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Abstract: Among many changes potentially induced by the adoption of ridehailing, one key area of
interest in transportation and urban planning research is how these services affect sustainable mobility
choices, such as usage of public transit, walking, and biking modes and lower ownership of household
vehicles. In this study, by using subsamples of the National Household Travel Survey (NHTS) 2017
data, propensity score matching technique is applied to generate matched samples of ridehailing
adopters and non-adopters from ten different core-based statistical areas in the U.S. Results from
multivariable count data regression models built on the matched samples indicate that, on average,
the count of public transit trips is greater for adopters compared against identical non-adopters in
all ten areas. Regarding average counts of walking and biking trips, adopters tend to make more
trips in most of the places, although a few exceptions are also found. However, the relationship
between ridehailing adoption and count of household vehicles appears to be more complicated as
adopters, on average, seem to have a lower or higher number of vehicles than identical non-adopters,
depending on the area. One major limitation of this study is that, in the statistical analyses, effects of
attitudinal and detailed geographic variables are not directly controlled for, which complicates causal
interpretations of findings.

Keywords: ridehailing; public transit; walking; biking; vehicle ownership; sustainable mobility;
propensity score matching; count data regression

1. Introduction

Cities across the globe, faced with challenges posed by rapid urbanization and climate change, are
exploring strategies to deal with growing demands in sustainable ways [1]. Sustainably meeting the
mobility needs of city dwellers remains to be an intricate issue for urban planners and policymakers,
as greenhouse gas emissions continue to rise from the transportation sector [2], while marginalized
communities experience widening inequality due to a lack of adequate and affordable mobility [3].

Although sustainability has become a crucial topic in policy dialogues and academic research,
there appears to be no universally agreed-upon definition of the terms sustainability, sustainable
development, or sustainable mobility [4]. Despite disagreements on the definition, transportation and
urban planning practitioners generally consider the promotion of multimodality, which incorporates
higher usage of public transit, walking, and biking modes, and lower ownership and usage of
private vehicles, as more sustainable in nature [4-8]. In this paper, I refer to trip making by public
transit, walking, and biking modes and lower ownership of household vehicles as “sustainable
mobility choices.”
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Over the last decade, cities around the U.S. have witnessed tremendous growth in the availability
of shared mobility services [9]. Among the different varieties of shared mobility, ridehailing—services
that enable users to get on-demand and short-term mobility access using smartphone apps—have
drawn particular attention among urban residents, academics, and policymakers. According to the
Pew Research Center, about 36% of U.S. adults mentioned using ridehailing services by 2018 [10].

Quite similar to the case of sustainability, practitioners often disagree on the definitions of different
shared mobility services; consequently, services provided by the Transportation Network Companies
(TNCs), such as Uber and Lyft, have been referred to as ridesharing, ridehailing, ridesourcing,
app-based on-demand rides, etc. [11-13]. In this paper, I use the term “ridehailing” to describe both
individual (e.g., UberX) and shared-ride (e.g., UberPool) services provided by the TNCs.

Studies conducted so far to explore the impact of ridehailing services on sustainable mobility
choices hint at a wide range of possibilities: some indicate that these services can positively affect
sustainable mobility choices, while others suggest that they can have a negative effect. Understandably,
some adopters can use ridehailing to solve the first- and last-mile connection issues before and after
transit trips, and also use these services when public transit services are unavailable; on the contrary,
some other adopters, who can afford a higher fee, can replace public transit trips in situations when
ridehailing works as a more convenient alternative. Although findings of previous studies have
improved our understanding of the different mechanisms through which ridehailing services can affect
other modes and vehicle ownership, limitations of existing studies include: usage of nonprobability
samples, usage of samples from a specific urban area, usage of samples containing only adopter
data, and application of only univariate statistical analyses. As a result, in terms of assessing the
net effect, question remains on both generalizability and depth of many of these findings. As cities
across the country are exploring opportunities to promote urban sustainability through reviving transit
services, creating more walkable and bikeable spaces, and encouraging people to reduce private vehicle
ownership and usage [14], it is crucial to have a deeper understanding of the net effect of ridehailing
on these sustainable mobility choices.

In this paper, by building multivariable regression models on matched samples of adopters
and non-adopters from ten core-based statistical areas in the U.S., I attempt to advance the existing
understanding of the net effect of ridehailing adoption on sustainable mobility choices. As this study
used data obtained from probability sampling and applied a statistical method widely used for impact
assessment, findings can provide a more nuanced understanding.

The paper begins with a review of the existing literature relevant to the topic (Section 2). Next,
in Section 3, the materials and methods used in this research—including a brief description of the
National Household Travel Survey (NHTS) 2017 data, attainment of matched samples using propensity
score matching, and analyses of the matched samples by building multivariable count data regression
models—are discussed. In Section 4, results of the regression models are presented and interpreted.
The final section (Section 5) explains the implications of findings, limitations of this research, and
directions for future research.

