
Citation: Adiani, D.; Colopietro, K.;

Wade, J.; Migovich, M.; Vogus, T.J.;

Sarkar, N. Dialogue Act Classification

via Transfer Learning for Automated

Labeling of Interviewee Responses in

Virtual Reality Job Interview Training

Platforms for Autistic Individuals.

Signals 2023, 4, 359–380. https://

doi.org/10.3390/signals4020019

Academic Editors: Manuel Duarte

Ortigueira and Vessela Krasteva

Received: 14 January 2023

Revised: 26 April 2023

Accepted: 11 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Dialogue Act Classification via Transfer Learning for
Automated Labeling of Interviewee Responses in Virtual
Reality Job Interview Training Platforms for
Autistic Individuals
Deeksha Adiani 1,* , Kelley Colopietro 2, Joshua Wade 2, Miroslava Migovich 2 , Timothy J. Vogus 3

and Nilanjan Sarkar 1,2

1 Computer Science, Vanderbilt University, Nashville, TN 37212, USA; nilanjan.sarkar@vanderbilt.edu
2 Mechanical Engineering, Vanderbilt University, Nashville, TN 37212, USA;

kelley.j.colopietro@vanderbilt.edu (K.C.); miroslava.migovich@vanderbilt.edu (M.M.)
3 Owen Graduate School of Management, Vanderbilt University, Nashville, TN 37203, USA;

timothy.j.vogus@vanderbilt.edu
* Correspondence: deeksha.m.adiani@vanderbilt.edu

Abstract: Computer-based job interview training, including virtual reality (VR) simulations, have
gained popularity in recent years to support and aid autistic individuals, who face significant
challenges and barriers in finding and maintaining employment. Although popular, these training
systems often fail to resemble the complexity and dynamism of the employment interview, as the
dialogue management for the virtual conversation agent either relies on choosing from a menu of
prespecified answers, or dialogue processing is based on keyword extraction from the transcribed
speech of the interviewee, which depends on the interview script. We address this limitation through
automated dialogue act classification via transfer learning. This allows for recognizing intent from
user speech, independent of the domain of the interview. We also redress the lack of training data
for a domain general job interview dialogue act classifier by providing an original dataset with
responses to interview questions within a virtual job interview platform from 22 autistic participants.
Participants’ responses to a customized interview script were transcribed to text and annotated
according to a custom 13-class dialogue act scheme. The best classifier was a fine-tuned bidirectional
encoder representations from transformers (BERT) model, with an f1-score of 87%.

Keywords: dialogue act classification; transfer learning; autism spectrum disorder; virtual reality
job interviews

1. Introduction

Autism spectrum disorder (ASD) is a lifelong neurological and developmental dis-
order, with a prevalence of 1 in 44 children in the United States (US) [1], which affects
an individual’s ability to learn, as well as to communicate and interact socially. ASD is
characterized by deficits and/or impairments in social and emotional reciprocity, in com-
municative nonverbal behaviors, and in forming and maintaining relationships; the level of
severity varies, where an individual may require minimal to substantial support [2]. Autis-
tic individuals (identity-first terminology has been chosen based on preference of autistic
individuals [3]) are often under- or unemployed, and finding and keeping employment
is often difficult [4–6]. A 2017 National Autism Indicators Report indicated that amongst
3520 autistic adults (ages 18–64) from 31 states in the US who received developmental
disability services, only 14% were employed with pay in the community, 54% had unpaid
jobs or activities in a facility, and 27% had no jobs or any form of participant in the com-
munity [4]. Some factors for these low rates of employment amongst autistic individuals
include difficulties in social interaction, discrimination in the workplace [7], sensitivity

Signals 2023, 4, 359–380. https://doi.org/10.3390/signals4020019 https://www.mdpi.com/journal/signals

https://doi.org/10.3390/signals4020019
https://doi.org/10.3390/signals4020019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0000-0001-8652-0629
https://orcid.org/0000-0002-4819-7901
https://orcid.org/0000-0002-3164-8104
https://doi.org/10.3390/signals4020019
https://www.mdpi.com/journal/signals
https://www.mdpi.com/article/10.3390/signals4020019?type=check_update&version=1

Signals 2023, 4 360

to workplace environments (e.g., lighting, sounds, smells, etc.) [8], lack of support from
vocational rehabilitation services or a lack of services thereof [9], and/or a poor job fit [8].
Amongst those challenges, the job interview, where autistic individuals are expected to
adhere to the “norm” in terms of mannerisms and interactions, poses a major barrier to
employment, and in turn, to independent living [7,10,11].

