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Abstract: Early detection and evaluation of children at risk of neurodevelopmental disorders and/or
communication deficits is critical. While the current literature indicates a high prevalence of neurode-
velopmental disorders, many children remain undiagnosed, resulting in missed opportunities for
effective interventions that could have had a greater impact if administered earlier. Clinicians face
a variety of complications during neurodevelopmental disorders’ evaluation procedures and must
elevate their use of digital tools to aid in early detection efficiently. Artificial intelligence enables
novelty in taking decisions, classification, and diagnosis. The current research investigates the efficacy
of various machine learning approaches on the biometric SmartSpeech datasets. These datasets come
from a new innovative system that includes a serious game which gathers children’s responses to
specifically designed speech and language activities and their manifestations, intending to assist
during the clinical evaluation of neurodevelopmental disorders. The machine learning approaches
were used by utilizing the algorithms Radial Basis Function, Neural Network, Deep Learning Neural
Networks, and a variation of Grammatical Evolution (GenClass). The most significant results show
improved accuracy (%) when using the eye tracking dataset; more specifically: (i) for the class Disor-
der with GenClass (92.83%), (ii) for the class Autism Spectrum Disorders with Deep Learning Neural
Networks layer 4 (86.33%), (iii) for the class Attention Deficit Hyperactivity Disorder with Deep
Learning Neural Networks layer 4 (87.44%), (iv) for the class Intellectual Disability with GenClass
(86.93%), (v) for the class Specific Learning Disorder with GenClass (88.88%), and (vi) for the class
Communication Disorders with GenClass (88.70%). Overall, the results indicated GenClass to be
nearly the top competitor, opening up additional probes for future studies toward automatically
classifying and assisting clinical assessments for children with neurodevelopmental disorders.

Keywords: neurodevelopmental disorders; SmartSpeech; classification; machine learning optimizers;
radial basis function neural network; deep learning neural networks; grammatical evolution

1. Introduction

Neurodevelopmental disorders (NDs) are a group of disorders that typically appear
in childhood and are characterized by impairments in neurological development that affect
multiple aspects of communication, learning, social, behavior, cognitive, and emotional
ability to function [1–6]. NDs include Autism Spectrum Disorders (ASD), Attention Deficit
Hyperactivity Disorder (ADHD), Intellectual Disability (ID), Specific Learning Disorder
(SLD), and Communication Disorders (CD) [1]. DSM 5 [1] defines these disorders’ pro-
files with certain characteristics [1–6]: (i) ASD exhibits persistent difficulties with social
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interaction and communication as well as the existence of constrictive, repetitive pat-
terns of behavior, interests, or hobbies resulting in clinically severe functional deficits;
(ii) inattention, impulsivity, and hyperactivity are the characteristics of ADHD, interfering
with day-to-day functioning; (iii) ID comprises impairments of general mental abilities
including verbal abilities, learning aptitude, the capacity for logical reasoning, and prac-
tical intelligence (problem-solving) that impact adaptive functioning; (iv) SLD presents
significantly poor performance in at least one of these areas: oral expression, listening
comprehension, basic reading and/or writing abilities, mathematics calculation and/or
problem-solving; and (v) CD refers to a group of disorders (speech sound disorder, language
disorder, childhood-onset fluency disorder, social (pragmatic) communication disorder,
and unspecified communication disorder) characterized by persistent difficulties in the
acquisition, comprehension, and/or use of spoken or written language, which interfere
with effective communication.

These disorders commonly onset during childhood from young infancy to adolescence.
For instance, ASD can be diagnosed between 2–4 years old, ADHD before 12 years old,
ID before 18 years old, and any of the NDs may go undetected until adulthood [4]. The
severity of ND symptoms varies, and they affect individuals’ quality of life as well as that
of their families, causing major care needs that require extensive community assets [7,8].
Early screening and evaluation are vital to identify children at risk of neurodevelopmental
disorders (NDs) and/or communication deficiencies. While the current literature reports a
high prevalence of NDs, still many children are underdiagnosed, resulting in them missing
out on effective interventions that could be of more impact if administered early [7,8].

