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Abstract: It is often uncritically assumed that, when digital technologies are integrated into the
operation of city functions, they inevitably contribute to sustainable urban development. Such a
notion rests largely on the belief that Information and Communication Technology (ICT) solutions
pave the way for more democratic forms of planning, and that ‘smart’ technological devices result
in a range of environmental benefits, e.g., energy efficiency and the mitigation of global warming.
Drawing on the scientific literature that deals with ‘smart cities’, we here elaborate on how both
propositions fail to consider drawbacks that could be characterized as ‘wicked’, i.e., problems that
lack simplistic solutions and straightforward planning responses, and which often come about as
‘management surprises’, as a byproduct of achieving sustainability. We here deal with problems
related to public choice constraints, ‘non-choice default technologies’ and the costs of automation
for human learning and resilience. To avoid undemocratic forms of planning and too strong a
dependence on non-choice default technologies, e.g., smart phones, we recommend that planners
and policy makers safeguard redundancy in public-choice options by maintaining a wide range
of alternative choices, including analog ones. Resilience thinking could help planners deal more
effectively with the ‘wickedness’ of an increasingly hyper-connected society.

Keywords: smart city; wicked problems; public choice constraints; automation; default
technologies; resilience

1. Introduction

In the last decade, digital technological solutions have been launched, as a way to make our
cities more sustainable. While technologies can improve the efficiency of material utilization, remove
pollution and contaminants from the natural environment, and help us monitor and understand our
effect on the natural environment [1], they are also a central component of environmental problems [2].
Although eco-friendlier technologies have recently begun to deal with climate change, public attitudes
have changed very little, despite a steady increase in alarming climate facts [3]. When it comes to
climate change, researchers suggest that humans already have contravened the Earth’s ‘safe operating
space’ [4–6].

There exists a myriad of definitions of smart cities in the literature (see, e.g., [7]), and not all of these
rest on the digital society, but on other premises, that could create more intelligent ways of interacting
with and governing a local community, town or city. By a smart city (SC), in this paper, we mean “a city
in which Information and Communication Technology (ICT) is merged with traditional infrastructure,
coordinated and integrated using new digital technologies” [8]. Such a network of technological
devices includes, e.g., home appliances, and other items embedded with software electronics, sensors,
actuators, and networks [9].
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In this paper, we discuss both the potential and the drawbacks of ICT and smart city models
for mitigating climate change and environmental problems at large. It is often assumed that the
digitalization of increasing amounts of services and functions in a city inevitably contributes to
sustainable urban development [10]. Such an assumption rests largely on two propositions: first, that
ICT solutions can pave the way for more democratic forms of urban planning and governance regimes;
second, that smart technological devices will result in cleaner technologies (e.g., energy efficiency)
and, in this way contribute, to the mitigation of global warming [11]. Drawing on the scientific
interdisciplinary literature, we here discuss how both propositions have inherent limitations that, to
a greater or lesser extent, could be characterized as ‘wicked’; that is, problems that lack simplistic
solutions and straightforward planning responses [12].

There exist a number of studies that have discussed both the environmental and democratic
aspects of smart-city development [13–16]; however, we are not aware of any paper that has discussed
the wickedness of these problems, in particular in relation to human behavior. This paper begins
with a brief discussion of how ICT may be part of the solution to some well-known climate change
and resource issues with behavioral roots. Thereafter, we discuss the wickedness of introducing ICT
solutions to these environmental problems. Specifically, we address three aspects of this: public
choice constraints, ‘non-choice default technologies’, and the costs of automation to human learning
and resilience. Finally, we highlight the important role that redundancy plays in managing complex
adaptive systems (CAS) and conclude by proposing that planners and policymakers build smarter
cities whilst paying greater attention to resilience thinking.

2. ICT as Part of the Solution

A central tenant of climate change mitigation is the promotion of more environmentally friendly
technological inventions. It is important to recognize that human behavior changes with technological
change. For example, energy conservation by the development of new technologies may result in
the phenomenon known as ‘energy rebound’ [17], which was first observed by Jevons (1865), who
argued that the enhanced efficiency of coal-driven steam engines would increase, not decrease, coal
dependency, and therefore contribute to more rapid depletion of the coal reserve. When the use of a
resource is made more efficient in free market economies, its price usually drops—a situation that may
result in increased demand and consumption of the resource [18]. This, in turn, can ‘take-back’ all the
efficiency gains achieved [18,19].