To address the above, several computer-based job interview simulators have been
developed, catering to autistic individuals’ needs (e.g., routine and certainty), which have
demonstrated efficacy [12–17]. VR-based interview training systems, including VR sim-
ulations, provide autistic job candidates a controlled self-paced learning environment to
practice their interviewing skills across multiple scenarios with lower interpersonal risk and
a sense of psychological safety [12,18,19]. Studies have shown that technology-enhanced job
interview training platforms can improve interviewing skills and overall self-confidence
when compared to traditional interview training methods [12,20]. Further, virtual job
interview training can potentially reduce costs, as it reduces the need for personnel to
conduct real-life mock interviews [21]. Studies have demonstrated that depending on its
realism, a virtual interview can induce experiences of anxiety or nervousness consistent
with real interviews, which can help candidates get accustomed to the affective experience
of interviews, and in turn, feel more comfortable during a real interview scenario [22–24].
Previous virtual job interview simulations with conversation agents, aimed at helping autis-
tic individuals, collect interviewee (participant) responses and perform keyword extraction
on transcribed text, which is dependent on the domain of the interview script [12,14–16,19];
oftentimes, the interview systems do not allow for freely spoken responses, and instead
provide multiple answers from which to choose the appropriate one. Though the existing
methods work, they are ad hoc solutions, and the interview systems lack text classification
methods which can recognize the intent of the interviewee’s spoken utterances, indepen-
dent of the domain of the interview script. In our recent work [25], we show how manually
identifying intents from autistic interviewees’ utterances can provide insight into their
performance. Hence, automatic labeling to recognize the meaning of utterances has the
potential to enhance current simulators for training autistic individuals. We address this
via automated dialogue act classification.

Dialogue act classification or recognition is a method where utterances of a conversa-
tion are classified as one of several dialogue acts or speech acts [26]. A dialogue act (DA) or
speech act represents the meaning or intent of an utterance, e.g., whether the utterance is
a question, a yes or no response, a “thank you” or a “good-bye”, or a statement of opinion
or fact [27]. Hence, DAs can capture the semantics of utterances in a domain by mapping
utterances to DA. DA classification has several applications, such as intent mining and
identification [28], classifying issues from comments on online collaborative platforms
such as GitHub [29] in conversation agents and dialogue systems for an agent/system
to understand the user and execute tasks that drive the flow of dialogue [30–33]. When
combined with conversation context, DA classification has shown to improve contextual
topic modeling (extraction of themes or topics in text [34]) [35]. When automated, DA clas-
sification can be used to automatically label utterances, whether from text or other modes
of data, such as text combined with facial expressions [36,37] or speech signals [32,38].

During the development of our previous work [39], we encountered a lack of publicly
available data to train a text classifier that classifies utterances into domain-independent
DA that are relevant in a job interview context. Hence, in response to the aforementioned
gap, we collected utterances of participants responding to questions from an interview
script while interacting with our virtual job interview platform described in [39]. This data
collection study resulted in a small dataset of 640 utterances. Observing patterns in the
responses to interview questions, we developed a DA labeling scheme based on previous
works [32,40,41] that captures the semantics of utterances in the context of a job interview
regardless of the domain of the interview. The anonymized data were then labeled by two
annotators according to the developed DA scheme. These annotated data were then used to
train the classifier. First, a baseline support vector machine (SVM) classifier and a random

Signals 2023, 4 361

forest (RF) classifier were trained on the annotated data, which helped understand our data
and highlighted where traditional machine learning failed to classify some labels. Second,
a pretrained bidirectional encoder representations from transformers (BERT) model was
fine-tuned using transfer learning on our annotated data (building on the work of [41]).
The final BERT classifier performed with a 0.92 accuracy and an f1-score of 0.87.

The scope of this article is twofold: (1) to introduce a DA scheme to capture semantics
of utterances in a job interview context through data collected in an experimental study
with autistic individuals using our virtual reality job interview training system [39]; and
(2) to present the best-performing classifier on the data. The three main contributions of this
paper are (1) an original dataset comprising annotated responses to job interview questions
by autistic individuals of working age, where responses are labeled using an in-house
dialogue act scheme for job interviews; (2) a predictive model that takes an interview
response as input and outputs the dialogue act to understand the general intent of the
response; and (3) the interview script and annotation guidelines to help future developers
replicate this work and collect more data. In this work, we aim to introduce a new autistic
dataset with real speech data collected from a simulated job interview that can be used
for automated DA classification in VR simulations to aid autistic individuals. It is to be
noted that we have adapted a standard BERT model for DA classification of utterances to
demonstrate feasibility as a first step towards this aim. More sophisticated models and/or
methods can be employed in the future to better the accuracy.