Effective communication is essential for indicating the development continuation from
childhood through adult life and for social interactions [4,9]. Delayed speech and language
development are often early indicators of many NDs [4,10]. Various instruments for as-
sessment, testing, observations, and perceived behaviors of the child and parent/caregiver
interviews are employed by clinicians during evaluation procedures [7]. Although all the
aforementioned are meant to be applied with clinical discretion, their use raises concerns
such as [11–13]: (i) clinical symptoms are shared among neurodevelopmental disorders;
(ii) severe specifier values may result in a positive diagnostic decision because most in-
dications are expressed quantitatively; (iii) in the lack of biomarkers, we are unable to
distinguish false positives from extremely related conditions; (iv) the decoding of instru-
ment values at the threshold may be challenging; (v) diagnostic instruments do not offer a
differential diagnosis and are unhelpful for negative diagnoses; and (vi) diagnostic instru-
mentation does not establish individual Functional Communication Profiles to highlight
deficits and strengths valuable for intervention. As such, occasionally they may result
in subjective evaluations [11–13] which point out elements of clinical assessment based
on multiparametric, non-standardized, and subjective diagnostic procedures that are still
challenging and require a high level of expertise [14]. Moreover, early detection of devel-
opmental disabilities in children is crucial for improving the prognostic procedures for
NDs on an individual’s development stages [12]. Therefore, there is a need for additional
support to diminish the over- or under-diagnosis of NDs in children [11,12,14,15].

Speech and language therapy and special education can benefit from the advances
of biosignal processing techniques, and wearable biosensors have made it feasible for
the real-time collection and analysis of biosignals, enabling new possibilities for health-
care monitoring and management. Biosignals are time-varying measures of human body
processes that can provide important information about the functioning of the human
body [16,17]. There two main categories of biosignals: (i) physical signals, that are directly
related to physical properties of the body, such as movement, force, and pressure (i.e.,
accelerometry, eye movements, blinks, respiration, facial expressions, voice); and (ii) phys-
iological signals, that reflect the activity of the body’s organs and systems, such as the
heart, the lungs, and the brain (i.e., electrocardiography, electroencephalography) [16]. As
a result, less invasive devices are available (i.e., eye-trackers), which provide the child with
a computer interaction community and allow understanding of how children engage with
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digital technologies, letting novel insights into their visual and cognitive processing [18].
Eye tracking is a method for identifying diagnostic biomarkers with evidence in children
with ASD [19–21], ADHD [22–25], ID [26–28], SLD [29,30], and CD [24,27]. The role of
the autonomic nervous system has earned consideration for many types of neurophys-
iological features of NDs, such as ASD [31–34]. There are many characteristics that can
be studied by taking heart rate measurements, of which a very common one is heart rate
variability signal (HRV), since it has been found to be directly related to health [35], mental
stress [36], cognitive functions [37], and psychosomatic state [38]. Autonomic dysregulation
is a biomarker for ASD and ADHD. Specifically, assessment using HRV can distinguish
sensory reactivity in ASD children from that found in typically developed children [31,39].
Furthermore, ADHD can be assessed using HRV to distinguish measurements regarding
sustained attention and emotional and behavioral regulation deficits seen in ADHD, and it
may help to define the pathophysiology of the disorder [40,41].

Machine learning (ML) is a subset of AI and a rapidly evolving field of study that
aims to establish high-quality prediction models using search strategies, deep learning, and
computational analysis to enable machines to learn to make autonomous decisions and
improve their performance at specific tasks [42]. There are several uses for ML in health
and healthcare [12,43–48]. The way we approach disease/disorder screening, diagnosis,
and treatment may change as a result; for example, ML algorithms can examine patient
data to spot trends and forecast the course of diseases/disorders. Supervised ML for
classification is a type of machine learning where a model is trained to predict a categorical
output variable. Metrics such as accuracy, error rate, precision, and recall can be used
to evaluate a classification model’s performance [39,49]. A good classification model
should have high accuracy, precision, and recall, but the optimal values may depend on
the specific problem being addressed. For instance, early detection of type 2 diabetes
and its complications has been identified from electronically collected data using ML and
deep learning techniques [50,51]. Further, towards individualized treatment plans, ML
algorithms can examine patient data, including genetic data and medical history improving
treatment results [52,53]. Wearable technology and sensor data can be analyzed by ML
algorithms to track patient health and spot early disease symptoms [54,55].