2. Literature Review

So far, a number of studies have tried to investigate how the adoption of ridehailing affects
sustainable mobility choices. In terms of reduction of private vehicle ownership, analyzing data from
an online panel of respondents living in seven major U.S. cities, Clewlow and Mishra [15] found that, on
average, ridehailing adopters did not possess significantly fewer vehicles than non-adopters. However,
the authors mentioned that 9% of ridehailing adopters participating in their study decided to give
up one or more vehicles. In another study, by collecting data from an intercept survey of ridehailing
adopters in San Francisco and comparing findings against other data sources, Rayle et al. [11] found
that 43% of ridehailing adopters belonged to zero vehicle households, whereas 35% of regular taxi
users and 19% of the overall population of the city lived in similar households. They also found that
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90% of vehicle owners had not changed vehicle ownership after beginning to use ridehailing, and
suggested that presence of ridehailing had not influenced vehicle ownership decisions.

Regarding the impact of ridehailing on different travel modes (public transit, walking, biking,
etc.), existing studies provide divergent results [16]. To assess how the adoption of ridehailing affects
other modes, researchers often ask a stated preference question similar to “what modes would you
have used if ridehailing were not available?” [16]. Combining findings from five studies (Table 1),
it appears that ridehailing trips replace sustainable trips (transit, walking, and biking) to a greater
extent than private automobile trips, although results indicating the extent of supposed replacements
vary among studies.

Table 1. Findings indicating how the adoption of ridehailing affects different travel modes.

Atrticle
V\Iggleig]a;‘;(;};xf;:f Ravle et al Clewlow Alemi [12] Henao and Feigon and
were Unavailable * Y " andMishra  Generation Marshall Murphy
(1] [15] X Millennial [17] [18]
mvzzz}?erxetrh;rvi ° - 22% 7% 9.2% 1222% 0%
R p 33% 15% 11.9% 27.4% 22.2% 15%
Transit 8% 17% C - i o
\gili( 2% 7% - - - 7%
Walk or Bike - - 11.9% 24.6% 11.9% -
Drive private vehicle 6% 21% 38.3% 37.8% 19% 20%
vep Other - 51% 19% 30.9% 1% 34.7% 52%

* Categories may not add up to 100 due to rounding. — indicates that the response option was not provided in the
survey. Also, some of the response options have been rephrased (from original studies) in this table to create a
generalized structure.

Interestingly, Hampshire at al. [19] investigated the same question, but in a revealed preference
situation. After Uber and Lyft temporarily suspended services in 2016 in Austin, Texas, the authors
asked previous Uber/Lyft passengers how they made a reference trip given the unavailability of
Uber/Lyft. According to their findings, among those who participated in the survey, only 2.9% used
public transit, whereas the majority of them either used a private vehicle (45%) or another ridehailing
service (41%). Additionally, people who opted for private vehicles also included 8.9% of respondents
who purchased a vehicle after Uber and Lyft had stopped operating in the city. These findings indicate
that the presence of Uber and Lyft possibly replaces more private automobile trips than public transit
trips, and in some instances, stops adopters from purchasing private vehicles. However, the authors
mentioned using a convenience sample for the study, which limits the generalizability of the findings.

A number of other studies have attempted to explore the impact of ridehailing on public transit
ridership at a macro level. Hall et al. [20] used a difference-in-differences design to estimate the effect of
Uber on public transit ridership across major metropolitan cities in the U.S. According to their findings,
Uber’s entry increases ridership for an average transit agency. Although they found that the presence
of Uber can increase or decrease transit ridership depending on the size and location of a transit agency,
they concluded that the net effect of Uber on transit ridership was apparently positive. In another study,
by using a longitudinal multilevel mixed-effect regression approach, Boisjoly et al. [21] investigated the
determining factors of public transit ridership over the period of 2002 to 2015 for 25 transit agencies in
North America. According to the authors, characteristics of the metropolitan area (size and population),
average fares, and car ownership were the major factors influencing ridership, and ridehailing had an
overall positive (but statistically insignificant) impact on the outcome. Contrary to the findings of these
two studies, Graehler et al. found negative association between the presence of ridehailing and transit
ridership [22]. The authors updated Boisjoly’s approach by using more recent data and segmenting
different transit services. According to their findings, in every year since the entrance of ridehailing
services in a market, heavy rail and bus ridership can decrease by 1.3% and 1.7%, respectively.
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Overall, conflicting indications on the net effect of ridehailing adoption on sustainable mobility
choices may be due to a number of reasons, such as differences in the geographic area under study,
in sampling procedures (e.g., probability sampling versus nonprobability sampling), in the type of
survey data (e.g., stated versus revealed), in the time period of the survey, etc. Above all, one major
limitation in the existing understanding is that many of the suggestions have been given based on
descriptive statistics, which cannot control for self-selection bias. This bias occurs when participants
of a study choose their own treatment condition (e.g., whether to adopt ridehailing or not), which
in turn makes it difficult to estimate whether the outcome is due to receiving the treatment or due
to the inherent differences between those who receive the treatment and those who do not [23].
For estimating treatment effects from observational data, quantitative social science researchers use
a number of econometric methods, such as propensity score matching, instrumental variable, and
regression discontinuity design, which require stronger theoretical assumptions apart from standard
statistical modeling [24]. This study applied the propensity score matching technique as an attempt
to explore the effect of ridehailing adoption on the four sustainable mobility choices in the context
of ten different areas. Findings can provide deeper insights into the effect of ridehailing adoption in
these areas, and limitations pointed out in the final section (Section 5) should facilitate better design of
future studies for a more precise estimation of the effect.