2. Related Work

Previous studies discuss several methods for automated DA classification. Early DA
classification models were traditional machine learning (ML) methods such as support
vector machines [42,43], sometimes combined with hidden Markov models [44], Bayesian
network-based classifiers [45,46], decision trees [47], and more [48]. Recently, solutions
for DA classification involve methods in deep learning. Khatri et al. [35] created a 14-DA
scheme based on observed patterns in a user–chatbot interaction dataset to determine
the goal from the user’s utterances. Examples of DAs were InformationRequest, Informa-
tionDelivery, GeneralChat, TopicSwitch, and more. They used DA as context to improve
the accuracy of a topic modeling algorithm, where the best performing DA classifier was
a contextual deep average network (DAN) model. Raheja and Tetreault [49] combined
a context-aware self-attention mechanism with a hierarchical recurrent neural network
(RNN) to conduct utterance-level DA classification. They demonstrated improvements in
classification on the Switchboard Dialogue Act (SwDA) Corpus [50] , which is a benchmark
dataset with a 42 DA scheme to capture general conversation [40]. Ahmadvand et al. [31]
introduced a novel method for contextual DA classification built upon the method of [35].
The features included utterances represented as 300-dimension Word2Vec embeddings,
parts-of-speech (POS) tags, topics, and lexical features, including word count and sen-
tence count. Their model was a fully connected convolutional neural network tested on
known state-of-the-art conversation corpora, demonstrating improved accuracy relative
to previously reported baselines. Chatterjee and Sengupta [28] introduced an extension
to the density-based algorithm (DBSCAN) [51] for intent identification for conversation
agents by using available conversation data. Their motivation was to help reduce the need
for labeling conversation data by automatically labeling previously available data with
their classifier. The results on six datasets show the potential of their algorithm in intent
mining. Although the above have shown promise, they do not show improvements as
significant as those demonstrated via transfer learning [52] using pretrained BERT [53].
Transfer learning in ML is an approach that involves improved learning in a new task via
transfer of knowledge from a previously learned related task, where the previously trained
model is further trained or “fine-tuned” on new task data [54].

Duran et al. [55] conducted experiments to investigate the results using different
single-sentence representations in training DA classifiers, which included embeddings,
punctuation, text case, vocabulary size, and tokenization. The results demonstrated the

Signals 2023, 4 362

impact of the different features in sentence representations for the training of several
models. The results also implied that the pretrained BERT and a variation of it called
RoBERTa [56] showed notable increase in accuracy on the SwDA corpus when compared
to other models, which demonstrated that contextual sentence representations produced
by the BERT models are an improvement over other fine-tuned models. In another study,
Noble and Maraev [57] found that while a standard pretrained BERT performs well, for
good performance on task-specific DA classification, fine-tuning the pretrained BERT is
essential. Wu et al. [58] further pretrained a BERT model on eight datasets using masked
language modeling (MLM), which is a fill-in-the-blank pretraining strategy where the
model is trained to replace a [MASK] token in a sentence with a random input token
(e.g., “Paris is the [MASK] of France”, where [MASK] can be replaced by the token which
contextually makes sense such as “capital”). Their task-oriented dialogue-BERT, or TOD-
BERT, can be further fine-tuned for tasks such as response selection, dialogue state tracking,
intent recognition, and DA prediction, which can help address the task-oriented dialogue
data scarcity problem. Chakravarty et al. [41] created a DA scheme to fit the context of
a question-answering scenario where DAs were developed for questions and answers,
respectively (e.g., wh-question or yes-answer) . They trained three models on an annotated
question-answering dataset with transcribed text from interviews: a convolutional neural
network (CNN), a Bi-LSTM, and a BERT-base-cased pretrained model. Amongst the three
fine-tuned models, their BERT model performed the best, with an overall F1-score of 0.84.

From the above literature review, we concluded that fine-tuning a pretrained model
via transfer learning demonstrates significantly better results than training a model “from
scratch”. We can also see in previous literature [41,58] that the pretrained BERT mod-
els perform significantly better when it comes to text classification, which includes DA
classification. Hence, we chose to train a DA classifier using a transfer learning approach.

3. Materials and Methods
3.1. Data Collection via Job Interview Training System

A total of 22 autistic participants (mean age = 19.1; SD = 2.8; 17 male and 5 female;
20 White—of which 4 were Hispanic/Latino—and 2 African American) were recruited
for a data collection study. Participants were required to be verbal, fluent in English, and
at the eligible age of employment (16+ years) in the state of Tennessee, and the study
was approved by the Institutional Review Board (IRB) of the lead author’s university.
Participants went through a mock interview with our career interview readiness in virtual
reality (CIRVR) job interview environment with a virtual interviewer avatar [39]. During
the interview simulation, the participant is seated across a desktop computer that runs the
CIRVR simulation, as shown in Figure 1, where the participant can interact with CIRVR
and move around the virtual space using mouse and keyboard controls. Spoken responses
are captured via a microphone headset, which are then submitted via keyboard controls.
This feature allows the user some time to think about their response before submission.
Although CIRVR provides an immersive VR option, we chose not to use a VR headset or
head-mounted display for this study due to preferences of the population, as mentioned in
our previous work [39].