In relation to this, a soft computing approach of predictive fuzzy cognitive maps has
been employed successfully to represent human reasoning and to derive conclusions and
decisions in a way that is human-like for a Medical Decision Support System [48]. This
system was intended for medical education, employing a scenario-based learning approach
to safely explore extensive “what-if” scenarios in case studies and prepare for dealing
with critical adversity [48]. Additionally, a sub-band morphological operation method has
also been used successfully to detect cerebral aneurysms [56] and convolutional neural
networks have been employed for the classification of leukocytes categories and leukemia
prediction [57]. Furthermore, wearable electroencephalogram (EEG) recorders and Brain
Computer Interface software have been proposed to aid in the assessment of alcohol-related
brain waves [58]. More specifically, calculated spectral and statistical properties were
used for classification, and Grammatical Evolution was applied. The suggested approach
reported high accuracy results (89.95%), and thus, it was suited for direct drivers’ mental
state evaluation for road safety and accident avoidance in a future in-vehicle smart system.
Further, for the hemiplegia type classification among patients and healthy individuals, an
automatic feature selection and building method based on grammatical evolution (GE) for
radial basis function (RBF) networks was presented [59]. Using an accelerometer sensor
dataset, this approach was put to the test using four different classification techniques:
RBF network, multi-layer perceptron (MLP) trained using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) training algorithm, support vector machine (SVM), and GenClass, a GE-
based parallel tool for data classification. The test results showed that the suggested
solution had the best classification accuracy (90.07%) [59]. Various approaches of neural
networks and deep neural networks have been used for classification of speech quality and
voice disorders with very promising results [43–47,60,61].
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New prospects are presented to assist clinical decision-making through the use of AI
algorithms, automated instruments for measuring, decision-making, and classification in
communication deficiencies and NDs in the research setting [11–15,62]. Traditional ML
approaches use separate feature extraction procedures and classification methods, but with
Deep Learning these two procedures are done comprehensively [42]. For the ASD diagnosis
in young children from 5 to 10 years old, an intelligent model has been presented based on
resting-state functional magnetic resonance imaging data from global Autism Brain Imaging
Data Exchange I and II datasets and using convolutional neural networks (CNNs) [63]. The
best results have been obtained with Adamax optimization technique. A review of ML
research for MRI-based ASD identification deduced that the accuracy of research studies
with a significant number of participants is generally lower than that of studies with fewer
participants, implying the further need for large-scale studies [64]. Regarding participants’
age, it is shown that the accuracy of ASD automated diagnosis is higher for younger
individuals [64]. Another thorough examination of deep learning approaches looks into
the prognosis of neurological and neuropsychiatric disorders, reporting more potential for
diagnosing stroke, cerebral palsy, and migraines using various deep learning models [65].

A deep neural network model employed in the early screening of ASD, assessing chil-
dren’s eye tracking data applicability, reported outcomes that strongly indicated efficiency
in helping clinicians for a quick and reliable evaluation [15]. The outcomes of a review
article on ML methods of feature selection and classification for ASD, used to analyze
and investigate ASD, indicate an improvement in diagnostic accuracy, time, and quality
without complexity [66]. In an analysis and detection of ASD after applying various ML
techniques and handling missing values, the results strongly suggest that convolutional
neural network- (CNN) based prediction models work better on their datasets with a sig-
nificantly higher accuracy for ASD screening in children, adolescents, and adult data [67].
A CNN is employed for the classification of ADHD, trained with EEG spectrograms of
20 patients and 20 healthy participants. The model has an accuracy of 88% ± 1.12%, out-
performing the Recurrent Neural Network and the Shallow Neural Network, with the
advantage of avoiding the manual EEG spectral or channel features [68]. Furthermore,
a CNN was used to identify ADHD from a dataset of children (ADHD: 50, Healthy: 57)
and the network input data consisted of power spectrum density of EEGs. The accuracy
obtained was 90.29% ± 0.58% [69].

Additionally, serious games which embed fine motor activities obtained from a mobile
device and deep learning convolutional neural networks (CNN) are proposed as novel
digital biomarkers for the classification of developmental disorders [12]. A pilot study of an
integrated system that includes a serious game and a mobile app, and utilizes ML models
that measure ADHD behaviors, suggests their significant potential in the domain of ADHD
prediction [14]. Moreover, a gamified online test and ML using Random Forests for the
predictive model were designed with results revealing that their model correctly detected
over 80% of the participants with dyslexia, pointing out that dyslexia can be screened using
an ML approach [62].

Consequently, more in-depth research is needed which utilizes automatic classification
techniques to assist clinicians’ decision making. The aim of the current study is to examine
automatic classification for the assistance and support of evaluation procedures in speech
and language skills on biometric data gathered for children with a Disorder (NDs or no-
NDs). Further, and in more detail, we also examine five types of NDs: ASD, ADHD, ID,
SLD, and CD. Hence, we overall study six binary classification problems. The methods
utilized to classify the data are a Radial Basis Function (RBF) neural network, a Deep Neural
Network (DNN), and a Grammatical Evolution variant named GenClass [70].