3. Materials and Methods

3.1. National Household Travel Survey (NHTS) 2017 Data

The National Household Travel Survey (NHTS), conducted by the Federal Highway
Administration (FHWA), is a nationally representative survey that collects data relevant to
noncommercial trips made by American households [25]. A sample of 264,234 individuals
aged 5 or above from 129,696 households was collected during the NHTS 2017. However,
for the purpose of this research, a subset of the NHTS 2017 sample, consisting of people
living in the ten leading core-based statistical areas in terms of public transit usage—New
York-Newark-Jersey City, Atlanta—Sandy Springs—Roswell, Boston-Cambridge-Newton, Chicago—
Naperville-Elgin, Los Angeles-Long Beach—Anaheim, Miami-Fort Lauderdale-West Palm Beach,
Philadelphia—~Camden-Wilmington, San Francisco-Oakland-Hayward, Seattle-Tacoma—Bellevue, and
Washington—Arlington—Alexandria [26]—was chosen. Given the fact that public transit availability,
walkability, and bikeability differ widely across the ten areas, it is possible to observe how sustainable
mobility choices differ, not only between adopters and non-adopters living in the same area, but
also among adopters from different areas. Next, as ridehailing services require users to be 18 or
older [27,28], the cases of respondents aged below 18 are eliminated. Although the NHTS 2017 recorded
responses of 31,210 respondents aged 18 or above living in the ten areas considered in this research, by
eliminating the cases of respondents who did not provide answers to one or more questions relevant
to the dependent and independent variables of this research, I initially narrowed down to a sample
of 29,695 respondents. Figure 1 presents the ridehailing adoption rate in the ten areas based on the
initial sample.
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Figure 1. Ridehailing adoption rate in the ten areas.

3.2. Need for a Matched Sample

In order to assess the effect of a treatment (e.g., adoption of ridehailing) on an outcome (e.g., count
of public transit trips), ideally, we need to conduct a randomized experiment in which we manipulate
the treatment by randomly assigning people to a treatment group (e.g., adopters) and a control group
(e.g., non-adopters) [29]. Randomization ensures that the treatment and control groups are, on average,
identical to one another considering all predictors except the treatment variable, and therefore, the
two groups can be considered as counterfactual of one another [29]. In that case, by subtracting the
average outcome for the control group from the average outcome for the treatment group, we get an
estimate of the average treatment effect [29]. In simple mathematical terms, for any participant (i) in
the experiment, average treatment effect = E (y} - y?) =E (yll) -E (y?), where y} = outcome in the
case of receiving the treatment and y? = outcome in the case of not receiving the treatment [30].

However, in many practical situations, such as for assessing the effect of ridehailing adoption on
sustainable mobility choices, conducting a randomized experiment can be extremely difficult, and
researchers have to rely on observational data. A fundamental challenge in making causal inferences
from observational data is that treatment and control groups often differ from one another, based
not only on the treatment variable but also on a number of other predictors [29,30]. One possible
way of countering this problem is to build a multivariable regression model which can isolate the
effect of the treatment variable by controlling for the effects of other variables; however, if there are
large differences between the treatment and control groups, regression coefficients can be biased,
which would result in biased estimation of the treatment effect [31]. To solve this problem, by using
propensity score matching, we can obtain an observationally equivalent subsample of the treatment
and control groups, which provides a stronger case to find an estimate of the treatment effect [29,32].
In a way, this technique can potentially mimic a randomized experiment by creating a treatment and a
control group which are, on average, identical to one another, depending on observed predictors [30].
After matched samples are obtained, a regression model, that includes the treatment status indicator
(a dummy variable) and propensity scores as predictors, can be built to estimate the average treatment
effect. For example, the coefficient (3) in the following model can be interpreted as an estimator of the
average treatment effect:

yi=a+pTi+yPx)+e, 1

where T; = treatment indicator and P(x;) = proponsity score [30]
Also, the regression method makes it possible to adjust for the effects of other confounders which
are not considered during the matching process [30].
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3.3. Getting Matched Samples using Propensity Score Matching

Propensity scores for respondents from the ten areas were separately obtained using logit
models that predict the probability of receiving the treatment (ridehailing adoption) based on nine
predictors: urbanicity of household location, annual household income, educational attainment, race,
sex, generational cohort, life cycle classification for the household, household size, and household
worker count. A description of these variables is provided in Table 2. In the logit models built for
generating propensity scores, outcome variables of this research were not considered as predictors
following recommendations provided in [31,33]. Next, based on the propensity score of each adopter,
a similar non-adopter (ratio = 1) was selected using the nearest-neighbor matching technique, and
unmatched non-adopters were discarded. Finally, ten matched samples, each having an equal number
of adopters and non-adopters from a particular area, were found. All statistical analyses were done
separately for the ten matched samples. A description of the dependent and independent variables of
the regression models (described in Section 3.6) is provided in Table 3.

Table 2. Description of the predictors used in the matching process.