There are also secondary effects of reducing energy costs through efficiency, in that consumers may
buy more products or choose larger, more powerful electronic equipment [19]. Hence, energy-saving
technology often leads (in the long term) not to a reduction, but, instead, to an increase in energy use,
an argument supported by the historical record for most of the last century. Part of the explanation
for this behavior is people’s tendency to justify environmentally harmful behavior upon acquiring
energy-efficient equipment and fuels (e.g., [20]). The vast majority of these undesirable behaviors are
closely related to a phenomenon called ‘negative spillover’; when people do something they experience
as pro-environmental in one area, they tend to do more harmful things in another [21].

Energy rebounding and negative spillover can be explained by the mental heuristic that people
apply to seek a balance between ‘good’ and ‘bad’ behavior [22,23]. This balancing heuristic has its
evolutionary roots in governing social exchange (give and take in relationships) and works well for
that purpose, but when the same balancing heuristic is applied to environmental issues (to balance
‘environmentally friendly’ and ‘harmful’ behavior) it leads to systematically erroneous thinking and
potentially harmful behavior [22]. For example, people tend to think that small emission cuts can
compensate for past emission rates and, thus, reduce the atmospheric concentration of carbon dioxide
(CO2) altogether, while, in reality, CO2 concentration keeps on accumulating [24].

Consumer policy interventions, and new technology and business models, such as eco-labeling
and carbon offset systems, that are launched to guide behavior towards more pro-environmental
outcomes, may backfire due to negative spillover, energy rebound and the balancing heuristic. These
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are especially likely when people are made aware that their behavior is regarded as ‘pro-environmental’,
or when the behavior is more costly than the harmful behavior (such as when consumers pay more
money for an eco-labeled product in the grocery store).

A potentially more successful tool for behavioral change is the use of nudging and defaults, in
particular in the context of changes in the physical environment, that shape behavioral flow in a more
environmentally friendly direction. In a decision theoretical context, a default refers to the option
which the user ends up with if they do not make an active choice. In social settings, for example,
individual choice may be adopted unconsciously as a social default effect (i.e., normative choice)—a
situation where people mimic what others are doing [25]. In the affordance literature, different types
of qualities of the physical environment often serve as default situations, to nudge people toward a
particular behavior [26].

Experiments and observational studies in psychology show that, among the set of options that
agents choose from, the default option is the option the person will select most frequently, acting as
if he or she is doing nothing. This could be explained by the fact that, if an agent is indifferent or
experiences a conflict between options, it may involve too much cognitive effort to base a choice on
explicit evaluations. In that case, the person might disregard the evaluations and choose according to
the default heuristic instead, which simply states “if there is a default, do nothing about it” [27].

Thus, ICT defaults of the smart city have the potential to shape people’s behavior in desirable
ways that information campaigns and policy interventions cannot, and can help people make choices
that are better for them and for society in large. Default rules of various sorts (e.g., double-sided
printing) can indeed foster pro-environmental behavior [28]. A corresponding, non-digital example is
reducing the size of food plates, which can significantly reduce the amount of food left on the plate
and thereby reduce food waste [29]. However, these defaults are associated with other drawbacks.

3. Wicked Problems of ICT

3.1. The Democracy Problem of ‘Non-Choice Default Technology’ (NDT)

Sophisticated personal devices are important sources of sensory data and crowdsourcing.
Technology adoption (and diffusion) entails the broad public acceptance of a new product or innovation,
according to demographic and psychological characteristics [30]. The technological adoption of, for
example, smart phones and inexpensive tablet computers, is performing increasing amount of functions
in the digital smart city. Currently, almost two-thirds of the human global population has a mobile
phone, and more than half of the world’s population uses smartphones. An increasing number of
home routines, such as different, remotely controlled electronic home devices, are increasingly run
by smartphones in the smart city, as well as a mounting quantity of public services, such as cashless
transaction apps for day-to-day payments, smartphone-maneuvered parking meters, different kinds of
Medicare services, and so on.