2. Materials and Methods
2.1. The SmartSpeech Project

This study is part of the ongoing research project “Smart Computing Models, Sensors,
and Early diagnostic speech and language deficiencies indicators in Child Communication”
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(also known as SmartSpeech), funded by the Region of Epirus in Greece and the European
Regional Development Fund (ERDF). Specifically designed activities based on ND assess-
ment procedures were used to create a serious game for the SmartSpeech project [71]. This
serious game collects players’ responses. A dedicated server backend service processes
gathered data and examines whether specified domains or skills can be used for the early
clinical screening/diagnostic procedures toward automated indications.

2.2. The Sample

The sample of this study consists of the SmartSpeech biometric data. A total of
435 participants, mean age: 8.8 ± 7.4 years and mixed gender (M:224 and F:211), contributed
to the sample of this study. The participants’ sample was divided in groups of NDs (96)
and no-NDs (339). NDs have been categorized in agreement with DSM-5 (ASD: 17, ADHD:
18 have, ID: 8, SLD: 19, and CD: 42). Six NDs participants have co-occurrence of more than
one disorder.

2.3. Data Collection

To recruit for the sample, many calls were made through health and educational
sectors that support children with NDs and no-NDs. For each child participant, an adult
has also been involved to provide the required (parental) consent and the child’s devel-
opmental and communication history. The project’s nature, purpose, procedures, and
approval by the University of Ioannina Research Ethics Committee, Greece (Reg. Num.:
18435/15 May 2020), which complies with the General Data Protection Regulation GDPR,
were then thoroughly explained to parents during an informative meeting. Parents then
endorsed the consent form.

Next, the child interacts with the serious game, under the clinician’s guidance. The
game is designed to record the child’s responses while playing the game along with
biometric measurements, i.e., eye tracking and heart rate. The responses are quantified as
variables forming four categories, more specifically, hand movements on the touch screen,
verbally answering questions or executing commands, eye tracking data while watching
scenes, and spontaneous heart rate reactions in real time. Regarding the first category, the
game automatically outputs the scores that correspond to the player’s performance. The
remaining variables are analyzed as follows.

The digital game employs procedures to recognize words through the built-in speech-
to-text (STT) capability. The participant is asked in several phases of the game to pronounce
words such as characters’ names and objects of the game. The words that make up the
correct answers are predetermined. The duration of each recording is 10 s, long enough to
capture the participant’s response. For the word recognition, the speech-to-text program
CMUSphinx [72] has been chosen. It is available for free, it can work on different operating
systems (desktop, mobile), it is relatively fast, and it works offline. In this software, a
corresponding recognition model in Greek has been created and trained [73]. There are a
total of 40 words that are expected to be “heard” in the targeted language, that is, Greek.
The program essentially detects which word from the above best matches what the child
has said and consequently whether the child gave a correct answer or not.

During the game and in real time the player wears a smartwatch which records
the heart rate. The values are sent online to the database where they are synchronized
with the different phases of the game. Depending on the activity we are interested in
samples collected from the specific time period and the corresponding statistics variables
are calculated. Mean, standard deviation, and range for every distinct activity of the game
are the heart rate (HR) variables. HRV is the variation in the time difference between
successive heart beats, and several ways of calculation have been defined [33]. For the
exact calculation one should have the information of the time difference of successive
pulses, and the most reliable way is with the electrocardiogram (ECG). The wearable device
(smartwatch) used in the game allows only the heart rate to be measured, not the individual
pulses. From the heart rate (HR) it is not possible to calculate HRV directly, especially when
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filtering-smoothing techniques are used by the measuring devices which alter the original
information of the measurements. However, to obtain an estimate of the rate variability,
since it is considered a more important feature than the rate itself, we have calculated the
heart rate standard deviation and range statistics as an alternative.

Unity environment (Unity®, 2022) is used to implement the game. Eye tracking is
provided through the SeeSo software [74]. This is achieved by detecting the position of
the eyes through the camera of the mobile device (tablet) and allows the calculation of the
target the observer is looking at on the screen. In certain activities in the game the above
functionality is enabled, and the result is a sequence of X, Y coordinates that correspond to
the screen of the device at certain time periods. These coordinates give direct information
about what the player is looking at (gaze points). It is known that human eye movements,
when trying to obtain information when watching a scene, are generally very fast, with a
duration of a few milliseconds, so one can quickly process any visual stimulus by literally
scanning the scene. Fast eye movements are also called saccades [75], while when the target
points of the gaze are relatively close both spatially and temporally, they constitute what
we call a fixation [75], which refers to where and when we mentally process the scene by
deriving information out of it. The software gives information about the fixations and we
extract three basic variables that are common in eye movement research [76]. These are
(a) number of fixations (fixation count—FC), (b) time that passed till the first fixation (time
to first fixation—TTFF), (c) the total duration of fixations (time spent—TS).