To ensure a realistic job interview experience in CIRVR, the interview script comprised
questions for the position of a data entry clerk. The questions reflected both a review of
multiple years of questions used by actual employers in a database of a university career
management center, and interviews with 36 autistic employees, support professionals
(e.g., job coaches and university career center professionals), and employers. The interview
structure consisted of the following segments, as described in [15]: greetings (“hello”
and “good morning”); technical questions (about work experience and specific job skills);
education questions (e.g., formal schooling, favorite subjects, cocurricular activities, or
job-relevant hobbies and activities); personal questions (e.g., behavior-based questions,
such as experience working in a team); and an interviewee-initiated questions section,
where the participant can ask questions about the job (e.g., the work environment and

Signals 2023, 4 363

work hours). CIRVR went through interview questions from a predefined interview script,
which the virtual avatar output as speech using Microsoft Azure Text-to-Speech synthesizer.
The participants’ responses to each question were captured via a microphone on a headset
and were transcribed in real-time using Microsoft Azure Speech-to-Text [59], which has
been benchmarked as the speech recognizer with lowest transcription error rates when
compared with competitors [60]. Transcribed speech for each session was stored as text
along with the corresponding questions, in a comma-separated values (CSV) file. These
files were then analyzed to create a DA labeling scheme, as discussed in the next subsection.

Figure 1. The CIRVR virtual environment: the reception (top); the virtual avatar behind a desk in
a virtual office from the perspective of the interviewee (bottom).

3.2. The BERT Architecture and Fine-Tuning BERT for Text Classification

BERT is a transformer-based model, first introduced by Devlin et al. [53], that has
been pretrained via self-supervised learning on a large corpus of unlabeled data in English.
It consists of a multilayer transformer encoder architecture that is based on the original
transformer encoder, as described in [61]. Figure 2 presents a visualization of the BERT
base model that has 12 encoder layers, a hidden size of 768, and 12 attention heads [53].
Each encoder consists of (1) a self-attention layer, where a sentence is passed to help
the model learn to which words it should “pay attention” to based on context of the
surrounding words; and (2) a feedforward neural network layer that processes the output
from the attention layer to format/fit it into an acceptable form for the next encoder [53,61].
Pretraining of BERT was conducted over two tasks: MLM and next sentence prediction
(NSP). In MLM, a model is trained to predict missing words in a sentence based on the
context provided by neighboring words in a sentence. In the MLM task for BERT, 15% of
the words in an input sentence were masked, and the masked sentence was run though
the BERT model for prediction of the missing words. This was carried out to train a model
with the ability to learn a deep bidirectional representation of the sentence. During the
NSP task, the input consisted of two sentences in order to train a model to understand the
relationship between them, i.e., is sentence B next to sentence A or not [53]. Pretraining of

Signals 2023, 4 364

BERT using these two methods prepares the model for downstream tasks such as question
answering, or in our case, sentence classification; specifically, single-sentence classification.

Figure 2. The BERT architecture, consisting of stacked encoders; each encoder consists of a self-
attention layer followed by a feedforward neural network layer.

To understand how BERT classifies text, let us take an example such as “I like cooking”.
This sentence is first converted to lowercase (we chose the BERT-base-uncased model for
fine tuning). Then, the sentence is tokenized as per the BERT tokenizer, which gives the
Tokenized Input, as shown in Figure 3. The word “cooking” is stemmed or broken into two
words, “cook” and “##ing”, so as to not increase the size of the vocabulary, as well as to be
able to handle any variation of the word “cook” such as “cooks”, which will be broken into
“cook” and “##s”. Each token has a pretrained embedding, and collectively for a sentence
input, they form the Token Embeddings. The [CLS] token is a special classification task
token, and the [SEP] token is a separator between multiple sentences; so, there can be
a sentence after [SEP] for multi-sentence classification. The next layer of inputs are the
learned embeddings that state the sentence to which the token belongs. In our example, we
have a single sentence only, so all will be EA, i.e., each token belongs to sentence A. The
final inputs are the Positional Embeddings, which index the position of the tokens in the
vocabulary. The sum of the three embeddings is the input to the BERT encoder. Each token,
when passed through the encoders, is embedded into a vector of length 768. In our example
in Figure 3, the 4 tokens in a sentence plus the 2 special tokens form an embedding matrix
of size 6 × 768, where 768 corresponds to the number of hidden units. This is the Model
Output. For the text classification task, BERT takes the final hidden state of the [CLS] token,
which is a representation of the whole sequence (the input sentence), and passes it to the
Classifier to predict the label. The Classifier here can be a feedforward neural network on
whose output we apply SoftMax to obtain the probabilities for each class. The class with
the maximum probability value is the predicted label [62].

