
smart cities

Article

Passenger Flow Prediction of Urban Rail Transit
Based on Deep Learning Methods

Zhi Xiong 1, Jianchun Zheng 2, Dunjiang Song 3, Shaobo Zhong 2,* and Quanyi Huang 1

1 Department of Engineering Physics, Tsinghua University, Beijing 100084, China
2 Beijing Research Center of Urban Systems Engineering, Beijing 100035, China
3 Institute of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: zhongshaobo@gmail.com

Received: 28 May 2019; Accepted: 16 July 2019; Published: 23 July 2019
����������
�������

Abstract: The rapid development of urban rail transit brings high efficiency and convenience. At the
same time, the increasing passenger flow also remarkably increases the risk of emergencies such as
passenger stampedes. The accurate and real-time prediction of dynamic passenger flow is of great
significance to the daily operation safety management, emergency prevention, and dispatch of urban
rail transit systems. Two deep learning neural networks, a long short-term memory neural network
(LSTM NN) and a convolutional neural network (CNN), were used to predict an urban rail transit
passenger flow time series and spatiotemporal series, respectively. The experiments were carried out
through the passenger flow of Beijing metro stations and lines, and the prediction results of the deep
learning methods were compared with several traditional linear models including autoregressive
integrated moving average (ARIMA), seasonal autoregressive integrated moving average (SARIMA),
and space–time autoregressive integrated moving average (STARIMA). It was shown that the LSTM
NN and CNN could better capture the time or spatiotemporal features of the urban rail transit
passenger flow and obtain accurate results for the long-term and short-term prediction of passenger
flow. The deep learning methods also have strong data adaptability and robustness, and they are
more ideal for predicting the passenger flow of stations during peaks and the passenger flow of lines
during holidays.
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1. Introduction

With the continuous formation and expansion of urban rail transit networks, this transportation
mode brings high efficiency and convenience to residents’ travel. However, its increasing passenger
flow also remarkably increases the risk of emergencies such as crowded passengers and stampedes.
In the urban rail transit intelligent system, the accurate and real-time prediction of dynamically changing
passenger flow is of great significance to the daily operation safety management, emergency prevention,
and dispatch of urban rail transit. Many researchers have proposed some methods for the passenger
flow prediction of urban rail transit, as well as road traffic prediction. These studies mainly used
historical time series or spatiotemporal series with certain time intervals—combined with other
auxiliary information—and used data models or algorithms to mine the time or spatiotemporal internal
relations of historical data to predict passenger flow in the future.

Generally, prediction methods of time series or spatiotemporal series can be divided into two
categories: Linear methods and nonlinear methods [1,2]. Linear methods are based on the linearity
and stationary of time series or spatiotemporal series [3]. Commonly used linear methods in the
past were mainly the moving average model and the exponential smoothing model [4–6]. In 1979,
Ahmed and Cook [7] first applied the autoregressive integrated moving average (ARIMA) model to
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predict traffic flow time series, and they obtained more accurate prediction results than the moving
average model and the exponential smoothing model. Since then, classical time series analysis
models such as ARIMA [8] and the seasonal autoregressive integrated moving average (SARIMA)
model [5,9] have been widely used in road traffic and urban rail transit passenger flow prediction,
and they have achieved fairly good results. In 2005, Kamarianakis and Prastacos [10] introduced
the space–time autoregressive integrated moving average (STARIMA) model into the traffic flow
short-term prediction of the road network in the center of the city of Athens, Greece. By using a spatial
weight matrix to quantify the correlations between traffic flow at any observation location and the
traffic conditions in adjacent locations, the spatiotemporal evolution of traffic flow in the road networks
was statistically described, and then STARIMA achieved satisfactory prediction results. Since these
methods usually require the stationarity hypothesis, their application is limited. Otherwise, the simple
linear relationship cannot fully characterize the internal relationship of time or spatiotemporal series.
Therefore, some nonlinear algorithms have been proposed, such as the Gaussian maximum likelihood
estimation, the nonparametric regression model, and Kalman filtering [11–13]. In recent years,
intelligent algorithms such as the Bayesian network, the neural network, wavelet analysis, chaos theory,
and the support vector machine have also been directly applied or combined into hybrid models
for predicting road traffic or urban rail transit passenger flow [14–18]. Compared to linear methods,
nonlinear methods are more flexible, and their prediction results generally perform better [19,20].

