
smart cities

Review

Artificial Intelligence Techniques in Smart Grid: A Survey †

Olufemi A. Omitaomu 1,2,* and Haoran Niu 2

����������
�������

Citation: Omitaomu, O.A.; Niu, H.

Artificial Intelligence Techniques in

Smart Grid: A Survey. Smart Cities

2021, 4, 548–568. https://doi.org/

10.3390/smartcities4020029

Academic Editor: Silvano Vergura

Received: 1 March 2021

Accepted: 20 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computational Sciences and Engineering Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

2 Tickle College of Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, USA;
hniu1@vols.utk.edu

* Correspondence: omitaomuoa@ornl.gov
† This manuscript was authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department

of Energy (DOE). The US government retains the rights, and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE
will provide public access to these results of federally sponsored research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-public-access-plan) (accessed on 10 March 2021).

Abstract: The smart grid is enabling the collection of massive amounts of high-dimensional and
multi-type data about the electric power grid operations, by integrating advanced metering infras-
tructure, control technologies, and communication technologies. However, the traditional modeling,
optimization, and control technologies have many limitations in processing the data; thus, the ap-
plications of artificial intelligence (AI) techniques in the smart grid are becoming more apparent.
This survey presents a structured review of the existing research into some common AI techniques
applied to load forecasting, power grid stability assessment, faults detection, and security problems
in the smart grid and power systems. It also provides further research challenges for applying
AI technologies to realize truly smart grid systems. Finally, this survey presents opportunities of
applying AI to smart grid problems. The paper concludes that the applications of AI techniques can
enhance and improve the reliability and resilience of smart grid systems.

Keywords: electric power grid operations; control systems; artificial intelligence; grid operators;
energy systems

1. Introduction

The concept of the smart grid is transitioning the traditional electric power grid
from an electromechanically controlled system to an electronically controlled network.
According to the US Department of Energy’s Smart Grid System Report [1], the smart
grid systems consist of information management, control technologies, digitally based
sensing, communication technologies, and field devices that function to coordinate multiple
electric processes. These smart grid technologies have changed the conventional grid
planning and operation problems in at least three main areas, primarily in the ability to
(1) monitor or measure processes, communicate data back to operation centers, and often
respond automatically to adjust a process; (2) share data among devices and systems; and
(3) process, analyze, and help operators access and apply the data coming from digital
technologies throughout the grid. Some of the related problem space in smart grids include
load forecasting (LF), power grid stability assessment, fault detection (FD), and smart
grid security. These key elements are allowing massive amounts of high-dimensional
and multitype data to be collected about the electric power grid operations. However,
the traditional modeling, optimization, and control technologies have many limitations in
processing these datasets; thus, the applications of artificial intelligence (AI) techniques in
the smart grid become more apparent.

AI techniques use massive amounts of data to create intelligent machines that can
handle tasks that require human intelligence. Machine learning (ML) is a branch of
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AI, and the term ML is sometimes used interchangeably with AI. However, ML is just
one way to achieve AI systems. Other broader ways to achieve AI systems are neural
networks, robotics, expert systems (ES), fuzzy logic (FL), and natural language processing.
Overall, AI techniques enable decision making with speed and accuracy. In smart grid
applications, AI can be defined as the mimicking of grid operators’ cognitive functions
by computers to achieve self-healing capabilities. However, AI might not be able to
replace grid operators in some cases. Although AI systems can be more precise, reliable,
and comprehensive, there are still many challenges in applying AI techniques to the smart
grid. Two types of AI systems are possible in the smart grid: virtual AI and physical
AI. Virtual AI systems include informatics that can help grid operators perform their
jobs. Physical AI systems include self-aware AI systems that can optimize and control
specific grid operations with or without human intervention. AI systems in the smart
grid can be further divided into two categories: artificial narrow intelligence (ANI) and
artificial general intelligence (AGI). ANI refers to AI systems developed for specific tasks
with applicable requirements and constraints, such as an AI system that performs load
forecasting via different datasets.AGI refers to AI systems developed to learn and evolve
autonomously, just like humans. Developing AGI systems could help realize true smart
grid systems in the future.

The amount of AI research for smart grid applications has increased in the last decade.
Similarly, in the last 4 years, some of these studies were surveyed in recent papers [2–5].
The authors recognize that one article cannot provide a comprehensive review of all the AI
techniques for smart grid applications in load forecasting, power grid stability assessment,
faults detection, and security problems; thus, this survey paper presents some present AI appli-
cations in some of the areas not covered by these existing reviews, discusses some challenges
of applying AI to smart grid problems, and highlights some future potential applications of AI
techniques to the smart grid. The references included in this survey should help researchers
interested in this exciting area. The findings and related contributions are threefold. First,
based on a systematic and structured survey, the authors developed a smart grid review map
that inductively categorizes and describes the existing body of research. Second, the authors
contributed to the advancement of this field by elaborating on challenges inherent to the
smart grid and opportunities for future research. Third, in presenting the review in this paper,
the authors strengthened the collation of resources. In this way, the authors hope to stimulate
discussions that could further strengthen the exchange of ideas.