Variable Name Variable Description Levels/Values
HBHUR Urbanicity of Household Location ~ Urban
(as defined by Claritas [34]) Suburban
Second City
Small Town
Rural
INCOME * Annual Household Income Less than $50,000
$50,000 to $100,000
$100,000 or more
EDUCATION * Educational Attainment Below Bachelor’s
Bachelor’s or above
RACE* Race White
Black or African American
Asian
Others (American Indian or Alaska Native,
Native Hawaiian or other Pacific Islander,
Multiple responses selected, Some other race)
R_SEX Sex Male
Female
HHSIZE Count of Household Members 1-13
GENERATION * Generation Post-Millennial (Aged between 18 and 20
(as defined by the Pew Research ~ )Millennial (Aged between 21 and 36)
Center [35]) Generation X (Aged between 37 and 52)
Baby Boomer (Aged between 53 and 71)
Silent and Greatest (Aged 72 or above)
WRKCOUNT Number of workers in household  0-7
LIF_CYC Life Cycle classification for the One adult, no children

household, derived by attributes
pertaining to age, relationship,
and work status

2+ adults, no children

One adult, youngest child 0-5

2+ adults, youngest child 0-5

One adult, youngest child 6-15

2+ adults, youngest child 6-15

One adult, youngest child 16-21

2+ adults, youngest child 16-210ne adult, retired,
no children

2+ adults, retired, no children

* These variables have been created by recategorizing relevant NHTS variables. For example, INCOME has been
recreated from HHFAMINC, EDUCATION from EDUC, RACE from R_RACE, and GENERATION from R_AGE.
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Table 3. Description of the variables used in the regression models.

Variable Name Question in the NHTS 2017 [36] Values/Levels Data Type

PTUSED In the past 30 days, about how many days have you 0-240 Count
used public transportation such as buses, subways,
streetcars, or commuter trains?

NWALKTRIP In the past 7 days, how many times did you take a 0-200 Count
walk outside including walks to exercise, go
somewhere, or to walk the dog (e.g., walk to a
friend’s house, walk around the neighborhood, walk
to the store, etc.)?

NBIKETRIP In the past 7 days, how many times did you ride a 0-99 Count
bicycle outside including bicycling to exercise, or to
go somewhere (e.g., bike to a friend’s house, bike
around the neighborhood, bike to the store, etc.)?

HHVEHCNT How many vehicles are owned, leased, or available 0-12 Count
for regular use by the people who currently live in
your household? Include motorcycles, mopeds, and RVs.

CARSHARE In the past 30 days, how many times did you use a 0 = Non-adopter Binary
car-sharing service where a car can be rented by the 1 = Adopter
hour (e.g., Zipcar orCar2Go)?

RIDEHAIL * In the past 30 days, how many times have you 0 = Non-adopter Binary
purchased a ride with a smartphone rideshare app 1 = Adopter
(e.g., Uber, Lyft, Sidecar)?
* Although the NHTS 2017 used “RIDESHARE,” I used “RIDEHAIL/Ridehailing” throughout this paper to refer to
the same service. Also, the RIDESHARE variable was recorded as count data in the NHTS 2017. In this research,

I created the RIDEHAIL variable by coding RIDESHARE as a binary variable to separate out the adopters and
non-adopters. The same procedure was followed to recreate the CARSHARE variable.

3.4. Summary Statistics

Table 4 shows the average count of public transit, walking, and biking trips, and the average
count of household vehicles for adopters and non-adopters in the matched samples from all ten areas.
Sample sizes for each area are also shown. Additionally, for each mobility choice, an independent
sample t-test was conducted to identify whether the average count for adopters and non-adopters
are significantly different at the 5% significance level. Based on the findings, counts of public transit
trips for adopters are significantly greater than the same for non-adopters, regardless of the area.
However, public transit trip counts among adopters vary widely depending on the area; for example,
on average, ridehailing adopters in New York-Newark-Jersey City make 12.57 trips, whereas adopters
in Miami-Fort Lauderdale-West Palm Beach make only 2.02 trips. Possibly, these variations are caused
by differences in the quality of public transit across cities.

In terms of walking trip counts, on average, adopters make significantly more trips than
non-adopters in all areas except in Atlanta-Sandy Springs—Roswell, Boston-Cambridge-Newton, and
Seattle-Tacoma—Bellevue. Similarly, average biking trip count seems to be significantly greater for
adopters in all areas except in Boston-Cambridge-Newton, Chicago—Naperville-Elgin, and Miami-Fort
Lauderdale-West Palm Beach. Similar to the variation in transit trips, differences in walking and
biking trips among ridehailing adopters from different areas are possibly caused by the disparity in
walkability and bikeability across places.

Regarding counts of household vehicles, there appears to be no significant difference between
adopters and non-adopters living in Chicago-Naperville-Elgin, Miami-Fort Lauderdale-West Palm
Beach, and Philadelphia—Camden-Wilmington areas, but adopters have significantly lower household
vehicles in all other areas.
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Table 4. Average sustainable mobility choices by ridehailing adopters and non-adopters in the matched
samples from the ten areas.