It is important to recognize that, with the dramatic increase in smartphones and
smartphone-maneuvered services, comes a subsequent reduction of alternatives, such as payments by
way of credit card or cash. This, indeed, has important ramifications for public choice. Eric Fromm, in
his book Escape from Freedom [31], argued that humans are always fraught with the dilemma of making
active choices. To avoid such dilemmas, humans often leave it to others to make choices on their behalf.
In this way, Fromm argued that human beings avoid the responsibility or freedom of making personal
and active choices. Fromm distinguished between ‘freedom to’ (positive freedom) and ‘freedom from’
(negative freedom), with the former signifying the liberty to spontaneously participate in creative acts
and the latter referring to liberation from restrictions such as social conventions and norms. With this
view, Fromm’s proposition is in line with the notion of choice default discussed above.

When a technology or technological device, such as the smartphone, becomes too dominant in
performing daily tasks, and does not allow for other alternatives or supplementary options, we here
refer to it as a ‘non-choice default technology’ (NDT). One example of an NDT is the total dependence
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of farmers on a single type of genetically modified crop and a specific, tailor-made pesticide. Such
tight interdependencies can have devastating social consequences [32]. In situations where NDTs are
increasingly used to run daily affairs in a city, people are more or less forced to use the technology,
whether they like it or not, because the alternative is highly costly for the individual in terms of finding
adequate alternative solutions, if at all possible. Similarly, the technology (i.e., the smartphone) is a
profit-boosting entity for its producers and suppliers, which, in turn, is tantamount to privatization of
public choice, due to the fact that private interests receive all the revenues from the NDT. This could,
in fact, be regarded as a democracy problem, but has not received enough attention in the scientific
literature. On a similar note, defaults can also be used to help businesses profit from consumers,
sometimes by prompting people to choose things that are not in their best interest. This raises concerns
regarding how to ensure defaults are used ethically and responsibly.

3.2. Participatory Sensing and Public Choice Constraints

One of the key elements of a democracy consists of the active participation of people “as citizens”
in politics and civic life [33]. Local participation in multiple forms is also an important tenet of
sustainable development [34], and is often presented as an alternative to ‘top-down’ planning and
development. One example of a more bottom-up form of planning is ‘collaborative planning’, that
involves multi-stakeholder planning scenarios, and is an approach used to resolve and mediate
stakeholder disagreements in various planning situations [35]. Community engagement is often
purported as an outcome of smart cities [36], where planners can more optimally integrate and
synchronize views among a range of stakeholders within a community, town or city, as well as
minimize potential conflict between opposing parties and interests in the decision-making process.

The SC-framework is often launched as a participatory planning tool, due to its dual role of
participatory sensing, in which citizen’s big data and advice are used in the design of a city [8,37,38].
Big data analytics have a huge potential to enhance smart city services; however, the combination
of the IoT and Big Data is still an immature, unexplored research avenue, with new challenges for
achieving the goal of the smart city [39]. For example, recent advances in Geographic Information
Systems (GIS), Web 2.0 technologies, and augmented reality technology have the potential to improve
public participation [40,41]. This includes Public Participation GIS (PPGIS), with the potential to
promote community participation in planning, design and management [37,38,42]. The involvement
of citizens and other stakeholders in the planning process can be seen as an extension of the democratic
process and may ensure that plans are more widely accepted by city residents [43]. Moreover, citizens’
knowledge [44] provides a rich source of updated information, with the potential to improve the
quality of analysis of urban space, compared to traditional forms of spatial planning data [41].

Public participation by way of ICT could, however, be quite problematic in democratic terms.
While it can become a resource for marginalized groups, it may also lead to opposite outcomes [45].
For instance, Townsend [46] argues that, in cities in the developing world, it may cause a permanent
offloading of government responsibilities, disallowing poorer communities to have a voice in city
planning. Also, Tilly and Wood [47] claim that social movements could become even more biased
toward the more privileged members, who have greater access to the Internet.