The remainder of this paper is organized as follows. Section 2 presents an overview
of some of the major AI techniques. Section 3 surveys AI techniques in the context of the
smart grid. Section 4 discusses some of the existing challenges of using AI for smart grid
applications. Section 5 summarizes how using AI in the smart grid could look in the future.
A limitation of the study and a short summary conclude the paper in Section 6.

2. Artificial Intelligence Techniques

Because of the rapid revolution of the modern power system, more distributed smart
grid components—including smart metering infrastructure, communication infrastructure,
distributed energy resources, and electric vehicles—are tightly integrated into power sys-
tem by encompassing a huge electrical power network with the underlying communication
system. Massive amounts of data are generated by those components to automate and
improve the smart grid performance by supporting vast applications, such as distributed
energy management [6], system state forecasting [7], FD [8], and cyberattack security [9].
Because the conventional computational techniques do not have the sufficient ability to
process the vast amount of data introduced by smart grid systems, AI techniques have
received much attention. Many of the research efforts were put into studying these AI
techniques to address the challenges, because they use large-scale data to further improve
smart grid performance.

The AI techniques in the smart grid can generally be classified into the following areas.

• ES: A human expert in loop technique used for certain problems.
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• Supervised learning: An AI paradigm in which the mapping of inputs and outputs
has been studied to predict the outputs of new inputs.

• Unsupervised learning: An ML class in which the unlabeled data are used to capture
the similarity and difference in the data.

• Reinforcement learning (RL): Differs from supervised and unsupervised learning, due to
its intelligent agents strategy, which aims to maximize the notion of cumulative reward.

• Ensemble methods: Combine the results from several AI algorithms to overcome the
limitations of one algorithm with better overall performance.

2.1. Expert Systems

The ES (see Figure 1) is the first-generation intelligent system, which is designed
to replace the human expert in a certain domain to solve a certain problem based on
Boolean logic. The solution to many smart grid problems in certain fields—such as fault
diagnosis, intelligent control, and energy router self-determination—still depends on the
ES technique [10]. The domain knowledge acquired from the domain expert is represented
in the knowledge base of the ES. Expert knowledge and databases form the knowledge
base, which is the core component of ES. In the knowledge base, rules are defined in the
form of if-then statements connected by logical operations [3]. The knowledge can be
directly acquired from domain experts or from the results of research studies. The ES draws
conclusions from the problem by testing the if-then rules with user-input information that
interfaces with the knowledge base though the intermediate rule engine.

FL was proposed to handle the concept of partial truth. Unlike the Boolean logic used
by ES, FL is an approach to computing based on values that vary between 0 and 1. FL
emerged in the theory of fuzzy sets, which assigns a degree of membership, typically a
value between 0 to 1. For example, the FL can use 0 to represent totally false, 1 to represent
totally true, and the numbers between 0 and 1 to represent partial truth or partial false,
by assigning degrees of truth to propositions. It is often understood in a very wide sense,
which includes degrees of all kinds of formalism. A fuzzy inference system (FIS) first
transfers input crisp variables into fuzzy variables. After applying the input variables to
fuzzy operators in the “if” segment of the rule, consequent results can be inferred from the
“then” part of the rule. The last step of FIS is defuzzification, which converts the output to
crisp values. The Mamdani and Sugeno methods are two popular FIS-based approaches.
Both methods apply several rules in which the methods determine the degree of fulfillment.

Figure 1. ES diagram.

2.2. Supervised Learning

Supervised learning is the ML task of building general hypotheses for input and output
trained by connecting labelled external input and output pairs [11]. The mapping function
can then be used to predict future data after training. A wide range of supervised learning
algorithms were developed in the last two decades and are widely used to improve smart
grid systems. Figure 2 lists the common supervised learning algorithms of the smart grid.

Artificial neural networks (ANNs), which tend to emulate the biological nervous
system [12], have enormously influenced a variety of areas in the last decade. ANN
techniques, like many other ML techniques, do not need to be explicitly programmed, but
use algorithms to make predictions based on data. ANNs solve image processing and
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pattern recognition problems, which are difficult to solve by traditional methods, very
efficiently. Extreme learning machines (ELMs) that use one hidden layer feedforward
neural network are an ANN algorithm, and they have been applied to solve smart grid
problems, such as power system stability assessment [13–15] and fault detection [16–18].
Rumelhart et al. [19] proposed the back-propagation neural neural network (BPNN) for the
learning procedure of neural networks by repeatedly adjusting the network weights until
the error between the output and ground truth reach a certain level. BPNN has been widely
used in different neural network algorithms. A multilayer perceptron is a feedforward
neural network algorithm [20]. Another well-developed feedforward neural network is the
probabilistic neural network (PNN), in which the parent probability distribution function
of each class is used to estimate the class to input data [21].

Driven by increasing amounts of data and the need to solve more complex problems,
there has been a significant emergence of new AI algorithms with the support of powerful
computer hardware, allowing AI to enter the so-called AI 2.0 stage [22]. Deep learning (DL),
which is a subset of ML, was originally used for image processing, starting from multilayer
deep neural networks (DNNs). DL techniques have been rapidly developed in recent years,
and numerous successful structures have been proposed to solve smart grid problems,
including deep belief networks [23], convolution neural networks (CNNs) [24], recurrent
neural networks (RNNs) [25], generative adversarial networks [26], and autoencoder [27].