With the widespread use of various types of data acquisition equipment, the intelligent
transportation system (ITS) has mastered a large amount of traffic data [21]. The general parameter
approximation algorithms can only shallowly correlate data, and it is difficult for them to obtain
a good prediction performance in the face of the curse of dimensionality caused by a data explosion.
An artificial neural network (ANN) solves the curse of dimensionality by using distributed and
hierarchical feature representation and by modeling complex nonlinear relationships with deeper
network layers, thus creating a new field of deep learning [22]. In the 1990s, Hua and Faghri [23]
introduced an ANN to the estimation of the travel time of highway vehicles. After that, various ANNs
have been applied to traffic prediction by the ITS, such as the feed forward neural network (FFNN),
the radial basis frequency neural network (RBFNN), the spectral-basis neural network (SNN) and
the recurrent neural network (RNN) [24–27]. Among them, RNNs handle any input series through
memory block, which is a memory-based neural network suitable for studying the evolutionary law
of spatiotemporal data, but there are two shortcomings: (1) They need continuous trial and error to
predetermine the optimal time lags, and (2) they cannot perform well in long-term predictions because of
vanishing and exploding gradients [28]. As a special RNN, the long short-term memory neural network
(LSTM NN) overcomes the above shortcomings and has been introduced into the road traffic time series
prediction. It has obtained significantly better prediction results [19]. In addition, Fei Lin et al. [29]
proposed a sparse self-encoding method to extract spatial features from the spatial-temporal matrix
through the fully connected layer. They then combined this with the LSTM NN to predict the average
taxi speed in Qingyang District of Chengdu and obtained a higher accuracy and robustness compared
with the LSTM NN. Xiaolei Ma et al. [30] proposed a method based on the convolutional neural network
(CNN), which used a two-dimensional time-space matrix to convert spatiotemporal traffic dynamics
into an image which described the time and space relationship of traffic flow; they confirmed that the
method can accurately predict traffic speed through two examples of the Beijing transportation network.

For a large sample of urban rail transit passenger flow, there is very little research on passenger
flow prediction based on deep learning methods. In this paper, two deep learning methods, the LSTM
NN and CNN, are introduced to predict the time series and spatiotemporal series of urban rail
transit passenger flow, respectively. In addition, the traditional linear models, ARIMA, SARIMA and
STARIMA, are used as contrasts in different experiments to test the prediction performances of two
deep learning methods.
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2. Materials and Methods

2.1. Experiment Data

As an international city, Beijing reached a population of 21.542 million by the end of 2018,
which means there is a huge demand for public transportation. This paper took the Beijing metro
system as a study object, and the experiment data came from the dayparting passenger flow of 47 metro
stations and daily passenger flow of 15 metro lines in 2015 (Figure 1).
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Figure 1. Beijing metro network map.

The dayparting passenger flows of metro stations for experiments were a time series at 10-min
intervals. In order to train the network with complete knowledge of the nonlinear distribution
of dayparting passenger flow, the combination of the passenger flows on 3 March 2015 and on
10 March 2015 (Figure 2, taking XIZHIMEN Station as an example) were input into it. These two days
were the Tuesday from the adjacent weeks, which were not holidays or major event days; as such,
the dayparting passenger flow of these two days basically conformed to the same distribution law.
In addition, passenger flow during the two peaks (7:00–9:30 and 17:00–19:30) accounted for more than
50% of the total daily passenger flow in a single day. Observing the daily passenger flow of the Beijing
metro line in 2015 (Figure 3, taking Line 1 as an example), the passenger flow changed periodically,
suddenly reducing or surging during the holidays, particularly during the Spring Festival in February.
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Figure 2. Joint passenger flow of XIZHIMEN Station.
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Figure 3. Daily passenger flow of Line 1 in 2015.

2.2. Methods

2.2.1. LSTM NN

The LSTM NN has long short-term memory capability compared with other RNNs due to its
unique network structure. This network consists of an input layer, an output layer, and a recursive
hidden layer. The core of the recursive hidden layer is a memory block (Figure 4) [21].
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Figure 4. Structure of the memory block of the proposed long short-term memory neural network
(LSTM NN).