Core-Based Statistical Area (CBSA) of Public Transit Trips Walking Trips Biking Trips Household Vehicle

the Respondent’s Home Address Adopter Non- Adopter Non- Adopter Non- Adopter Non-
Adopter Adopter Adopter Adopter

New York-Newark-Jersey City, 12.57* 6.86 * 12.25* 8.68 * 0.80 * 0.29 * 1.48* 1.85*

NY-NJ-PA

(Nadopter =1037, Nnon—adopter =1037)

Atlanta-Sandy Springs-Roswell, GA 2.54* 0.72* 6.09 5.67 0.29* 0.17* 1.90 * 2.14*

(Nudophfr = 665, eronfadoptyr = 665)

Boston-Cambridge-Newton, MA-NH 9.19* 5.39* 11.60 9.50 0.62 0.68 1.26* 1.68 *

(Naduptx’r =114, Nnunfudopter = 114)

Chicago-Naperville-Elgin, IL-IN-WI 7.45* 419* 8.79 % 6.71* 0.56 0.48 1.85 2.00

(Nndoptcr =203, Nnon—udnptw = 203)

Los Angeles-Long Beach—Anaheim, CA 2.14* 1.30* 711* 524* 0.51* 0.29 * 2.02* 215*

(Nudopter = 1175, Nnnn—udopter =1175)

Miami-Fort Lauderdale-West Palm 2.02* 0.49* 7.26* 4.57* 0.62 0.31 2.24 2.00

Beach, FL

(Nndopter =97, Nnon—adoph:r =97)

Philadelphia-Camden-Wilmington, 7.28* 2.13* 10.46 * 7.31* 0.62* 0.13* 1.85 2.10

PA-NJ-DE-MD

(Naduptcr =89, Nuonfaduptfr =89)

San Francisco-Oakland-Hayward, CA 8.01* 3.91* 9.46* 6.16 * 0.92* 0.45* 1.69* 2.16*

(Nndopter = 1156, Nnon—ndopter = 1156)

Seattle-Tacoma-Bellevue, WA 6.52* 2.78* 7.93 6.66 0.93 * 0.08 * 1.71* 2.10*

(Nadopter =83, Nnnn—adop[er =83)

Washington—Arlington-Alexandria, 9.54 % 4.70* 11.86 * 741* 0.84* 0.35 % 1.36* 1.70*

DC-VA-MD-WV
(Nadoptcr =380, Nnunfadopter = 380)

* indicates average counts for adopters and non-adopters that are significantly different at the 5% significance level.

3.5. Multivariable Regression Models

As all four dependent variables of this research are count data (non-negative integers), building
ordinary Linear regression models may not be the ideal approach, because count data often violate two
important assumptions—normality and homoscedasticity—of Linear regression [37], and thus Linear
regression models built on count data can produce biased estimates [38]. For such cases, Poisson
regression models can be considered; however, Poisson distribution assumes equality of mean and
variance [37,38], which seemingly does not hold true for any of the four dependent variables (regardless
of the area) considered in this paper. From Table 5, it is evident that, for all ten areas, the variance is
greater than the mean (indicating overdispersion) for the count of public transit, walking, and biking
trips, whereas the variance is smaller than the mean (indicating underdispersion) for the count of
household vehicles.

To model overdispersed count data, researchers often use a Negative Binomial (NB) regression
model, which is a generalized version of the Poisson model and capable of dealing with the
overdispersion by incorporating an extra parameter « that accounts for unobserved heterogeneity
among observations [37,38]. NB regression models have been used in transportation research for finding
answers to a wide range of questions. For example, Marshall and Ferenchak (2019) modeled crash
counts from twelve large U.S. cities [39]; Zahran et al. (2008) modeled counts of walk commuters [40];
Wang et al. (2014) estimated mixed-mode urban trail traffic [41]; Hu et al. (2012) modeled crash
frequency at highway-railroad grade crossings [42]; Cao et al. (2006) estimated frequencies of strolling
trips and pedestrian shopping trips [43]; Zhao and Kockelman (2002) modeled household vehicle
ownership [44]; Young and Lachapelle (2017) modeled travel time for different travel modes and
frequency of trips for different purposes in Canadian cities [45] using NB regression models. On the
contrary, underdispersed count data modeling appears to be less explored [46] as the phenomenon is
less commonly observed [47]. To model underdispersed count data, Quasi-Poisson (QP) regression
models can be useful, as illustrated by Harris et al. [46] and Wilson et al. [48].
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Table 5. Differences between Mean and Variance in Dependent Variables.

Core-Based Statistical Area (CBSA) Public Transit Trips Walking Trips Biking Trips Household Vehicle
of the Respondent’s Home Address Mean Variance Mean  Variance Mean  Variance Mean  Variance
New York-Newark-Jersey City, 9.72 157.56 10.47 154.75 0.54 10.34 1.66 1.58
NY-NJ-PA
Atlanta-Sandy Springs-Roswell, GA 1.63 26.66 5.88 65.12 0.23 1.28 2.02 0.98
Boston-Cambridge-Newton, MA-NH 7.29 103.83 10.55 112.84 0.65 6.34 1.47 1.28
Chicago—Naperville-Elgin, IL-IN-WI 5.82 110.44 7.75 80.93 0.52 3.56 193 142
Los Angeles-Long 1.72 32.86 6.17 64.48 0.40 3.00 2.09 1.32
Beach—-Anaheim, CA
Miami-Fort Lauderdale-West Palm 1.26 24.37 0.46 2.89 0.46 2.89 2.12 1.01
Beach, FL
Philadelphia—Camden-Wilmington, 471 95.77 8.89 109.98 0.38 2.28 1.98 1.28
PA-NJ-DE-MD
San Francisco-Oakland-Hayward, CA 5.96 91.43 7.81 73.32 0.69 5.06 1.92 1.39
Seattle-Tacoma—Bellevue, WA 4.65 63.91 7.30 49.17 0.51 3.37 1.90 1.21
Washington=Arlington—-Alexandria, 7.12 103.59 9.72 98.99 0.59 4.68 1.53 1.09

DC-VA-MD-WV

For the QP model, expected count, E(Y) = u and variance, V(Y) = 6 u, where p and 6 denote
conditional mean and dispersion parameter, respectively [49].