Aside from the aforementioned algorithms, numerous AI methods are also employed
for classification and regression problems. Support vector machine (SVM) is one of the
most robust classification models proposed by Vapnik [28]. The k-nearest neighbors (KNN)
algorithm, which is very fast for training, is also used for classification and regression
in smart grid systems [29–31]. The decision tree learning model and logistic regression,
which are very easy to interpret and implement, have also been widely adapted in smart
gird systems [32,33]. Regression methods—such as linear regression (LR) [34], Gaussian
process regression (GPR) [35], support vector regression (SVR) [36], and multivariate
adaptive regression spline (MARS) [37,38]—provide solutions for problems with smart
gird forecasting, fault detection, demand response, and so on.

Figure 2. Supervised learning techniques in the smart grid.

2.3. Unsupervised Learning

Supervised learning algorithms show great performance after decades of development,
but they are only beneficial when users have some ground truth or know what patterns
to look for, which is not always guaranteed in the real world. This makes unsupervised
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learning useful because it can be used to infer potential information or find hidden patterns
from data without labels. Figure 3 lists the common unsupervised learning algorithms.

Unsupervised neural networks—such as restricted Boltzmann machine, autoencoder,
and variational autoencoder—are applied to anomaly detection [39,40], stability assess-
ment [41], load forecasting [42–44], and so on. Clustering is the unsupervised task of
grouping the population or data points into a set of groups, in which data in the same
groups are similar to each other. K-means, fuzzy c-means, hierarchical clustering, and DB-
SCAN (density-based spatial clustering of applications with noise) are commonly used
for fault detection [45] and load forecasting [46–48]. Dimensional reduction (DR) tech-
niques, which transform the data from a high-dimensional space to a low-dimensional
space, are often required when processing smart grid data to reduce redundant features.
Some of the DR methods commonly used in the smart grid [43,49–51] include principal
component analysis (PCA), linear discriminant analysis, generalized discriminant analysis,
and non-negative matrix factorization.

Figure 3. Unsupervised learning techniques diagram.

2.4. Reinforcement Learning

RL is an increasingly popular algorithm when solving smart grid problems. RL
consists of agent, environment, reward, and action. RL aims to maximize the cumulative
reward by a continuous process of receiving rewards and punishments on every action.
With limited knowledge of the environment and limited feedback on the quality of the
decisions, RL can respond to unforeseen scenarios. Figure 4 lists the commonly used RL
algorithms. Q-learning and SARSA (state–action–reward–state–action) are used in attack
detection [52] and energy management [42,53]. Deep reinforcement learning (DRL) is an
algorithm that combines the perception of DL with the decision making of RL. AlphaGo [54]
presents the success of DRL by applying the rich perception of high-dimension input and
policy control. Deep Q network and deep deterministic policy gradient are popular
algorithms of DRL in smart grid systems [55–59].

2.5. Ensemble Methods

Ensemble methods combine results from multiple learning algorithms or different
initial data to obtain better overall performance. Bootstrap aggregating, or bagging, treats
each model in the ensemble vote with equal weight and trains them by using a random
data subset. Random forest is a successful bagging model that combines random decision
trees with a high-classification algorithm. It is also used on load forecasting [60], anomaly
detection [61,62], and stability assessment [63]. Boosting is another ensemble method
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that builds a new model that attempts to correct the misclassification from the previous
model and shows promising results in smart grid problems [64–66]. Stacking, which is
an ensemble learning technique that combines the predictions of several classification or
regression algorithms, is well-developed for load forecasting [67], anomaly detection [68],
and cyberattack detection [69].

Figure 4. RL and ensemble methods.

3. Artificial Intelligence Techniques in Smart Grids

This section presents a review of AI techniques in smart grids.

3.1. Research Methodology

In line with the objective of our research, the authors adopted an inductive approach
and conducted a systematic literature review, following Tranfield, Denyer, and Smart [70].
Specifically, the review scope was defined, the related literature was searched, the repre-
sentative methods were selected, and the collected materials were analyzed.

Several queries were run against Google Scholar databases to gain an overall understand-
ing of the coverage offered by literature under the disciplines. We focused on peer-reviewed
sources from top academic journals and conferences. For each criterion, searches were per-
formed by using combinations of keywords containing the term of each criterion, “AI,” and
“smart grid” (e.g., “Short-Term Load Forecasting AI smart grid” for “Short-Term Load Fore-
casting”). The authors also opted to exclude studies in progress and tutorial literature from
the search results. The search generated 148 peer-reviewed studies between 2015 and 2021.
Figure 5 presents the yearly count of the 148 studies. All 148 studies are reviewed in this
paper; however, 75 of the 148 studies are listed in Tables 1–4.
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Figure 5. Frequency of peer-reviewed papers in the search results.