2.4. Data Formulation

Three datasets were formed, corresponding to the categories of (i) game scores
N:435 (NDs: 96, no-NDs: 339), (ii) heart rate statistics N:321 (NDs: 88, no-NDs: 233),
and (iii) eye-tracker metrics N:182 (NDs: 42, no-NDs: 140). Each set is a representation of
the set of classification input variables. Data that were invalid or missing were filtered out
and forced to case reduction and thus pathological case reduction in the datasets. Table 1
summarizes the input variables used in each dataset; game-scores dataset: 30 variables,
heart-rate dataset: 15, eye tracking dataset: 16 (as depicted visually in Section 2.6). The
TTFF variables in the eye tracking dataset had to be removed during the filtering process.
Figure 1a–c provides a visualization summarizing descriptive statistics for this study’s
variables (means, standard error).

Table 1. Variables for the datasets under study.

Dataset Variable Description Count

Game-scores

Object recognition 6
Click on objects 7
Vocal intensity 1
Verbal response 6

Memory task 2
Emotion recognition 3

Hearing test 1
Puzzle solving 2
Moving objects 2

Game-scores total 30

Heart-rate

Mean HR 5
HR standard deviation 5

HR total range 5
Heart-rate total 15

Eye tracking
Fixation counts 10

Time spent 6
Eye tracking total 16

The classes that were used are defined by the target binary variables. The Disorder
variable indicates whether the child has ND(s) or not, i.e., no-ND. The remaining variables,
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such as ASD, ADHD, ID, SLD, and CD, indicate the existence of the disorder in the way
that the DSM-5 has previously been described.

2.5. Classification Methods

The methods in this study used to classify the data are RBF, DNN, and Grammatical
Evolution variant, named GenClass, which are also depicted in which are also depicted
visually in Section 2.6.

The RBF is a kind of artificial neural network which has been widely used for a range
of tasks, including classification, regression, and clustering with effectiveness in problems
with high-dimensional input spaces and complex patterns [77–79]. The RBF network has
several advantages over other neural network architectures, including its ability to handle
high-dimensional data, fast training and testing times, and the ability to approximate any
continuous function with arbitrary precision. The RBF network has three layers, according
to [79] (input, hidden, and output). An input comes from a variable in Table 1. The hidden
layer uses radial basis functions as activation functions to transform the input data into a
new representation. This representation is then used for further processing in the output
layer. The output of the network is computed as a linear combination of the transformed
inputs. Thus, the output is a binary decision in the form of 0 or 1 (TRUE or FALSE),
representing the two outcomes of each of the six classes of the study. Figure 2 presents the
RBF Neural Network flowchart.
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DNNs [80] consist of many artificial neural networks formed as layers, each composed
of a specific number of neurons. The received input is transformed nonlinearly at each
layer, and the outputs are then passed on to the layer above it until the network’s output.
Their architecture (Figure 3) allows them to learn highly complex representations of input
data and link them to the desired output, rendering them a suitable and effective tool
for a wide range of applications, including but not limited to image recognition, speech
recognition, natural language processing, and classification.
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The core element of a DNN is the artificial neuron [81]. Specifically, a neuron applies a
nonlinear function to the weighted sum of those inputs and outputs. In the case of a fully
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connected network, each neuron of each layer is connected with every neuron of the next
layer, and the weights of those connections are learned during the training. The learning
procedure, or, differently, the training phase of a DNN, usually involves the adjustment
of the weights of all neuron connections to minimize an error between the network’s
predictions and the actual output values. Usually, this is conducted using a method called
backpropagation [82], in which the gradient of the error with respect to each weight in
the network is calculated to reduce the error. This minimization can also be conducted by
using more sophisticated optimization techniques but with a cost. One of the challenges
in training DNNs is to avoid overfitting. Overfitting means that the network becomes so
specialized to the training data that it cannot perform well on new unseen data. Many
techniques have been proposed to mitigate this problem, such as dropout and weight
decay [83], among others.

A genetic programming technique called grammatical evolution uses a grammar-
based strategy to evolve computer programs [84]. It is an evolutionary process that has
been used in various cases such as music composition [85], economics [86], symbolic
regression [87], and caching algorithms [88]. In the genetic algorithm, the chromosomes
serve as a vector of integer values to represent the production rules of a Backus–Naur Form
(BNF) grammar [89].