The difficulties encountered by participants in expressing their views and ideas through the use
of ICTs is another well-documented problem, commonly referred to as the ‘digital divide’—a term
coined to describe the gap between the ‘haves’ and ‘have-nots’ in the Internet age [48]. Scholars have
long analyzed the effect of unequal Internet access [48,49]. The work of Robinson et al. [50] makes a
useful distinction between first-level digital disparities and second-level digital inequalities, with the
former signifying accessibility to the Internet, and the latter being related to the skills, participation,
and efficacy of the users. A first-level disparity that can be considered a democratic dilemma is the
fact that there exists a sizeable proportion of the human population that does not have access to the
Internet. As of 2014, some 14% of the adults in the United States did not use the Internet [50], and
about 15% of Swedes are not using the Internet, with non-users found in all age groups, even among
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the young [51]. A distinguishing factor for many of the non-users is their negative attitude towards
trying and testing new technological equipment and services [52].

Second-level digital inequalities can affect an even greater proportion of individuals in a population,
even those that are technically skilled. The constant updating of apps and new compatible models
of smart phones requires cognitive skills (e.g., memory and problem-solving activities) that decline
with the age of an individual [53,54]. While smartphones and other mobile technologies can augment
human cognition, motoric skills, e.g., the handling of the touch screen interface, also becomes more
difficult with age [55]. Hence, when ICT is increasingly merged and coordinated with traditional
infrastructure in a city, it risks further marginalizing individuals and groups that find it difficult to use
digital technologies, and those that refuse to use these technologies for various reasons ([51].

3.3. Automation Deprives Learning

Technological automation can potentially relax everyday life in various ways; smart fridges can
order food to the door as soon as they run out of something, and self-driving cars can free time for
work when commuting. A downside of automatic systems is that they make it difficult for people to
understand their own environmental impact, because they do not experience and understand the links
between their own behavior and its consequences. The geographical and temporal distances between
behavior and environmental consequences are typically large, which makes it difficult for people to
grasp the relationship. A challenge is, therefore, to reinforce these relationships, by making them
salient to the user of smart systems. Even if this challenge is overcome, however, automation deprives
people of the spontaneous learning of skills that becomes necessary when a technological system fails.

Technological advances could even have direct, negative effects on memory and learning. The
fact that most information is just a few computer clicks away appears to make people less likely to
store that information properly in memory [56]. This ‘digital amnesia’ phenomenon has been difficult
to replicate in subsequent studies [57], but the cost–benefit trade-off between automation and learning
is well established [58]. When automation increases, situational awareness decreases, as well as the
learning of manual skills. Regarding the extent to which automation also impairs learning of episodic
and semantic information, search engines can come with some surprising costs to society, in particular
since higher cognitive skills (e.g., the ability to interpret, draw conclusions, make syntheses and
comprehend) partly rest on information stored in memory [59]. In short, digitalization and automation
can potentially make people dumber.

When systems break down, such as when the automatic controls of cars malfunction, or when
automatic home heating systems fail during winter, people must instead rely on acquired skills. From
a macro perspective, smart city models and ICT may prevent manual skills becoming ‘hardwired’ into
the human population’s common knowledge. Therefore, relying heavily on fully automatic systems is
risky and suboptimal from a resilience perspective.

4. Creating Redundancy in Smart-City Development to Deal with Wicked Problems

As discussed above, overuse of ICT may result in a number of wicked problems associated with
‘non-choice default technologies’, public choice constraints and costs to human learning. While it
might be difficult to find adequate solutions to effectively deal with wicked problems, we argue here
that the political-economic elites that prescribe SC-development as a way to build more inclusive
and sustainable cities should pay more attention to resilience principles when designing and creating
the digital city [51]. While it might be difficult for local governments to govern and manage smart
cities on behalf of the market, partly because the socio-technical regime operates across jurisdictional
boundaries, and exists in “globalized networks of capital, knowledge, people, skills, and resources” [1],
the nation state still commands notable financial and organizational resources to steer SC-development
towards more resilient ends. For example, the state still remains the foundation of civil authority on the
international stage, and possesses established democratic structures for collective decision-making [2].
Hence, it is the responsibility of the state and its federal and local administrative bodies to assure
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that a truly smart city avoids the wicked problems that we have described in this paper. No doubt,
these problems are more prolific than conveyed herein, and will likely multiply as more and more
city-functions become digitalized [9].