The remainder of this section discusses the applications of AI techniques to (1) load
forecasting, which is further divided into short-term load forecasting, mid-term load
forecasting, and long-term load forecasting; (2) power grid stability assessments, which
contain transient stability assessments, frequency stability assessments, small-signal sta-
bility assessments, and voltage stability assessments; (3) faults detection; and (4) smart
grid security.
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3.2. Load Forecasting

With the high integration of renewable energy—such as solar, wind, and tide power—
the uncertainty of the scheduling and operation of the smart grid are becoming increasingly
challenging. LF, as one of the key components to keep the power system stable and smart,
is critical for planning and operation in modern power systems. Accurate forecasting,
which is beneficial for reducing production costs and saving electric power [71], is very
challenging if the load is nonstationary. According to the time that must be forecasted, LF
can be classified into three levels [72]: (1) short-term LF (STLF), which predicts the load
from minutes to hours; (2) mid-term LF (MTLF), which predicts the load from hours to
weeks; and (3) long-term LF (LTLF), which predicts the load for years. Moreover, LF can
also be affected by various other features, such as weather, time, season, event, type of
customer, and academic schedule. Generally, MTLF and LTLF forecasting are modeled
as functions of historical data for power consumption, along with other factors, such
as weather, customers, and demographic data [73]. STLF has mostly been studied in
different applications, such as real-time control, energy transfer scheduling, and demand
response [74]. MTLF and LTLF can be used to plan for future power plants and show the
dynamics of the power system [73]. Based on the data provided by smart meters, many
techniques are proposed and applied for power system LF.

3.2.1. Short-Term Load Forecasting

Qiu et al. [75] propose a hybrid incremental learning approach that comprised discrete
wavelet transform, empirical mode decomposition, and random vector functional link
network. By using the ensemble method, the efficiency and accuracy of STLF can be
improved. Li et al. [76] present a model with an ensemble approach that integrates three
base methods for STLF in which the experiments show the model’s effectiveness for STLF.
However, the choice of base methods in the ensemble approach needs further validation.
Many DL-based methods are used to solve LF problems. In recent years, DNNs have been
used to obtain the potential knowledge for a forecasting model. However, the ANN method
is often trapped in local minima [77] and over-fitting problems. Shi et al. [78] proposed
a pooling-based deep RNN for STLF to address the over-fitting issue by increasing data
diversity and volume. To address the time-consuming procedure of building a optimal
DNN, which determines the number of hidden layers in the DNN model, Moon et al. [67]
used an ensemble method that combines multiple DNN models with different numbers of
hidden layers to achieve overall better performance by eliminating the poorly performed
models. However, the computing overhead is a limitation, because several CNNs are
included. In He, Deng, and Li [79], a DBN embedded with parametric Copula models, is
proposed to forecast the hourly load of a power grid of an urban area in Texas, and the
results reflect the effectiveness of the method by comparing it with neural networks, SVR,
and ELM. Hafeez et al. [43] propose a hybrid algorithm using factored conditional restricted
Boltzmann machine (FCRBM) as a training module and genetic wind-driven (GWDO) as
an optimization algorithm. The model is validated by outperforming the state-of-the-art
algorithm. Aly [80] built a hybrid clustering method based on wavelet neural network
(WNN) and ANN schemes and showed the higher performance of the proposed model,
comparing it with other clustering methods.

3.2.2. Mid-Term Load Forecasting

Even though the majority of LF problems fall into STLF, MTLF and LTLF are also very
crucial for stable and smooth power system operation. MTLF is used to coordinate load
dispatch, maintenance scheduling, and balance demand and generation [81]. Unlike STLF,
which fit data to a model, MTLF and LTLF have different problems that are often ignored
due to their complications [82] and randomness [83]. The MTLF and LTLF are not only
affected by some explicit factors, such as historical load and weather data, but are also
affected by local economy and demographic data, such as population and appliances in
use [81]. Unlike STLF, which treats all weather variables with equal importance, the weather
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indicators for MTLF and LTLF follow a decreasing order of importance from temperature,
humidity, wind, and precipitation [84]. Jiang et al. [85] proposed a dynamic Bayes network
(DBN)-based MTLF model to forecast the peak power load for the following year. In Askari
and Keynia [86], the authors deployed a DNN model with an optimized training algorithm
that comprises two search algorithms for MTLF in power systems and presented the
effectiveness of the model. Liu et al. [87] also provided a neural network-based model with
particle swarm optimization (PSO) and showed the feasibility and validity of the model.
Rai and De [88] improved a support vector regression model for MTLF with an average
minimum mean absolute percentage error (MAPE) of 3.60. Gul et al. [89] provide a solution
based on CNN and LSTM methods. Dudek et al. [90] propose a hybrid DL model for MTLF
that combines exponential smoothing, advanced LSTM, and the ensemble method. This is
a competitive method that also uses the ensemble approach.

3.2.3. Long-Term Load Forecasting

LTLF is used to predict the power consumption, system planning, and scheduling of
generation units expansion in power systems. Generally, it spans from a few years to a
couple decades. Because it needs a huge investment to construct new power generation,
it requires accurate and effective forecasting for power systems. There are many ML and
AI techniques developed for the problem. Nalcaci et al. [37] show that the MARS method
gives more accurate and stable results than ANN and LR models when predicting the
relationship between load demand and several environmental variables. Ali et al. [91]
applied a novel hybrid fuzzy-neuro model for LTLF. LSTM is also well used in the domain.
In 2017, Zheng et al. [72] exploited the LSTM-based RNN for the long-term dependencies
in the electric load time series for LTLF, in which the method had a promising perfor-
mance. Agrawal et al. [92] also propose an LTLF model with hourly granularity by using
the LSTM network with high accuracy. To solve the vanishing and exploding gradient
problems of LSTM, Dong et al. [93] present a hybrid method based on LSTM and gated
recurrent unit (GRU) with a good performance for LTLF. In Kumar et al. [94], Apache
Sparks was used to deploy a hybrid model that comprises LSTM and GRU for hyperparam-
eter tuning purposes. Bouktif et al. [95] also proposes an LSTM-RNN model for this task.
Sangrody et al. [96] compared six commonly used ML technologies: ANN, SVM, RNN,
KNN, GPR, and generalized regression neural network (GRNN). ANN showed better
performance than the other five methods for LTLF. Table 1 summarizes the AI techniques
for LF.