The algorithm proposed by Tsoulos, named GenClass [70], is a classification algorithm
based on grammatical evolution. The start symbol of the grammar serves as the starting
point for the production procedure, which gradually produces the program string by
substituting nonterminal symbols with the right hand of the chosen production rule.
Figure 4 shows the GenClass flowchart.

The main advantage is that it does not require any additional information, such as the
derivatives of the objective problem, which cost in time and memory. Specifically, it gener-
ates a series of classification rules in a C-like language that can be easily programmed and
used in real C programs without many modifications. The generated rules are constructed
with the use of if-else conditions, and the variables represent the corresponding features.
The source code of the method can be found in https://github.com/itsoulos/GenClass
(accessed on 30 December 2022).

The application details of the utilized classifiers are depicted. The following techniques
were used to successfully identify the categories in the 3 datasets: RBF with 10 processing
neurons [79], DNN approaches described thereafter, and GenClass [70]. The number of
chromosomes used in GenClass were 500 and a maximum of 2000 generations were allowed.
Experimental settings parameters are shown in Table 2.

Table 2. Experimental settings parameters.

Parameters

Architecture Name Value

GenClass Chromosomes 500
GenClass Generations 2000

RBF Processing Neurons 10
DNN Layers 1–3
DNN Input layer 16, 17, 31
DNN Layer 5 (Activation Function: Sigmoid) 256
DNN Layer 4 (Activation Function: Sigmoid) 128
DNN Layer 3 (Activation Function: Sigmoid) 64
DNN Layer 2 (Activation Function: Sigmoid) 32
DNN Layer 1 (Activation Function: Softmax) 16
DNN Output Layer 3
DNN Optimizer Nadam
DNN epochs 1000
DNN Batch Size 8

https://github.com/itsoulos/GenClass
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The provided DNN approaches were implemented using Python language and Keras
library. Three different approaches were considered for the comparisons with different fully
connected layers. The approaches were named according to the corresponding adopted
layers, with the names DNN-3, DNN-4, and DNN-5, accordingly. The architecture of
DNN-3 consists of three fully connected layers with 64, 32, and 16 neurons, respectively,
and a final output layer with three neurons. The neurons used the sigmoid activation
function [90], while the final output neurons used the softmax activation. The model
is compiled with the Nadam optimizer and categorical cross-entropy loss function and
trained over 1000 epochs with a batch size of 8. Accordingly, for DNN-4, the extra added
layer has 128 neurons, and for DNN-5, 256.

2.6. Performance Estimation

The 10-fold cross-validation technique has consistently been employed as an evalua-
tion method to fairly assess the predictive ability and produce its efficiency (Figure 5). We
divided each dataset into ten partitions. Nine of the partitions we created were used for
training, and the final partition was used for testing. For each instance we performed thirty
independent experiments and calculated each algorithm and the average classification
errors. Moreover, we used different seed numbers for every experiment by using the C
programming language’s drand48() random number generator. For the experiments, we
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used freely downloadable software from https://github.com/itsoulos/IntervalGenetic,
(accessed on 18 February 2023).
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For classification evaluation, a confusion matrix is used to calculate the error rate,
precision, recall, and accuracy, presented below in Equations (1)–(4), respectively [39,49]:

Error rate =
FP + FN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FP
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Overall, to overview the methods followed in this study, Figure 6 visually demon-
strates the study’s workflow.

https://github.com/itsoulos/IntervalGenetic
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Figure 6. Block diagram of the study’s workflow.

3. Results

The experimental results are shown in Tables 3–7. Tables 3–7 show the results as
average error rates percentages (%) for the eye tracking, the heart rate, and the game-
based datasets.

Table 3. Eye tracking dataset: comparison of classification techniques using the average error rate (%).

Class RBF DNN-3 DNN-4 DNN-5 GenClass

Disorder 22.01% 7.67% 8.00% 9.67% 7.17%
ASD 23.36% 14.89% 13.67% 15.11% 16.13%

ADHD 22.67% 13.22% 12.56% 13.11% 13.40%
ID 32.03% 24.67% 17.33% 21.33% 13.07%

SLD 23.47% 15.44% 14.44% 15.33% 11.12%
CD 23.38% 15.67% 14.00% 15.56% 11.30%

Total 24.49% 15.26% 13.33% 15.02% 12.03%

Table 4. Heart-rate dataset: comparison of classification techniques using the average error rate (%).