The center of the memory block is the memory cell. In addition, the memory block includes
three information control parts: Input gate, forget gate and output gate. The input of the memory
block is preprocessed historical passenger flow time series Xt, and the output is predicted passenger
flow time series Yt. t represents the current prediction period. Using the LSTM NN to predict future
passenger flow does not require commanding the network to trace back some time steps. The input
time series is iteratively calculated in the memory block, and different information is controlled
through different gates. The LSTM NN memory block can capture long and short-term complex
connections within a time series. St represents the current state of the memory cell. St−1 represents the
previous state of the memory cell. The dashed lines represent the combination with St−1. Blue nodes
represent multiplication. The iterative calculations and information processes in the memory block are
represented by the following set of expressions:

it = σ
(
W(i)Xt + U(i)St−1 + bi

)
ft = σ

(
W( f )Xt + U( f )St−1 + b f

)
t = σ

(
W()Xt + U()St−1 + b

)
st = tanh

(
W(c)Xt + U(c)St−1 + bc

)
St = ft ◦ St−1 + it ◦ st

Yt =t ◦tanh(St)

(1)

where it, ft, and t represent the output of three gates, respectively. st represents new state of memory
cell, and St represents the final state of memory cell. W(i), W( f ), W(), W(c), U(i), U( f ), U() and U(c)

are all weight matrixes. bi, b f , bo and bc are all bias vectors. ◦ denotes Hadamard product, σ denotes
sigmoid function, and tanh is a kind of activation functions.

2.2.2. CNN

The CNN has shown a strong learning ability and a wide application in image recognition with
its unique ability to extract key features from images [30]. The multi-station or multi-line passenger
flow spatiotemporal series studied in this paper are essentially two-dimensional matrixes, which can
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be regarded as single-channel two-dimensional images, so an end-to-end CNN was constructed for the
passenger flow spatiotemporal series (Figure 5).
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The CNN consists of an input layer, multiple convolutional layers, and an output layer.
Feature extraction is performed by convolution filters (also called convolution kernels) in convolutional
layers. A convolution filter extracts a feature from the current layer, and then the extracted features
are further combined into higher-level and more abstract features, so each convolution filter converts
low-level features into high-level features. Using Wr

l to represent a convolution filter, the filter output
is represented as:

yconv =
m∑

e=1

n∑
f=1

((Wr
l )e f de f ) (2)

where m and n represent two dimensions of the filter. de f represents the value of the filter input matrix
at the e and f positions in the row and column. (Wr

l )e f
represents the coefficients of the convolution

filter at the e and f positions in the row and column.
Each convolutional layer of the CNN also needs an ReLU (Rectified Linear Unit) function (a kind

of activation function) to convert the output of each layer into a manageable, scaled data range, which is
beneficial for the training model. Moreover, the combination of ReLU functions can also simulate
complex nonlinear functions, which make the CNN have a powerful data processing capability for
a complex training set. The ReLU function is expressed as:

g(x) =
{

x, ifx > 0
0, otherwise

(3)

When the CNN trains and predicts the two-dimensional matrix of spatiotemporal data, it is
generally necessary to use the correlations between stations or lines to specifically arrange the positions
of stations or lines in the two-dimensional matrix and then use the standard convolution kernel to extract
features. The standard convolution kernel is locally convoluted. However, the spatial correlations
between stations or lines in reality are global, so the use of standard convolution kernels has significant
limitations. Therefore, this paper adopted convolution kernels with long-shapes and performed full
convolution on the spatial dimension of the two-dimensional matrix of the input spatiotemporal data,
which made full use of the spatial correlations between stations or lines. The network also cancelled
the pooling layer, using the batch normalization and nonlinear ReLU function after each convolutional
layer, as well as the output layer.

2.2.3. Methods of Network Training

In the prediction experiments of dayparting passenger flow of metro stations using the LSTM NN,
the data of joint passenger flow from 06:00 on 3 March to 17:00 on 10 March were taken as the training
set, and the data of joint passenger flow from 17:00 to 23:00 on 10 March were taken as the test set.
Because the input and output data were single time series, the number of input and output layer was
set to 1. The nodes of hidden layer were set to 50 units, the training epochs were set to 600, gradient
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threshold was 1, initial learning rate was 0.05, and the learning rate drop was set after 300 epochs by
multiplying by a factor of 0.1. In the daily passenger flow prediction experiments of metro lines using
the LSTM NN, the daily passenger flow in whole year of 2015 was taken as the training set, and the
daily passenger flow of January–February in 2016 was taken as the test set. The number of input
and output layers was set to 1, the hidden layer had 100 units, the training epochs had 500, gradient
threshold was 1, initial learning rate was 0.05, and the learning rate drop was set after 250 epochs by
multiplying by a factor of 0.1.