3.3. Power Grid Stability Assessment

The power grid stability assessment—which comprises transient stability, frequency
stability, small signal stability, and voltage stability [97,98]—is fundamental for ensuring
the reliability and security of the power system. Power system stability is the ability to stay
at an equilibrium operation state or quickly reach a new equilibrium state of operation after
a perturbation [99]. Traditional models [92,100–102] for stability assessments are complex
and require significant computing resources because they heavily rely on accurate real-time
dynamic power system models [98]. Because of the development of phasor measurement
units (PMU) and the wide area measurement system (WAMS), many data-driven AI
methods for stability analysis have been applied on power grid stability analysis.
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Table 1. Summary of approaches for LF.

Author (Ref.) Year Objective Techniques

Shi et al. [78] 2017 STLF RNN
He et al. [79] 2017 STLF DBN
Zheng et al. [72] 2017 LTLF LSTM
Qiu et al. [75] 2018 STLF Ensemble, statistic models
Agrawal et al. [92] 2018 LTLF LSTM
Ali et al. [91] 2018 LTLF Fuzzy, ANN
Sangrody et al. [96] 2018 LTLF ANN, SVM, RNN, KNN, GPR, GRNN
Kumar et al. [94] 2018 LTLF LSTM, GRU
Jiang et al. [85] 2019 MTLF DBN
Askari et al. [86] 2019 MTLF DNN
Liu et al. [87] 2019 MTLF DNN
Nalcaci et al. [37] 2019 LTLF MARS, ANN, LR
Li et al. [76] 2020 STLF Ensemble
Moon et al. [67] 2020 STLF CNN, Ensemble
Hafeez et al. [43] 2020 STLF FCRBM
Aly [80] 2020 STLF WNN, ANN
Dong et al. [93] 2020 LTLF LSTM, GRU
Bouktif et al. [95] 2020 LTLF LSTM, RNN
Rai and De [88] 2021 MTLF SVR
Gul et al. [89] 2021 MTLF CNN, LSTM
Dudek et al. [90] 2021 MTLF LSTM, ETS, Ensemble

3.3.1. Transient Stability Assessment

Transient stability assessment (TSA) is the ability to determine whether a system will
remain synchronised after a huge perturbation. The two most commonly used traditional
methods for TSA are time domain simulations and direct methods. However, the increas-
ingly complex power systems result in great challenges in making reliable decisions based
on traditional TSA methods.

Fortunately, the development of AI technologies provides the new prospective meth-
ods to this issue by using the large volume of data collected by PMU and WAMS. In
Baltas et al. [99], three ML algorithms—decision trees, SVMs, and ANNs, which are for
online TSA—were compared by using two datasets. The results show similar performance
for the methods, and performance varies according to dataset quality. Mahdi et al. [103]
also used a trained ANN model for online TSA prediction with promising performance.
Hu et al. [104] developed two improved SVM methods to solve the traditional SVM
limitation that reduces the false and missed alarms. Mosavi et al. [105] present a deep neuro-
classifier for TSA and showed the high-generalization capacity of the model. Tang et al. [106]
propose a TSA method that combined trajectory fitting (TF) and ELM, and the hybrid
method showed effectiveness and reliability. Yu et al. [107] propose an RNN-LSTM model
that better learns from the temporal data dependencies of the input data. Tan et al. [108]
built a supervised classifier that consists of CNN and stacked autoencoders (SAE) for
TSA problems with high accuracy. Liu et al. [109] used an intelligent system that com-
prised an ensemble of neural networks based on ELMs with 100% accuracy. In 2020,
the study [110] applied a deep belief network (DBN) for TSA with great accuracy improve-
ment. Shi et al. [111] trained a CNN model to provide a solution for online TSA for power
system control.

3.3.2. Frequency Stability Assessment

Power grid frequency stability assessments (FSAs) can be defined as the ability of
a system to maintain a steady range of frequency following a severe system upset or
perturbation that results in an imbalance between generation and load [98]. A large
frequency deviation causes generation units to trip, and the system stability can eventually



Smart Cities 2021, 4 557

be influenced. A few studies focused on this area by using AI technologies. In 2019,
Wang et al. [14] proposed a hybrid model that integrated a frequency response model with
an extreme learning ML model for FSA.