3.3. Dialogue Act Labeling

The DAs to label the interview questions were adapted from the Questions DA scheme
in [41], with modifications made to the descriptions and guidelines to fit the context of
our data, and in general, for the job interview context. These DAs and our modified
descriptions of the data are given in Table 1. The interviewees’ utterances/responses were
classified according to the scheme in Table 2, which is an adaptation of the Answers DA
scheme from [41], with the addition of six labels to capture all types of utterances in our
dataset: xx, query, ft, fa, fp, fe. The xx label was used to account for any responses that were
ambiguous or uninterpretable, and the query label was used to account for interviewee-
initiated questions. The last four of the six labels were adapted from [32]. Based on
patterns observed in the mock interview’s text, a set of in-house guidelines were developed
for annotating the questions and the participant utterances according to the DA labeling
schemes in Tables 1 and 2.

Signals 2023, 4 365

Figure 3. Fine-tuning BERT for text classification, as described in [53].

Table 1. Questions Dialogue Acts.

Dialogue Act Description Example

wh Wh-questions, which generally start with “who”, “what”,
“where”, “when”, “why”, “how”, etc. What is your name?

wh-d Wh-declarative questions, when there is more than one
statement in a wh-*question.

You said math is your favorite subject. What kind
of grades did you get in Math?

bin Binary question, which can be answered with a “yes” or
“no”. Does that sound good?

bin-d
Binary-declarative question, which can also be answered

with a “yes” or “no”, but has an explanation or a
statement before it.

Before getting into some technical questions about
the position, tell me, do you have any prior work

experience?

qo
Open question or general questions, not specific to any

context, to know the options of the person who is
answering.

How do you feel this interview is going?

or Choice question, made of two parts connected by
conjunction “or”.

Do you have any experience with spreadsheet
software such as Microsoft Excel or Google

Spreadsheets?

Since the mock interview questions were the same for all the participants, two anno-
tators first labeled the questions according to the scheme in Table 1. Annotators settled
any differences in labels via discussions. The DA labels of the questions were then used
as a reference to annotate each participant’s/interviewee’s response to those questions
according to the scheme in Table 2. Types of questions often prompt certain responses [63],
e.g., a yes-or-no type of question will often prompt a yes or no type of answer, which
can make the annotation less ambiguous and can help increase interannotator agreement.
The interannotator agreement on the interviewee utterances, after settling differences, was
calculated to be 86%, which was the percentage of utterances labeled with same DA by both
annotators out of the total number of utterances. The utterances that the two annotators
did not agree upon were discarded, and the ones labeled xx were also discarded, as these
were uninterpretable and would be noise in the dataset. Finally, we were left with a dataset

Signals 2023, 4 366

of 640 annotated interviewee utterances, and the distribution of labels for the 13 classes
is shown in Table 3. Note that the dataset of the participants has been deidentified, and
contains placeholders ‘{personName}’ for where the participants introduce themselves to
the virtual interviewer.

Table 2. Answers Dialogue Acts.

Dialogue Act Description Example

y Variations of “yes” answers. “yes”, “yeah”, “of course”, “definitely is”, “that’s
right”, “I am sure”, etc.

y-d Yes-answer with an explanation. Yes. I have experience with Excel.

n Variations of “no” answers.
“No, I don’t think so”, “certainly not”, “I am afraid

not”, “not really”, “I don’t have experience. . . ”,
“we don’t”, etc.

n-d No-answer with an explanation. “User didn’t respond”, “I. . . ”.

xx
Uninterpretable responses or any responses which look

incomplete, such as one word and the user stopped
talking.

How do you feel this interview is going?

sno Non-opinionated statements. I started working on a project the other day.

so Opinionated statements. Anything which starts with “I think”, “I believe”,
“I feel”, etc.

ack Acknowledgements. “okay”, “uh-huh”, “I see”, etc.

dno It is a response given when the person is unsure, doesn’t
know, or doesn’t recall.

“I don’t know”, “maybe”, “I guess”, “I suppose”,
etc.

query Interviewee-initiated question. What is the work environment like?
ft Thank yous “thanks”, “thank you”
fa Apologies. “I’m sorry”
fe Exclamations. “shoot”, “oh goodness”, “jeez”, etc.
fp Greetings or conventional openings. “hello”, “nice to meet you”

Table 3. Distribution of annotated dataset (n = 640; 13 classes).