Class RBF DNN-3 DNN-4 DNN-5 GenClass

Disorder 18.48% 29.07% 23.33% 23.33% 20.02%
ASD 18.76% 28.33% 26.85% 30.93% 22.43%

ADHD 18.43% 29.44% 30.19% 29.81% 20.73%
ID 18.41% 26.67% 25.74% 25.37% 21.60%

SLD 18.37% 26.85% 28.15% 27.78% 21.82%
CD 19.95% 30.56% 29.63% 31.85% 21.53%

Total 18.73% 28.49% 27.32% 28.18% 21.36%
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Table 5. Game-based dataset: comparison of classification techniques using the average error rate (%).

Class RBF DNN-3 DNN-4 DNN-5 GenClass

Disorder 21.62% 24.26% 24.26% 24.26% 20.44%
ASD 22.45% 24.88% 24.88% 24.88% 22.19%

ADHD 22.05% 25.19% 25.19% 25.19% 22.40%
ID 23.12% 24.26% 24.81% 24.19% 22.19%

SLD 22.37% 25.58% 26.12% 25.50% 22.49%
CD 23.33% 26.20% 28.76% 25.97% 22.78%

Total 22.49% 25.06% 25.67% 25.00% 22.08%

Table 6. NDs Disorder class: comparison of classification methods using precision and recall.

Datasets for Disorder Classification Method Precision Recall

Eye tracking
RBF

0.7549 0.6241
Heart rate 0.7671 0.6634

Game-based 0.7540 0.5610

Eye tracking
GenClass

0.9099 0.8982
Heart rate 0.7248 0.6327

Game-based 0.7265 0.6355

Table 7. Overall comparison of classification methods using accuracy.

Class
Dataset

Eye Tracking Heart Rate Game-Based

Disorder GenClass (92.83%) RBF (81.52%) GenClass (79.56%)
ASD DNN-4 (86.33%) RBF (81.24%) GenClass (77.81%)

ADHD DNN-4 (87.44%) RBF (81.57%) RBF (77.95%)
ID GenClass (86.93%) RBF (81.59%) GenClass (77.81%)

SLD GenClass (88.88%) RBF (81.63%) RBF (77.63%)
CD GenClass (88.70%) RBF (80.05%) GenClass (77.92%)

For the eye tracking dataset, it is shown that the best overall results are obtained with
the GenClass method with a total average error rate of 12.03%. More specifically, this
method is found to be more suitable for the Disorder class, which denotes whether a child
has a disorder or not and particularly for the disorders ID, SLD, and CD, with average error
rates of 13.07%, 11.12% and 11.30%, respectively. DNNs on the other hand are proved to be
more accurate for distinguishing the NDs of ASD and ADHD, with average error rates of
13.67% and 12.56%, respectively. The number of layers seems to have a small impact on the
outcome with the four-layer DNN achieving the highest performance.

For the heart rate dataset, the RBF classifier is superior to the others for all the classes
with an overall average error rate of 18.73%. This method is proved to be more appropriate
when the biometric data consist of heart rate measurements, whereas the difference in
performance against to the other classifiers is remarkable.

For the game scores dataset, the GenClass classifier is found to be slightly better in
detecting all the target disorder variables with an average error rate of 22.08%.

Furthermore, Table 6 compares the precision and recall for the Disorder datasets.
Finally, a comparison in terms of higher classification accuracies is shown in Table 7

for each class and SmartSpeech dataset.

4. Discussion

This study aimed to utilize ML to examine the development of innovative automated
solutions for the early identification of NDs in children with communication deficiencies,
offering the development of technology-based data-gathering techniques such as motion
tracking, heart rate metrics, and eye tracking from the new SmartSpeech dataset developed
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in Greek. Ten-fold cross-validation was chosen for evaluating model efficacy since it
produces high variability in testing and training data, decreases bias, and delivers consistent
findings for all tries, parameters, and models. The results of this research give a direct
comparison of the different machine learning methods employed on this dataset, which are
RBF, DNN, and GenClass.

The reported results of this study (Tables 3–5) display the comparison of all the
methods employing the performance metric of the error rate (%). Thus, a smaller value
implies better performance. Precision and recall metrics are also displayed for the class
Disorder (Table 6). Finally, the highest performance classification methods in accuracy
metrics are reported for each class and dataset (Table 7). Particularly, Table 7 clearly
illustrates the tendency of the specific methods to dominate in each dataset and class;
more specifically:

• For the eye tracking measurements, the GenClass and the DNN-4 have proven to
be the best choices, with an accuracy of at least 86.33% for the ASD population.
GenClass is superior for the classes Disorder, ID, SLD, and CD, whereas DNN-4 is
better for ASD and ADHD. For the aggregate class Disorder, GenClass has the highest
observed accuracy of 92.83%. This finding may be utilized for automated screening to
discriminate whether an individual has NDs.