3.3.3. Small-Signal Stability Assessment

Small-signal stability is defined as the ability of the system to maintain synchronism
when it is under small disturbances [112]. The term “small-signal stability assessment”
is interchangeable with the term “oscillatory stable assessment” (OSA). A CNN-based
method [111] was also developed for OSA, and the results show that the model is robust
to PMU noise and that algorithm performance will not be reduced as the system grows
in scale. Xiao et al. [113] used a multivariate random forest regression (MRFR) algorithm
for OSA on an 18 bus test system, and the results presented high accuracy and robustness.
Kamari et al. [114] deployed a PSO scheme to accelerate the determination of OSA.

3.3.4. Voltage Stability Assessment

Voltage collapse can significantly influence the stability of power systems. Thus,
a voltage stability assessment (VSA) model, which can evaluate the voltage stability of
the system in a timely fashion, would be a prevention. Numerous AI-based models
are proposed in VSA, such as ANN [115], SVM [116], decision trees [117], and FL [118].
Ashraf et al. [115] used an ANN model to estimate the loading margin of power systems
and testified to the effectiveness on Institute of Electrical and Electronics Engineers 14 bus
and 118 bus test systems. Amroune et al. [119] used a hybrid model by using dragonfly
optimization and SVR for online VSA. Mohammadi et al. [116] proposes a method for VSA
by using an SVM. The results showed that the misclassification rates of the SVMs are as
low as 2% for real power grids. Yang et al. [120] built a moment-based spectrum estimation
method to gain insight into changes of voltage magnitudes for real-time static VSA. In
Meng et al. [117], a decision tree model was used for online VSA. Liu et al. [121] built a
feature selection model using partial mutual information (PMI) on an iterated random
forest (IRF) model. An in-depth review is also found in Amroune [122]. Table 2 summarizes
the AI techniques for the power system stability assessment.

3.4. Faults Detection

Fazai et al. [123] used an ELM-based method for the fault location detection of the
system after extracting features by using wavelet transform (WT) and compared it with
SVR and ANN models. Miraftabzadeh et al. [124] presented a GPR-based generalized
likelihood ratio test to enhance FD performance in photovoltaic (PV) systems. In Ashra-
fuzzaman et al. [125], two ensembles are used to detect stealthy false data injection with
a supervised classifier and an unsupervised classifier. Niu et al. [126] built an ensemble
framework that combined five ML algorithms for power grid frequency disturbances anal-
ysis. The model can detect faults with three levels of degree of severity. Sirojan et al. [127]
focused on high-impedance FD (HIFD) in power systems and proposed an ANN-based
method for solving the problem with high accuracy (98.67%). ELM is also used for HIFD
and is normally based on wavelet packet transform [128]. Sirojan et al. [129] proposes a
method for line trip fault prediction in power systems that use LSTM networks and SVM.
In Haq et al. [130], the ML-based discrete wavelet transform and double channel extreme
learning machine method are proposed to locate and classify the faults in transmission lines.
To improve the accuracy of line trip fault prediction, Wang et al. [131] proposed a stacked
sparse autoencoder-based network with SVM and PCA to demonstrate its application to
real-world data.
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Table 2. Summary of approaches for the power system stability assessment.

Author (Ref.) Year Objective Techniques

Mahdi et al. [103] 2017 TSA ANN
Tang et al. [106] 2017 TSA ELM, TF
Tan et al. [108] 2017 TSA CNN, SAEs
Liu et al. [109] 2017 TSA Ensemble, NN, ELM
Ashraf et al. [115] 2017 VSA ANN
Amroune et al. [118] 2017 VSA SVR, FL
Baltas et al. [99] 2018 TSA Decision tree, SVM, ANN
Mosavi et al. [105] 2018 TSA ANN
Yu et al. [107] 2018 TSA RNN, LSTM
Amroune et al. [119] 2018 VSA SVR
Mohammadi et al. [116] 2018 VSA SVM
Hu et al. [104] 2019 TSA SVM
Wang et al. [14] 2019 FSA ELM
Kamari et al. [114] 2019 OSA PSO
Amroune et al. [122] 2019 VSA Survey
Wang et al. [110] 2020 TSA DBN
Shi et al. [111] 2020 TSA CNN
Shi et al. [111] 2020 OSA CNN
Xiao et al. [113] 2020 OSA MRFR
Yang et al. [120] 2020 VSA Spectrum estimation method
Meng et al. [117] 2020 VSA Decision tree
Liu et al. [121] 2021 VSA Random Forest

With the development of microgrids, which present an effective power solution for
the increased integration of renewable sources, FD for microgrids remains a challenge.
Shafiullah et al. [132] used a hybrid approach that combines S-transform and feedforward
neural networks for the distribution grid FD. Wang et al. [133] also evaluate ANN-based
methods, and the results demonstrate the effectiveness of the model when detecting the time
and location of faults. To handle labeled and unlabeled data, Shafiullah and Abido [134]
propose a semisupervised ML model, which consists of a KNN model and a decision tree
model, for FD on the transmission and distribution of microgrid systems. Jayamaha, Lidula,
and Rajapakse [135] built an SVM-based algorithm to solve the problem of islanding and
grid FD, and the results showed better performance than traditional methods based on the
experiment of a PV plant. In 2017, Abdelgayed, Morsi, and Sidhu [136] used a PNN classifier
for FD and fault diagnosis in the DC side of a PV system. In 2020, Hussain et al. [137] pro-
posed a fault detection algorithm for PV based on ANN with 97% overall accuracy. Condition
monitoring in wind turbines is also important for improving maintenance by detecting faults
at an early stage. Baghaee et al. [138] evaluate the effectiveness of deep ANNs in wind turbine
FD. Gunturi and Sarkar [139] present the effectiveness to apply the ensemble method for
energy theft detection. Table 3 summarizes the AI techniques for power system FD.
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Table 3. Summary of approaches for power system FD.