The CNN proposed in this paper was a full convolution network and finally output the predicted
passenger flow of each station and line directly. In the experiments of dayparting passenger flow
prediction of metro stations using the CNN, the data of dayparting passenger flow on whole day
of 3 March were taken as the training set, and the data of dayparting passenger flow on whole day
of 10 March were taken the test set. A full convolutional network with six convolutional layers
was constructed for the spatiotemporal data of 47 stations. The first three convolution kernels were
(47, 47, 3), with the first three paddings being 1 and the last convolution kernel being (47, 47, 1).
In the experiments of the daily passenger flow prediction of metro lines using the CNN, the daily
passenger flow in whole year of 2015 was taken as the training set, and the daily passenger flow of
January–February in 2016 was taken as the test set. A full convolutional network with six convolutional
layers was constructed for the spatiotemporal data of 15 lines. The first three convolution kernels were
(15, 15, 3), with the first three paddings being 1 and the last convolution kernel being (15, 15, 1).

Both networks used the mean square error (MSE) as the loss function. All experiments evaluated
the prediction performance by three criteria: Mean absolute error (MAE), mean relative error (MRE)
and root mean square error (RMSE).

3. Results

3.1. Dayparting Passenger Flow Prediction of Metro Stations Using LSTM NN

In order to avoid the error caused by the random gradient during network training, we carried out
three repeated experiments. For XIZHIMEN Station, the prediction performance for the evening-peak
(17:00–19:30) and the full-time (17:00–23:00) is shown in Table 1. Using ARIMA (2, 2, 3) as the contrast
experiment, the prediction performances of two methods are shown in Table 2, and the predicted
values of the two methods (the LSTM NN took three experiments’ averages) were compared with
the observed values, as shown in Figure 6. It can be seen that the prediction accuracy of the LSTM
NN was much higher than that of ARIMA, regardless of the evening-peak or full-time, especially in
the prediction of peak shape. Comparing the dayparting MAE of two methods (the LSTM NN took
three experiments’ averages) (Figure 7), the dayparting MAE of ARIMA fluctuated sharply during the
evening-peak, while the dayparting MAE of the LSTM NN remained low throughout the full-time,
which indicates that the LSTM NN is highly adaptable to extremely changing data. The MRE of the
LSTM NN remained within 10%, regardless of the evening-peak or full time, indicating that the LSTM
NN has both long-term and short-term prediction capabilities.

Table 1. LSTM NN prediction performance at XIZHIMEN Station.

Test ID
Evening-Peak Full-Time

MAE MRE RMSE MAE MRE RMSE

1 154.211 7.08% 194.872 97.843 9.84% 135.966
2 88.649 4.53% 108.202 67.991 7.81% 85.828
3 87.299 4.20% 118.454 76.523 10.74% 97.941

Average 110.053 5.27% 140.509 80.786 9.46% 106.578
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Table 2. Prediction performances of two methods at XIZHIMEN Station.

Models
Evening-Peak Full-Time

MAE MRE MAE MRE MAE MRE

ARIMA 258.505 12.26% 318.266 149.677 15.08% 215.058
LSTM NN 110.053 5.27% 140.509 80.786 9.46% 106.578
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In order to test the applicability of the LSTM NN, 24 other Beijing metro stations were selected for
experiments, with ARIMA as the contrast. The prediction performances of two methods for 25 stations
are shown in Table 3. In comparison, the prediction accuracy of the LSTM NN decreased when it
was applied to 25 metro stations, but its accuracy was still better than those of ARIMA. In addition,
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the LSTM NN did not require the pre-verification of time series stationarity, eliminating the tedious
process of the smoothing and stationarity tests.

Table 3. Prediction performances of two methods for 25 stations.