Also, for the NB model, expected count, E(Y) = A and variance, V(Y) = A (1 + « A), where A and «
denote conditional mean and dispersion parameter, respectively [49].

Given the possible presence of overdispersion, multivariable NB regression models are built to
investigate the extent to which the count of public transit trips, walking trips, and biking trips can
get affected by the adoption of ridehailing. Also, due to the possible presence of underdispersion,
multivariable QP regression models are built to explore how household vehicle ownership can be
impacted by the adoption of ridehailing.

Although adopters and non-adopters were matched based on nine predictors related to
sociodemographic and geographic characteristics, there could be some other differences between
them that were not been controlled for. Findings from previous studies indicate that people who use
public transit are more likely to make more walking and biking trips, and belong to households with
no/fewer vehicles [50,51]. As a consequence, it is possible that differences in the count of walking and
biking trips are due to differences in the count of public transit trips rather than ridehailing adoption.
Furthermore, adoption of carsharing can be related to all four outcome variables of this research [31].
To negate these possibilities, in the regression models predicting the count of trips made by a certain
mode, count of trips made by other modes, adoption of carsharing, and count of household vehicles
were used as confounding variables. For the same reason, in the models predicting household vehicles,
count of trips made by public transit, walking, and biking modes and adoption of carsharing were
used as confounding variables.

It is worth mentioning that a number of other variables relevant to the physical characteristics of
respondents’ household and workplace locations and their attitudes towards different travel modes
were not used in the analyses due to either unavailability of relevant variables (physical characteristics)
or lack of enough responses to relevant questions (attitudinal) in the NHTS 2017. Regarding questions
relevant to attitudes towards walking and biking trips, the majority of the respondents skipped
answering. However, the predictors used in the matching process can potentially account for the ones
that were not included. For example, Bhat and Pulugurta used descriptors of residential location based
on urbanization (Urban and Suburban) as proxy variables for other location-relevant factors, such as
opportunities to perform activities by transit, level of service from auto and transit modes, and auto
maintenance and insurance costs [52]. Also, Na Chen argued that sociodemographic variables can
partially control for the effects of attitudinal variables [53]. Consequently, based on the assumption that
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predictors used in the analyses could control for the effects of other possible confounders, subsequent
analyses were conducted and the results are interpreted.

3.6. Implementation of Regression Models

The four multivariable regression models for each area were designed as follows:

Model NB-TRANSIT: log(Aprysep) ~ f (RIDEHAIL, Propensity Score, Other Confouding Variables)
ModelNB-WALK: log(Axwarkrrip) ~ f(RIDEHAIL, Propensity Score, Other Confouding Variables)
Model NB-BIKE: log(Angikerrip) ~ f (RIDEHAIL, Propensity Score, Other Confouding Variables)

Model QP-VEHICLE: log(Angvencnt) ~ f (RIDEHAIL, Propensity Score, Other Confouding Variables)

where A denotes expected counts.

3.7. Software and Packages Used for Analyses

All statistical analyses were done in RStudio version 3.5.1. Propensity score matching analysis
was done using Matchlt package [54]. The glm.nb function in MASS package [55] was used to fit the
Negative Binomial regression models, and the glm function in stats package [56] was used to fit the
Quasi-Poisson regression model.

4. Results

4.1. Interpretation of Regression Model Output

The outcomes of both Negative Binomial and Quasi-Poisson regression models take the form of
natural logarithm of expected counts (In A) [46,57]. For numeric predictors, coefficient 3 expresses 3
units change in the outcome with one unit change in the predictor, whereas for categorical predictors
with multiple levels, 3 denotes the outcome changes by 3 units for the considered level compared
against the base level. Another way of expressing model outcomes is in terms of exponentiated
coefficients, also known as Incidence Rate Ratios (IRR), in which the outcomes take the form of expected
counts (A). In this transformed scale, IRR denotes that one unit change in the numeric predictor is
associated with exp () times change in the outcome. For categorical predictors with multiple levels,
IRR expresses exp (f3) times change in the outcome for the considered level compared against the
base level.

In Table 6, regression outputs have been shown in terms of IRR as it is relatively easier to interpret.
An IRR value of greater than 1 indicates a positive association between the predictor and the outcome,
whereas a value of less than 1 suggests a negative association between them.