Author (Ref.) Year Objective Techniques

Shafiullah et al. [123] 2017 FD ELM
Abdelgayed et al. [134] 2017 Microgrid FD KNN, DT
Garoudja et al. [136] 2017 PV FD PNN
Zhang et al. [129] 2017 Line trip FD LSTM, SVM
Sirojan et al. [127] 2018 HIFD ANN
Wang et al. [131] 2018 Line trip FD AE, SVM
Shafiullah et al. [132] 2018 Microgrid FD ANN
Helbing et al. [138] 2018 WT FD ANN
Baghaee et al. [135] 2019 FD SVM
Govar et al. [128] 2019 HIFD ELM
Jayamaha et al. [133] 2019 Microgrid FD ANN
Fazai et al. [124] 2019 PV FD GPR
Ashrafuzzaman et al. [125] 2020 FD Ensemble
Haq et al. [130] 2020 Line FD ELM
Hussain et al. [137] 2020 PV FD ANN
Niu et al. [126] 2021 FD Ensemble
Gunturi and Sarkar [139] 2021 Energy theft Ensemble

3.5. Smart Grid Security

With the integration of advanced computing and communication technologies, the smart
grid integrates distributed and green energy with the power grid by adding a cyber layer
to the power grid and providing two-way energy flow and data communication. However,
this has exposed the smart grid to numerous security issues due to the complexity of
smart grid systems and the inherent weakness of communication technology. The most
probable outcomes of smart grid cyberattacks are operational failures, synchronization
loss, power supply interruption, synchronization loss, power supply interruption, high
financial damages, social welfare damages, data theft, cascading failures, and complete
blackouts [140]. The attacks that are commonly used include false data injection attacks
(FDIA) and distributed denial of service. The objective of FDIA is an attempt to mislead the
system operators by altering the original data. Accurate and fast detection of the security
issues or attacks is a prerequisite for stable grid systems operation. In recent years, many
approaches have been proposed to improve the overall security of smart grid systems from
the academic area and the industry domain. Several research papers were published that
provided an overview of the prevailing problems related to security in smart grid systems
from a different perspective [4,141–145]. This section summarizes the state-of-the-art AI
technologies that are used to improve smart grid security.

ANNs and SVMs were used previously to detect FDIA. Zhou et al. [146] built a
stacked denoising autoencoder (SDAE) neural network model to identify and classify
four attacks in the smart grid with an accuracy as high as 96%. Cui et al. [147] used
an intrusion detection model for smart grid intrusion detection, which is based on a
whale optimization-trained ANN algorithm with one hidden layer. Kosek [148] also used
a ANN-based model to discover malicious voltage control actions in the low-voltage
distribution grid. Wu et al. [149] used an awareness mechanism that integrated fuzzy
cluster, game theory, and RL algorithms to perform the security situational analysis for
the smart grid. Ni et al. [150] used an RL method for attacks detection. Zhang et al. [151]
demonstrated the superiority of a semisupervised framework based on domain-adversarial
training to transfer the knowledge of known attack incidences to detect returning threats
at different hours and load patterns. The SVM method was also used for the detection.
Ahmed et al. [152] used an SVM-based algorithm to detect a new type of assault in the
smart grid called covert cyber deception assault. Ahmed et al. [153] also used an isolation
forest method to detect the assault with better performance in 2019. Ozay et al. [154]
compared several ML-based methods for smart grid security. Li et al. [155] demonstrated a
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novel hybrid CNN-random forest model for automatic electricity theft detection, which
significantly influences power supply quality and operating profits. Table 4 summarizes
the AI techniques for smart grid security.

Table 4. Summary of approaches for smart grid security.

Author (Ref.) Year Objective Techniques

Wu et al. [149] 2016 Intrusion detection FL, game theory, RL
Kosek [148] 2016 Detect malicious voltage control actions ANN
Ozay et al. [154] 2016 Attack detection KNN, SVM
Tan et al. [143] 2016 Survey Data-driven approach
Zhou et al. [146] 2018 Attacks detection SDAE
Ahmed et al. [152] 2018 Detect covert cyber deception assault SVM
Zhang et al. [22] 2018 Survey DL, RL
Ni et al. [150] 2019 Attacks detection RL
Hossain et al. [144] 2019 Survey Big data, ML
Ahmed et al. [153] 2019 Detect covert cyber deception assault Isolation forest
Li et al. [155] 2019 Electricity theft detection CNN, random forests
Cui et al. [145] 2020 Survey ML
Ali et al. [4] 2020 Survey AI
Haghnegahdar et al. [147] 2020 Attacks detection ANN
Zhang et al. [151] 2020 Intrusion detection Domain-Adversarial Learning

4. Challenges of Artificial Intelligence in Smart Grids

Traditional power systems are very complex, and their analysis and control primarily
depend on physical modeling and numerical calculations. With the development of
smart grids with the high penetration of environmentally friendly renewable energy and
microgrids, the transition of the traditional power grid to smart grid systems exposed
more uncertainties and problems of the complex environment. Meanwhile, the current
power system uses old infrastructure, which adds more uncertainties to the modern smart
grid systems. Because the communication network builds on power systems, very large
volumes of data with high variability must be handled; this is still a challenge of smart grids.
Additionally, researchers are still working on the robustness, adaptiveness, and online
processing of AI algorithms [156]. Although numerous data-driven methods have been
proposed to deal with the problems of smart grids, there are still many severe challenges,
including the following.