• The RBF method is the most accurate in the heart rate dataset, with an accuracy of
at least 80.05%. It is notable that it achieves the best performance for all the classes
under study.

• As for the game-based dataset, the GenClass method has the highest accuracy for the
classes Disorder, ASD, ID, and CD. The classes ADHD and SLD are better identified
using the RBF algorithm.

However, in most other cases GenClass and DNN-4 outperform the rest. It is worth
noting that GenClass is expected to have longer execution times since it is based on genetic
algorithms. Nevertheless, in this study we have employed the parallelization feature of the
software GenClass [91] to speed up the process.

Similar research attempts to identify NDs have been reported in the literature. For
example, one such study evaluated the ability of drag-and-drop data to be used to classify
children with developmental disabilities [12]. Data were collected from 223 children
with typical development and 147 children with developmental disabilities via a mobile
application (DoBrain). A deep learning CNN algorithm was developed to classify an area
under the curve (AUC) of 0.817. Furthermore, in line with our study, a binary classifier has
also been trained using paralinguistic features extracted from typically developing children
and children suffering from Speech Sound Disorders (SSD), reporting 87% accuracy [60]. In
the same direction as our study, the HRV was also used as a biomarker to distinguish autistic
and typical children by applying several machine learning algorithms, that is, the Logistic
Regression, Linear Discriminant Analysis, and Cubic Support Vector Machine [39]. Logistic
Regression proved to be the best classifier for a color stimulus test in that study, whereas
Linear Discriminant Analysis was better in the baseline test. Moreover, an important
biomarker to detect ASD can be considered similar to our research which focused on
eye tracking data [15]. While finding the best method to predict autism with the help of
eye tracking scan path images, the DNN classifier was compared to traditional machine
learning approaches such as Boosted Decision Tree, Deep Support Vector Machine, and
Decision Jungle. The DNN model outperformed the other machine learning techniques
with an AUC of 97%, sensitivity of 93.28%, specificity of 91.38%, negative prediction value
(NPV) of 94.46%, and positive predictive value (PPV) of 90.06% [15]. Moreover, RBF also
reported reliable results in a study with an attempt to identify children with ID that was
done using two different feature extraction methods of speech samples, that is, the Linear
Predictive Coding based cepstral parameters and Mel-frequency cepstral coefficients, along
with four classifiers, that is, k-nearest neighbor, support vector machine, linear discriminant
analysis, and RBF neural network [92]. The RBF classification model was the best technique
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for classifying disordered speech, giving higher accuracy compared to the rest of the
classifiers (>90%).

Furthermore, this study’s sample size is analogous to other research [12,15,93] due to
the high costs of collecting the data involving human subjects and the ongoing development
of tasks and experimental techniques that can discriminate between various situations
to the greatest extent possible. Similar to prior studies [93], in this study, experimenting
while collecting a single multi-dimensional data sample may take 1.5 to 4 h of participant’s
time (such as setting up, testing, and setting down) and 2 to 6 h of participant time
(which encompasses travel time). Furthermore, reaching out to people and encouraging
participation is complex, making recruiting many participants with NDs difficult. As a
result, the resources available for early-stage studies do not allow for gathering samples
from thousands of people. Although this study’s sample size is not very large, its results
form one of the first attempts at employing ML on data from digital gameplay and sensors
to automatically assist the clinician’s decision, reducing the inherent uncertainty of clinical
diagnosis regarding speech and language activities and their manifestations. This study
contributes to the automatic classification of NDs based on new datasets initiated from
responses during software interactions, primarily designed and implemented for the Greek
language. Future research may focus on enriching the dataset and considering recent
advances in classification to enhance accuracy.

5. Conclusions

This study examines a number of ML approaches to explore how to automatically
identify children with various neurodevelopmental disorders. The ML techniques utilize
modern optimization algorithms such as the Radial Basis Function (RBF) Neural Network,
Deep Learning Neural Networks (DNN), and a variant of the Grammatical Evolution
method, namely GenClass. These methods are used for disorder classification on our
dataset, derived from SmartSpeech, an innovative system with a digital mobile serious
game designed to assist clinicians in speech and language therapy in Greek. The dataset is
split in three parts, one for the game-based data and two for biometric data measured, that
is, eye tracking and heart rate. The results of this study have shown that best performing
classifiers for the eye tracking datasets were GenClass and DNN-4, for the heart-rate dataset
was the RBF method, and for the game-based were GenClass and RBF.

The outcomes of this study motivate further research in future. Evidently, modern
technologies and especially ML methodologies are giving an opportunity to clinicians to
improve their assessment both in terms of speed and accuracy.
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