Dialogue Act No. of Samples Percentage Distribution (%)

y 50 7.81
y-d 17 2.66
n 49 7.66

n-d 10 1.56
sno 381 59.53
so 30 4.69
ack 13 2.03
dno 44 6.88

query 34 5.31
ft 3 0.47
fa 1 0.16
fe 2 0.31
fp 6 0.94

3.4. The Data

From the distribution in Table 3, we can clearly see that the sno (non-opinionated
statements) label comprises almost 60% of the dataset. This distribution is similar to
the distribution in the SwDA benchmark dataset, where sno comprises over 50% of the
data [40]. The ft, fa, fe, and fp classes have <10 samples each, where fa has only 1 sample.
This would have been an issue during the training and testing split, where the 1 fa sample
could end up in either the training set or the test set, and the other set would not have any
samples from the fa class. Instead of random oversampling (creating copies of the minority
samples), which is known to lead to overfitting (model trains well on training data, but
performs poorly on unseen or test data [64]) [65], we added some new data to the ft, fp, fa,
and fe classes. Data for ft, fp, and fa were gathered from the SwDA dataset, as those were

Signals 2023, 4 367

general cases of sorry, greetings, and thank you. After isolating the utterances in those
classes from the SwDA corpus and removing duplicates, we ended up with 38 samples
of ft, 57 samples of fp, and 41 samples of fa. For the fe class, we gathered samples from
a corpus developed in our previous work, which included exclamation-type words spelled
specifically as captured by the Microsoft Azure Speech-to-Text service. For example, curse
words are censored by Azure Speech, with the asterisk ‘*’ character replacing the characters
(e.g., ****), and other words are spelled differently, such as “jeez”, which is spelled as “geez”
when transcribed by Azure. After removing duplicates, we ended up with 51 samples of fe.
We added these to the original 640 sample dataset, which led to an 827-sample dataset. To
prepare the dataset for model training, we removed most punctuation with the exception of
the following: ‘?’, which was found in interviewee-initiated queries; ‘{’and ’}’, which were
used for the placeholder ‘{personName}’; ‘*’, which was left for the curse words that were
censored by Azure’s Speech-to-Text transcriber; and “ ’ ”, apostrophes used to preserve “ ’s
” or “I’m” in utterances. The utterances were then converted to lowercase, which made our
final dataset.

3.5. Model Training

Model training was conducted on a Microsoft Windows 11 PC with 64 GB RAM and
a 16 GB NVIDIA Quadro RTX 5000 GPU. To understand the predictive abilities of our
small dataset, we trained two classifiers as baseline models. Baseline models are often
used to understand the dataset, and help determine the specific classes with which the
model fails that may affect later steps in the project, or whether there are sufficient data
for the classes [66]. For example, it would help understand whether 10–15 samples in
a class are enough or the dataset needs revisiting. We chose support vector machine
(SVM) [67] and random forest [68] as the baseline models as they have previously shown to
provide acceptable results in DA classification tasks [32,69,70]. The model training process
is summarized in Figure 4.

Since our dataset was small and imbalanced, we chose to perform 5-fold cross vali-
dation (CV) to obtain the best-performing model as there were not enough data to apply
a 3-part split with a training, a validation, and a testing set [71]. We used the scikit-learn
KFold CV [72] to conduct the training and testing split and set the shuffle parameter in the
method to True to shuffle the data. For reproducibility, we chose a random seed of 47 as
a parameter to obtain the same splits with all 13 classes present in the training and the
testing datasets. The distribution of the 5 folds of data are given in Table 4. Note that the
5-fold split of data was conducted on the text version of the data and not the encoded
version, because on setting the random_state parameter of scikit-learn’s KFold method, the
indices of the encoded tokens of utterances change, which is not ideal, as we want to keep
the order of tokens the same in the dataset for BERT. After the 5 folds (groups/splits) of data
were obtained, the untokenized, unencoded, text versions were saved to comma-separated
values (CSV) files to use later for BERT.

For feature extraction for the traditional ML models, we first accumulated all the
unique words in the utterances and created a vocabulary of 1305 words. To account for
unknown words or words outside of the vocabulary during classification of unseen, new
data, we added a token ‘<UNK>’ to the vocabulary list (which made the length of the
vocabulary 1306 words). We then tokenized each utterance using the word tokenizer
from the Natural Language Toolkit (NLTK) [73], and then one-hot encoded the utterances,
where each feature vector representing the utterance was the length of the vocabulary (see
Appendix A.1). We used the label encoder [74] from scikit-learn ML toolkit [75] to encode
the labels associated with each utterance.