4.2. Multicollinearity and Goodness of Fit

The goal of building multivariable regression models in this research was to investigate the effect
of ridehailing adoption on sustainable mobility choices after controlling for the effects of as many
confounding variables as possible. Although adding many predictors in a regression model can
minimize omitted variable bias, it increases the possibility of multicollinearity, a phenomenon that
can affect the estimation of both the coefficient and the standard error of the coefficient of a predictor
which is correlated with one or more predictors in the model [58]. However, multicollinearity can be
ignored in cases where predictors added to the model only for controlling purpose are correlated with
each other but not with the predictors of research interest (treatment variable) [59]. Variance Inflation
Factor (VIF), a diagnostic tool to detect the presence of multicollinearity in multivariable regression
models, was calculated to confirm the absence of multicollinearity. Low VIF values for the RIDEHAIL
variable in all four models suggest that multicollinearity should not be a concern in the context of this
research. The VIF analyses were conducted using CAR package [60] in RStudio.
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To evaluate the goodness of fit for generalized linear models (Logistic, Poisson, Negative Binomial,
etc.), several Pseudo R-squared methods have been developed [61-63]. For all the models, I calculated
McFadden’s Pseudo R-squared values, which can be mathematically expressed as:

In L. (Model
R12\4 Fadden = 1~ —% ( full) @
cradden InL (MOdezintercept only)

where [ = Estimated likelihood, Model fun = Full estimated model, Modelytercept oniy = Intercept-only model.
The value of R%/Ma 1den INdicates improvement in the full estimated model compared against the
values were calculated using DescTools package [64] in RStudio.

intercept-only model. Rfmpa dden
The complete findings of all forty (four for each area) regression models, including estimates of
2

coefficients, exponentiated coefficients (IRR), R3cFadden

Supplementary Materials.

values, and VIF scores, are provided in the

4.3. Discussion on the Association between Ridehailing Adoption and Sustainable Mobility Choices after
Controlling for the Confounders

In this section, I limit the discussion to the IRR of the treatment variable (ridehailing adoption); to
put it simply, I avoid explaining the IRR of other predictors as they have been added to the models
only for controlling purpose. IRR values of the RIDEHAIL variable from all forty models are presented

in Table 6. RZZ\/IcFa sden Values for the models mostly range between 0.1 and 0.2, which seems to be
satisfactory given the fact that these values tend to be considerably lower than the R? values found in
2

Linear regression, and Ry, . .. -

values between 0.2 and 0.4 represent excellent fit [65].

Table 6. IRR (exponentiated coefficient) of the RIDEHAIL variable from the regression models. (Base
case: Non-adopter)

Area Relevant to the Model Model
NB-TRANSIT NB-WALK NB-BIKE QP-VEHICLE

New York-Newark-Jersey City, 1.570 * 1.154 * 1.872 % 0.954
NY-NJ-PA
Atlanta-Sandy Springs-Roswell, GA 3.312* 0.952 1.096 0.930 *
Boston—Cambridge-Newton, MA-NH 2.434 % 1.120 0.765 0.935
Chicago-Naperville-Elgin, IL-IN-WI 1.651 * 1.183 1.394 1.104
Los Angeles-Long Beach-Anaheim, CA 1.552 * 1.274* 1.508 * 0.976
Miami-Fort Lauderdale-West Palm 2.740 1.511* 1.260 1.153 *
Beach, FL
Philadelphia-Camden—Wilmington, 3.524 * 1.099 6.101 % 1.002
PA-NJ-DE-MD
San Francisco-Oakland-Hayward, CA 1.528 * 1.226 * 1.063 0.911*
Seattle-Tacoma—Bellevue, WA 2.047 * 0.942 7.975* 0.899
Washington—Arlington-Alexandria, 1.639 * 1.221* 2.222* 1.007

DC-VA-MD-WV

* indicates IRR that is significant at the 5% significance level.

Findings presented in Table 6 show statistically significant positive association between adoption
of ridehailing and count of public transit trips in all areas except in Miami-Fort Lauderdale-West
Palm Beach, where the association is positive but insignificant. These findings indicate that, compared
against identical non-adopters, on average, adopters make significantly more public transit trips in
almost all areas. Also, the magnitude of the positive association varies across urban areas: adopters in
Philadelphia—Camden-Wilmington area, on average, make 3.524 times more transit trips than identical
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non-adopters, whereas adopters in Los Angeles-Long Beach—-Anaheim, on average, make 1.552 times
more transit trips than similar non-adopters.

In terms of walking trips, on average, ridehailing adopters make significantly more trips
than identical non-adopters in five areas: New York-Newark—Jersey City, Los Angeles-Long
Beach—Anaheim, Miami-Fort Lauderdale-West Palm Beach, San Francisco-Oakland-Hayward,
and Washington—-Arlington—-Alexandria. In other places, adoption of ridehailing seems to have a
mostly positive but statistically insignificant relationship with the count of walking trips.

Count of biking trips seems to have significant positive association with ridehailing adoption
in New York-Newark—Jersey City, Los Angeles-Long Beach—Anaheim, Philadelphia~Camden-—
Wilmington, Seattle-Tacoma-Bellevue, and Washington-Arlington—-Alexandria. No significant
association is observed in other areas, although the association tends to be positive except
in Boston-Cambridge-Newton.