Given the difficulty of detecting wicked problems before they occur, as they often evolve as
‘management surprises’ (sensu [60]), resilience thinking could be a viable planning approach when
designing smarter digital cities. The resilience approach is increasingly winning ground among
policy-makers and academia as a means of dealing with the ‘wickedness’ of today’s hyper-connected
society [61,62]. Resilience thinking can be used as a lens of inquiry for probing both expected and
unexpected management surprises, and for studying different developmental pathways and potential
thresholds in complex adaptive systems [63]. In this way, resilience thinking represents a framework
for urban policy-makers and planners that can be used to identify, probe and deal with wicked
problems [62]. Other examples of approaches that could be used in urban planning to detect wicked
problems include reflective interpretive policy analysis [64], triangulation and critical theory [65], and
3-D models [40].

One of the key principles of building resilience in complex adaptive systems is ‘redundancy’.
Functional redundancy, or the presence of multiple components that can perform the same function,
can provide ‘insurance’ within a system, by allowing some components to compensate for the loss or
failure of others. Systems that draw on functional redundancy are generally more resilient to various
kinds of disturbance and surprises than systems with few components [66,67]. Redundancy is even
more effective if the components providing the redundancy also react differently to different kinds
of disruptions and disturbance (response diversity) [68]. The sayings ‘don’t put all your eggs in one
basket’ or ‘don’t spend all your money on one stock’ are well-known redundancy recommendations in
economics. Redundancy, however, tends to be ignored in management situations where efficiency,
optimization, predictability and reduction of variation are aimed for [60].

5. Concluding Remarks

As elaborated upon in this paper, the integration of digital technologies in the operation of
city functions and traditional infrastructure does not automatically contribute to sustainable urban
development. As every new digital technology entails an array of new relationships to manage, the
sheer volume of detail in our daily routines becomes multiplied. Many problems that people have
today can be traced to unmanageable complexity—a phenomenon that arises from the tendency to
require too much of the devices being managed [69]. Smart-city proponents, however, often claim
that ICTs will make our lives easier to live and our cities more sustainable. As highlighted herein,
we caution against such simplistic proclamations, especially in smart-city development aiming for
increased levels of efficiency by reducing alternative options in the operation and functioning of the
city. As probed herein, SC development is fraught with problems that, in their broadest sense, can
be characterized as ‘wicked’. Examples dealt with here include public choice constraints, non-choice
default technologies and costs to spontaneous, as well as deliberate, skill learning, fashioned within the
common knowledge of the human population. These problems should be considered in the planning
and design of more inclusive and resilient cities.

As a policy recommendation, we urge urban practitioners and policy makers to be more meticulous
in making the digital smart city more humane and resilient. Designers of SCs should strive to build
redundancy into the options affecting people’s daily affairs in the digital city, and avoid situations where
non-choice default technologies become too dominant. Creating more inclusive cities (i.e., ‘socially
smarter’ cities) should start with safeguarding alternatives for people that are digitally marginalized,
e.g., elderly people and individuals that, for various reasons, cannot, or are unwilling to, use digital
technologies. Since we do not know beforehand which technological solutions hold the most potential,
we need to accelerate the development of alternatives to the smartphone-maneuvered society [2]. Such
alternatives can include anything from the upkeep of analog alternatives such as cash, tokens, keys,
or similar physical devices, to digital alternatives, such as credit cards. Since various technological
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solutions will produce different blends and allocations of social goods and ills, society as a whole need
to actively nurture redundancy in the name of democracy.

We are already witnessing increasing signs of unmanageable complexity when it comes to securing
ICT systems, representing but one example of problems arising at a much faster pace than our ability
to solve them. With a likely increase in climate-change propelled hazards, as well as cyber-security
attacks, we need to nurture analog alternatives to create redundancy in our cities. One can only
imagine the devastating outcomes that could arise with more future severe weather events. When
more and more of a city’s services and functions become digitalized, cities too become increasingly
prone to natural perturbations [70,71] and human vulnerability increases.
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