Hyperparameter tuning was conducted via Randomized Search. Randomized Search [76]
is a method of hyperparameter tuning where random combinations from a fixed grid of
values (see Table 5) are tried with the data to obtain the hyperparameter values that produce
the best-estimating classifier. Scikit-learn’s RandomizedSearchCV allows the user to perform
hyperparameter tuning while cross-validating the combinations of hyperparameters on

Signals 2023, 4 368

the k-fold splits of data, which makes the process faster. After obtaining the best hyperpa-
rameters on the 5 folds of data, we ran 5-fold CV again to obtain the classification results
on each fold (train and test set) of data. The classification results for each best-performing
classifier and the best parameters obtained from hyperparameter tuning are discussed in
Section 4. Figure 4 summarizes the aforementioned preprocessing, hyperparameter tuning,
and training process.

Figure 4. Summary of model training.

Table 4. Distribution of 5 folds (groups) of data (13 classes).

Labels Split 0 Split 1 Split 2 Split 3 Split 4
Train0 Test0 Train1 Test1 Train2 Test2 Train3 Test3 Train4 Test4

y 42 8 42 8 40 10 36 14 40 10
y-d 12 5 12 5 15 2 13 4 16 1
n 36 13 39 10 40 9 42 7 39 10

n-d 8 2 8 2 9 1 7 3 8 2
sno 298 83 300 81 308 73 306 75 312 69
so 25 5 24 6 26 4 23 7 22 8
ack 10 3 12 1 12 1 8 5 10 3
dno 39 5 38 6 30 14 35 9 34 10

query 30 4 29 5 27 7 24 10 26 8
ft 31 10 35 6 33 8 33 8 32 9
fa 36 6 32 10 30 12 37 5 33 9
fe 40 13 42 11 42 11 45 8 43 10
fp 54 9 48 15 50 13 53 10 47 16

Table 5. Hyperparameter grid for each model.

SVM a RF a BERT b

Hyperparameter Range of Values Hyperparameter Range of Values Hyperparameter Range of Values

C 10–100 max_depth 10–110, None batch_size 8, 16, 32

kernel radial basis function (rbf) [77],
linear max_features ‘auto’, ‘sqrt’ learning_rate 2 × 10−5, 3 × 10−5, 5 × 10−5

min_samples_leaf 1, 2, 4 epochs 20, 30, 40
min_samples_split 1–10

n_estimators 10–190
bootstrap True, False

a Hyperparameter names as per scikit-learn documentation. b Hyperparameter names as per Hugging Face documentation.

Signals 2023, 4 369

We then moved on to fine-tuning the pretrained BERT model. The data for BERT were
utterances that were preprocessed (not encoded), as discussed in Section 3.4, and the labels
were encoded by the aforementioned label encoder. The same 5 folds of data that were
used for the traditional ML classifiers were also used to cross-validate the BERT model to
keep the datasets consistent. The BERT pretrained model and tokenizer were retrieved
from the Hugging Face Transformers library [78] ;specifically, we chose the bert-base-uncased
version on Hugging Face, which consists of 12 transformer encoders stacked together, with
a hidden state of 768, 12 attention heads, and 110 million parameters, and ignores case in
words (e.g., “Camel” and “camel” are the same). For feature extraction, we used the Fast
Tokenizer [79] from Hugging Face. BERT models have variations for several tasks, such as
token classification, text classification, language modeling, and question answering. The
BERT model for sequence classification has an additional layer for fine-tuning BERT for
text classification tasks. All 12 layers of BERT were left unfrozen; hence, the 12 layers were
fine-tuned. First, we conducted an in-house randomized search CV over a fixed grid of
hyperparameters (see third column of Table 5 on the 5 folds of data. The weight decay was
kept constant at 0.01, and the default AdamW [80] optimizer was used. On training, we
obtain CV scores for each hyperparameter combination on each fold of testing data. The
best parameter combination is the one that produced the highest average f1-score over the
5-folds of data. In Section 4, we report the average accuracies and the f1-scores across all
5 folds of data, and highlight the best fine-tuned classifier, as determined by 5-fold CV, with
the best parameters found via randomized search CV. In addition, we also report which
split of data gave the best classifier. The final predictive BERT classifier was trained on the
entire dataset, with the best hyperparameters from the randomized Search CV.

4. Results

Table 6 presents the 5-fold CV results of all three models on the 13-class datasets. As
mentioned above, randomized search CV was used to determine the best hyperparameter
values on which to train each model. For SVM, they were C = 10 and the rbf kernel [69].
For RF, max_depth = 70, max_features = ‘sqrt’, min_samples_leaf = 1, min_samples_split = 10,
n_estimators = 190, and bootstrap = False. Finally, the best hyperparameters for BERT on the
13 classes were batch_size = 8, learning_rate = 5 × 10−5, and number of epochs = 40. Since our
dataset was imbalanced and we had multiple classes, instead of accuracy, we considered
f1-score as the determining factor for identifying the best-performing models. In Table 6,
we observe that training on Split 2 (see Table 4) produced the best models across all three
classifiers. Table 7 presents the classification report of the best-estimating classifiers on the
Split 2 dataset.