Models
Evening-Peak Full-Time

MAE MRE MAE MRE MAE MRE

ARIMA 136.954 12.72% 200.340 88.580 18.32% 143.020
LSTM NN 90.220 8.74% 137.948 61.060 13.76 100.228

3.2. Daily Passenger Flow Prediction of Metro Lines Using LSTM NN

The prediction performance in Beijing metro Line 1 is shown in Table 4. Similarly, in order to set
up a contrast experiment, SARIMA (1, 0, 4) (1, 1, 1) was used to model the training set and predict the
test set, and the prediction performances of two methods are shown in Table 5. The predicted values
(the LSTM NN took three experiments’ averages) were compared with the observed values, as shown
in Figure 8. It was proved that the fitting expression of SARIMA was too simple, so the fitting process
was greatly influenced by periodicity. SARIMA also had little response to extreme changes in the data.
Therefore, it was difficult for SARIMA to predict passenger flow during the holidays. In contrast,
in addition to accurately predicting the periodic distribution of daily passenger flow, the LSTM NN
also performed well in predicting passenger flow during holidays.

Table 4. CNN prediction performance in Line 1.

Test ID MAE MRE RMSE

1 7.836 10.30% 11.731
2 9.212 11.57% 14.321
3 9.874 12.86% 13.768

Average 8.974 11.58% 13.273

Table 5. Prediction performances of two methods in Line 1.

Models MAE MRE RMSE

ARIMA 15.871 27.26% 26.273
LSTM NN 8.974 11.58% 13.273
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The constructed LSTM NN was applied to the daily passenger flow prediction experiments of
14 other lines. The prediction performance for all 15 lines is shown in Table 6. Figure 9 shows the
LSTM NN prediction results of daily passenger flow in Line 5, Line 7, Line 9 and the CHANGPING
Line. As seen in Table 6, the LSTM NN could adapt well in the case of the daily passenger flow being
disturbed by holidays, obtaining good prediction accuracy.

Table 6. The LSTM NN prediction performance for 15 lines.

MAE MRE RMSE

4.853 12.64% 9.798
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(b) Line 7 

Figure 9. Cont.
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(d) CHANGPING Line 

Figure 9. The LSTM NN prediction results in Line 5, Line 7, Line 9 and CHANGPING Line. (a) Line 
5, (b) Line 7, (c) Line 9, and (d) CHANGPING Line. 

3.3. Dayparting Passenger Flow Prediction of Metro Stations Using CNN 

Taking STARIMA as the contrast experiment, the prediction performances of the passenger flow 
for 47 stations by the two methods are shown in Table 7. Compared with STARIMA, the MAE, MRE 
and RMSE of the CNN decreased by 24.62%, 29.43% and 27.86%, respectively. Taking CAISHIKOU 
Station, CIQIKOU Station, HUIXINXIJIENANKOU Station and QILIZHUANG Station as examples, 
the prediction results of the two methods on the observed values are shown in Figure 10. Though the 
CNN used less historical data, it obtained better performance than STARIMA. STARIMA was 
affected by the random fluctuation of passenger flow, and its predicted values deviated from the 
normal range. The CNN could predict smoothly, even if it faced the fluctuation data, indicating that 
the CNN is more robust to noise interference. 

Figure 9. The LSTM NN prediction results in Line 5, Line 7, Line 9 and CHANGPING Line. (a) Line 5,
(b) Line 7, (c) Line 9, and (d) CHANGPING Line.

3.3. Dayparting Passenger Flow Prediction of Metro Stations Using CNN

Taking STARIMA as the contrast experiment, the prediction performances of the passenger flow
for 47 stations by the two methods are shown in Table 7. Compared with STARIMA, the MAE, MRE
and RMSE of the CNN decreased by 24.62%, 29.43% and 27.86%, respectively. Taking CAISHIKOU
Station, CIQIKOU Station, HUIXINXIJIENANKOU Station and QILIZHUANG Station as examples,
the prediction results of the two methods on the observed values are shown in Figure 10. Though the
CNN used less historical data, it obtained better performance than STARIMA. STARIMA was affected
by the random fluctuation of passenger flow, and its predicted values deviated from the normal range.
The CNN could predict smoothly, even if it faced the fluctuation data, indicating that the CNN is more
robust to noise interference.
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(a) CAISHIKOU Station 
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(c) HUIXINXIJIENANKOU Station 

Figure 10. Cont.
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Figure 10. The CNN prediction results at (a) CAISHIKOU Station, (b) CIQIKOU Station, (c) 
HUIXINXIJIENANKOU Station, (d) QILIZHUANG Station. 

Table 7. Prediction performances of two methods for 47 stations. 