Regarding the count of household vehicles, on average, ridehailing adopters have significantly
lower household vehicles compared against similar non-adopters only in Atlanta—Sandy
Springs—Roswell and San Francisco-Oakland-Hayward, but the opposite holds true in Miami-Fort
Lauderdale-West Palm Beach. In other places, the relationship between ridehailing adoption and the
count of household vehicles appears to be insignificant. Nevertheless, it should be noted that some of
the associations may have been found to be insignificant due to relatively small sample sizes used in
the analyses. Also, given limitations in the data, it is difficult to explain why these associations vary
across the ten areas.

In the context of this research, perhaps, the more important question is: do these associations
express causal effects of ridehailing adoption? The answer to the question largely depends on
the extent to which confounding variables included in the analyses controlled for the effects of all
possible confounders. To elaborate on this, it is worth taking a look back at the relationship between
ridehailing adoption and count of household vehicles in the Chicago-Naperville-Elgin area. From the
summary statistics (Table 4), it appears that average count of household vehicles is 1.08 times higher
for non-adopters; however, results of the multivariable regression analysis (Table 6)—that included
propensity score, count of public transit trips, count of walking trips, count of biking trips, and
adoption of carsharing as confounders—show that, after controlling for the five confounders, adopters,
on average, have 1.104 times higher household vehicles. This example illustrates the importance of
controlling for the effects of as many confounders as possible for precise estimation of effects. In future
research, detailed data on respondents’ attitudes, lifestyle preferences, trip purpose and duration, and
built environment characteristics of their living and workplace locations should be collected, as directly
controlling for these factors should result in more reliable effect estimation.

5. Discussion and Conclusions

In this research, using matched samples of ridehailing adopters and non-adopters from ten
core-based statistical areas in the U.S., multivariable regression models were built as an attempt
to assess the effect of the service adoption on sustainable mobility choices. Findings indicate
that, regardless of the urban area, ridehailing adopters use public transit more often than identical
non-adopters. Also, adopters tend to walk and bike more frequently in most areas. However,
ridehailing’s relationship with the count of household vehicles is apparently more location-dependent
and can be either positive or negative. Overall, although not yet conclusive, results suggest that
ridehailing adoption enhances multimodality to some extent in all ten areas but may not be related to
lower vehicle ownership everywhere.

As this study was focused only on ten core-based statistical areas, results may not be applicable to
other areas. From a policy perspective, transit agencies across the country—which are considering
the option to incorporate ridehailing into their broader transportation planning—should conduct
studies improving upon the limitations articulated in this paper to figure out how the adoption of
ridehailing affects sustainable mobility choices in their local contexts. In terms of environmental impact,
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understandably, ridehailing increases Vehicle Miles Traveled (VMT) and greenhouse gas emissions
mostly due to “deadheading,” which refers to the extra miles that a ridehailing vehicle travels without
a passenger in between two rides. Presumably, the overall negative externalities created by ridehailing
vehicles can be reduced if these services play a part in inducing and retaining multimodality and
reducing private vehicle ownership. However, as findings of this study suggest, the magnitude of
the probable impact of ridehailing varies across urban areas, and so the true potential of ridehailing
to enhance multimodality and to reduce dependence on private vehicles at a certain area may not
be achieved unless the built environment is transformed for the same purpose. Interestingly, over
the last five years, a number of public transit agencies across the U.S., including Dallas Area Rapid
Transit (DART) in Dallas, Texas, and Pinellas Suncoast Transit Agency in St. Petersburg, Florida, have
partnered with Uber to increase the reach of transit services and to reduce operational costs [66,67].
Detailed case studies on the outcomes of these partnerships can provide further insights on whether
such coordinated efforts from the public and private sectors facilitate sustainable mobility choices.

Regarding limitations of this study, it should be re-emphasized that the ignorability assumption,
which assumes that the effects of all confounders have been controlled for, required for making causal
inferences from regression models, may have been violated in case the predictors used in the models
for controlling purpose did not capture the effects of potentially omitted confounders. Additionally,
in this research, the possibility of reverse causality was not accounted for. A number of studies have
found that people who use public transit and belong to households with a lower number of vehicles are
more likely to adopt ridehailing [68-70]. Although no study conducted so far has confirmed the causal
direction, failing to account for the possibility of reverse causality further complicates the making of
any causal inferences from the findings of this research. In future work, for more precise estimation,
researchers should collect more detailed data and keep using econometric methods developed for
making causal inferences in the context of nonexperimental studies. However, a key challenge here is
that, although academic researchers can gather detailed data by developing better survey instruments,
as a method of data collection at a regional or national level, they have to depend on commercial
online survey panels which may not result in a sample as representative (due to nonprobability-based
recruitment) as the one from the NHTS. Therefore, in future NHTS, collection of information relevant
to detailed geographic and attitudinal factors should be considered.

Finally, similar to all other studies using statistical modeling on cross-sectional survey data, this
study has some other limitations. Travel decisions can vary over time, and in the case of emerging
information-communication-technology-based mobility systems, we would expect even more rapid
changes. As the NHTS 2017 asked respondents to mention counts of public transit and ridehailing trips
made in the previous 30 days and counts of walking and biking trips made in the previous 7 days, this
study fails to capture the long-term trends. Also, respondents might have made mistakes in retrieving
information on the count of trips they had made using different travel modes.
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