for Spain are shown in Figure 15. Based on
this figure, the highest values are cleared in the dynamic indirect GP model. Moreover,
the lowest value is −8.55, related to the static GP in the autumn of the test step, while the
corresponding value for the dynamic indirect GP is −0.95. In addition, by comparing the
results of DY–IN and SVM in Figure 15, it can be found that the proposed method is better
than SVM.
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Figure 15. The results of average IS for Spain: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.

Finally, TIC shows the prediction ability of the method. This metric should be low
to indicate the advantage of the method. In the individual models, the dynamic GP and
the direct GP are the best and the worst methods, respectively, as shown in Figure 16.
Additionally, in the combination models, the best results are obtained by the dynamic
indirect GP, and the highest values have resulted in the cases with the static GP, i.e., the
static direct GP and the static indirect GP.
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Figure 16. The results of TIC for Spain: (a) Main Component in training step, (b) Harmonic Compo-
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4.2. Results Evaluation of the US

The evaluation of results for the US is summarized in Figures 17–22. As shown in
these figures, the best method is chosen as the dynamic indirect GP because of its low error
rate and high prediction ability. Additionally, the result for the US is a little better than that
of Spain due to normal and uniform time series. The maximum error in MAPE in the test
data of the dynamic indirect GP is accrued in winter and autumn, which is better than the
static GP (2% in comparison with 10%). The RMSE for the US has a similar discussion to
MAPE. In addition, the results of SVM are close to those of the DI model.
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Figure 17. The results of MAPE (%) for the US: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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Figure 18. The results of NRMSE (%) for the US: (a) Main Component in training step, (b) Harmonic
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Figure 19. The results of PICP (%) for the US: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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Figure 20. The results of PINAW (%) for the US: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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Figure 21. The results of average IS for the US: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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Figure 22. The results of TIC for the US: (a) Main Component in training step, (b) Harmonic
Component in training step, (c) Test step.
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The best prediction accuracy with higher than 97% and a maximum of 99.99% is
related to the dynamic indirect GP that is shown in Figure 19. However, other combination
methods have similar results. Additionally, the dynamic GP could realize 95% prediction
of test data on average.

It is clear in Figure 20 that the only the dynamic indirect GP could decrease the PINAW
in the test data prediction after the training step. The PINAW value of the test data by other
models is almost variated from the values of training data.

The values of IS by the dynamic indirect GP are closer to zero in comparison to the
other methods, especially in the test step results of the static GP, indirect GP, and direct
GP. Therefore, based on the information in Figure 21, the best manner is the dynamic
indirect GP.

Finally, Figure 22 shows the values of TIC. In this figure, the lowest results, which
are close to zero, only appear in the dynamic indirect GP results. For example, the TIC
values for the spring of the test step are 0.49 and 0.25 related to the static direct GP and the
dynamic GP, respectively; however, they are higher than 0.07, which is the value obtained
by the dynamic indirect GP. Other examples can be found in all seasons when the ability of
the dynamic indirect GP is higher than other methods, especially individual models.

5. Conclusions

In this paper, firstly, various models of GP as dynamic, static, direct, and indirect
are considered, and their combinations are proposed to forecast the EP of two electricity
markets in the US and Spain. The GP is a robust stochastic method that could be reformed
into time series problems. In this paper, six CFs are used to validate the training and
testing data. In addition, the time series of both the training data and the testing data
are decomposed into the main and harmonics components, and the multi-prediction is
applied in this paper to increase the accuracy. The results obtained by different methods
are evaluated using various metrics and the best method is introduced as the dynamic
indirect GP. Its error is close to zero, which shows the robustness of the proposed model.
Moreover, the results show that the accuracy of combination models of GP is better than
the individual models by at least 1–5%. Moreover, the dynamic GP is better than other the
individual models. Moreover, the results of SVM are also rendered and have similar results
to the direct GP. The forecasting results show that if the time series of EP is uniform, a better
accuracy will be obtained. This issue is supported by a comparison of the two different
electricity markets. The results of the test step showed that the best of all methods is the
dynamic indirect GP, which obtained the highest PICP (about 99% for both the US and
Spain markets), and the lowest PINAW (about 9% for both the USA and Spain markets).
In addition, in all results, the static GP is known to be the worst method, due to having
the lowest PICP (about 90% for both the USA and Spain markets) and the highest PINAW
(about 17% for both the USA and Spain markets).
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