• Integration of renewable energy. Highly integrated renewable energy is a key charac-
teristic of smart grids. However, it presents several significant challenges due to the
variability and unpredictability of renewable energy in which the power output can
vary abruptly and frequently [157].

• Preserving data security and privacy: Taking into account the employment of massive
different devices and two-way communication on smart grid systems, it is more
prone to cyberattacks because it is directly exposed to malicious users compared
with the traditional power systems. The previous section showed that many novel
security techniques were developed to offer fast identifications of cyber risks, false
data injection, systems data theft, electricity theft, and so on. However, network
protocols, operating systems, and physical equipment in the current smart grid are
still exposing the system to a wide variety of attacks. The current AI solutions for
smart grid cybersecurity also have trade-offs between security and performance.

• Big data fast storage and analysis: Another significant challenge is how to continue
improving the performance of storing and retrieving big smart grid data for AI
applications robustly.

• Explainability of AI algorithms: Generally, AI algorithms have the black box problem,
and they are not interpretable or explainable. This is a barrier that AI algorithms
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currently face. Ibrahim, Dong, and Yang [158] provide a comprehensive discussion
about this topic.

• Limitations of AI algorithms: The development of AI technologies greatly influences
the deployment of AI to smart grid systems. However, every method limitation
should be considered before applying them to the smart grid.

5. Future of Artificial Intelligence in Smart Grids

The objective of smart grids is to achieve a fully self-learning system that will be
responsive, adaptive, self-healing, fully automotive, and cost effective [4]. Future directions
or opportunities to achieve the advanced smart grid systems are discussed as follows.

• Integration with cloud computing: To achieve a fully self-learning smart grid system,
the integration of AI with cloud computing—which can enhance security and robust-
ness and minimize outages—will play a more important role in smart grid systems.

• Fog computing: Fog computing tries to preprocess the raw data locally rather than
forward the raw data to a cloud. By providing on-demand resources for computing,
fog computing has numerous advantages (e.g., energy-efficiency, scalability, flexibil-
ity). Some studies [159–162] have conducted tentative research for integrating fog
computing to the smart grid. Fog computing will play a bigger role as the amount of
data in the future smart grid increases.

• Transfer learning: The lack of label data is still one of the main challenges for smart
grid analysis. Transfer learning reduces the requirements of training data, which
motivate researchers to use them to solve the problem of insufficient data. In recent
years, deep transfer learning tasks [163] have received more attention, and they could
have widespread applications in smart grid systems.

• Consumer behaviors prediction: With the help of fog computing and the evolution
of the 5G network, demand-side management is becoming a vital task for managing
the participation of users in power systems. Learning patterns of consumer behavior
and power consumption can greatly contribute to demand response tasks on the
consumer side.

6. Limitations

This review has limitations. First, the objectives of the study and the nature of
the filtering process applied during the review naturally have a certain selection bias.
For example, data collection processes, analyses, and interpretations are influenced by the
subjective assessment of the authors. Moreover, limiting the literature search exclusively to
Google Scholar might have omitted some relevant research. Second, using high-level search
phrases for such a complex and diverse multidimensional subject area might have omitted
some other related research. Finally, the authors are aware that their focus on certain
application areas in smart grids might have omitted research that cuts across multiple
application areas.

7. Conclusions

As the traditional electric grid system transitions to a smart grid system, the conven-
tional power system methods present limitations in processing and analyzing the massive
amounts of data that is now a norm with a smart grid. Thus, AI techniques are being
developed and applied to many applications in smart grid systems with promising results.
This paper presents a survey of recent applications of AI techniques in four critical areas
(that is, load forecasting, power grid stability assessment, faults detection, and security
problems) not previously addressed in previous studies. It also discusses current chal-
lenges, opportunities, and the future scope of applying AI techniques to realize a truly
smart grid.

Based on this survey, our conclusion can be summarized as follows: (i) AI techniques
have been applied to several application areas that are critical to the reliability and resilience
of a smart grid; (ii) Even then, there are still some challenges limiting additional applications
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of AI techniques. Major among these challenges are data privacy and security, as well
as handling the “black box” nature of some AI techniques to achieve a human-centered
approach to AI solutions design; and (iii) This survey should stimulate discussions in
application areas surveyed in this paper, which could further strengthen exchange of ideas.
In summary, the applications of AI techniques are being leveraged to enhance and improve
the reliability and resilience of smart grid systems.

Our future research in this area will focus on surveying the implications of the “black
box” nature of AI techniques on smart grid operations. Specifically, we will survey how
smart grid operators have handled this problem. Such a survey could help researchers
design more human-centered approaches to AI solutions.
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