Models MAE MRE RMSE 
STARIMA 75.976 17.57% 128.387 

CNN 57.272 12.4% 92.618 

3.4. Daily Passenger Flow Prediction of Metro Lines Using CNN 

The training set and the test set of the CNN were the same as those of the LSTM NN in 
experiments of daily passenger flow prediction of metro lines, so we compared prediction results of 
these two methods. The prediction performances are shown in Table 8. Compared with the LSTM 
NN, the MAE and RMSE of the CNN were slightly lower, and the MRE of the CNN was slightly 
higher. However, the differences from the three criteria between two methods were small, indicating 
that their prediction accuracies were comparable. However, the CNN took the passenger flow of 15 
lines as a whole two-dimensional matrix for training, while the LSTM NN constructed in this paper 
needed separate training for different lines. Taking Line 5, the CHANGPING Line and the 
YIZHUANG Line as examples, the prediction results of the two methods on the observed values are 
shown in Figure 11. 
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(a) Line 5 

Figure 10. The CNN prediction results at (a) CAISHIKOU Station, (b) CIQIKOU Station,
(c) HUIXINXIJIENANKOU Station, (d) QILIZHUANG Station.

Table 7. Prediction performances of two methods for 47 stations.

Models MAE MRE RMSE

STARIMA 75.976 17.57% 128.387
CNN 57.272 12.4% 92.618

3.4. Daily Passenger Flow Prediction of Metro Lines Using CNN

The training set and the test set of the CNN were the same as those of the LSTM NN in experiments
of daily passenger flow prediction of metro lines, so we compared prediction results of these two
methods. The prediction performances are shown in Table 8. Compared with the LSTM NN, the MAE
and RMSE of the CNN were slightly lower, and the MRE of the CNN was slightly higher. However,
the differences from the three criteria between two methods were small, indicating that their prediction
accuracies were comparable. However, the CNN took the passenger flow of 15 lines as a whole
two-dimensional matrix for training, while the LSTM NN constructed in this paper needed separate
training for different lines. Taking Line 5, the CHANGPING Line and the YIZHUANG Line as
examples, the prediction results of the two methods on the observed values are shown in Figure 11.

Table 8. Prediction performances of two methods for 15 lines.

Models MAE MRE RMSE

LSTM NN 4.853 12.64% 9.798
CNN 4.557 13.46% 8.682
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Figure 10. The CNN prediction results at (a) CAISHIKOU Station, (b) CIQIKOU Station, (c) 
HUIXINXIJIENANKOU Station, (d) QILIZHUANG Station. 
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4. Discussion and Conclusions

The LSTM NN and the CNN are two popular deep learning methods. While the former’s unique
structure of memory cell can capture the long short-term dependencies of time series, the latter has
a powerful extraction ability over key image features. According to our studies, the main findings and
conclusions are as follows:

(1) When the LSTM NN predicts the dayparting passenger flow of metro stations, the MRE of
evening-peak and full-time can remain within 10%, which are much lower than ARIMA.
In addition, the superiority of predicting the peak shape is particularly obvious, explaining that
the LSTM NN is highly adaptable to extremely changing data and less limited to the prediction
term span.

(2) When the LSTM NN predicts the daily passenger flow of metro lines, it overcomes the shortcoming
of SARIMA, which has weak responses to dramatic changes in the training set due to the influence
of overall periodicity. Hence, the LSTM NN achieves good prediction accuracy during both
non-holiday and holidays.

(3) When the CNN predicts the dayparting passenger flow of metro stations, the MAE, MRE and
RMSE of the CNN decreased by 24.62%, 29.43%, and 27.86%, respectively, compared with
STARIMA, which proves that CNN is less affected by the random fluctuation of passenger flow
and has a stronger robustness.

(4) When the CNN predicts the daily passenger flow of metro lines, its prediction accuracy is
comparable to that of the LSTM NN. Like the LSTM NN, the CNN has long short-term memory
capabilities. Both methods can capture the overall periodicity and dramatic changes of passenger
flow, but both will ignore the data shack that lasts too short as abnormal noise.

Based on the above experimental findings, we can prove that the LSTM NN and the CNN
can both accurately predict long short-term passenger flow of urban rail transit. They also have
good data adaptability and robustness. However, it is difficult for these two networks to capture
the transient fluctuation of the passenger flow caused by external disturbance, as this can only be
done through learning from the spatiotemporal series themselves. Therefore, in future work, it is
necessary to input some prior knowledge outside the spatiotemporal series into the networks to
improve prediction results.
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