Table 6. The 5-fold CV accuracies and f1-scores. The best results were obtained on the Split 2 dataset.

Dataset SVM Baseline RF Baseline Fine-Tuned BERT
Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Split 0 0.86 0.71 0.81 0.61 0.87 0.77
Split 1 0.84 0.63 0.79 0.58 0.84 0.70
Split 2 0.85 0.72 0.84 0.74 0.92 0.87
Split 3 0.76 0.61 0.73 0.53 0.87 0.81
Split 4 0.79 0.61 0.76 0.56 0.85 0.77

Mean 0.82 0.65 0.78 0.60 0.87 0.78
Standard Deviation (SD) 0.04 0.05 0.04 0.07 0.03 0.06

The SVM classifier for 13 classes had an accuracy of 0.85 and an f1-score of 0.72, with
regularization C = 0 and rbf kernel as the best parameters. The RF classifier performed
better with respect to the f1-score of 0.74, but had a slightly smaller accuracy of 0.84. The
fine-tuned BERT model, on the other hand, outperformed both baseline classifiers with an
accuracy of 0.92 and an f1-score of 0.87. The confusion matrices in Figure 5 of the classifiers

Signals 2023, 4 370

provide more insight into the classification report and the scores that we observe in Table 7.

Figure 5. Confusion matrices of SVM (top left), RF (top right), and fine-tuned BERT (bottom center).
The color gradient to the right of each matrix corresponds to the number of samples, i.e., the grid cell
with ≥70 samples will be filled in yellow.

Table 7. Classification report of best classifiers on Split 2.

Dialogue Act
SVM Baseline RF Baseline Fine-Tuned BERT
Accuracy = 0.85 Accuracy = 0.84 Accuracy = 0.92
F1-Score = 0.72 F1-Score = 0.74 F1-Score = 0.87

y 0.75 0.75 0.84
y-d 0.00 0.50 0.80
n 0.94 0.88 0.88

n-d 0.00 0.00 1.00
sno 0.87 0.86 0.94
so 0.57 0.67 0.67
ack 1.00 1.00 0.67
dno 0.83 0.83 0.88

query 0.86 0.80 0.86
ft 0.94 0.88 0.94
fa 0.91 0.91 1.00
fe 0.84 0.84 0.95
fp 0.81 0.73 0.88

5. Discussion

From the results in Table 7, we observe that the SVM baseline classifier had an accept-
able overall accuracy and f1-score; however, it failed to classify the classes n-d (no, with
explanation) and y-d (yes, with explanation) and performed poorly on so (opinionated state-

Signals 2023, 4 371

ments) utterances. On observing the data, an utterance in the n-d class looks like “No but I
can try”, and an utterance in the n class looks like “No ma’am”. The features for the SVM
model did not take into account the order of words, since one-hot encoding was performed
by the position of the word in the vocabulary, rather than by the order of occurrence of
the words in the utterance (see Appendix A.1 for example). The presence of “No” in both
utterances may be why the utterances in n-d were misclassified as the n label. However,
on viewing the confusion matrix for SVM in Figure 5 , we see that the n-d sample got
misclassified as sno. This misclassification was also observed with the y-d utterances being
misclassified as sno class utterances, possibly due to the presence of words common to both
classes and/or model bias towards the majority sno class; however, there are not enough
samples in the test set of the minority classes for an analysis. The RF model performs
better for y-d, where 1 sample is classified as sno (see Figure 5) out of the 2; however, n-d is
misclassified completely. The performance on so improved in the RF classification report.
The BERT model’s features, on the other hand, involve integer-encoded utterances, where
the order of the words in the utterance is preserved and each feature vector is padded to
a maximum fixed length (see Appendix A.2, for example). Hence, it performed well on the
two classes that the SVM model missed, but the accuracy on so remained the same.

Figure 6 shows two graphs where we plot the average accuracy and average f1-score
of the three models (see Table 6) with standard error bars to present a visual representation
of the variation in results from the 5-fold CV across the three classifiers. Independent
one-tailed t-tests were conducted between the results of SVM and RF, SVM and fine-tuned
BERT, and RF and fine-tuned BERT. The p-values are visualized on the dotted lines between
the pairs. Results show that there was no statistical significance between the results of
SVM and RF (t (4) = 1.25, p = 0.123 for mean accuracy and t (4) = 1.19, p = 0.135 for mean
f1-score). However, the results between SVM and fine-tuned BERT (t (4) = −2.11, p = 0.034)
for mean accuracy and t (4) = −3.46, p = 0.004 for f1-scores) and RF and fine-tuned BERT
(t (4) = −3.56, p = 0.004 for mean accuracy and t (4) = −3.93, p = 0.002 for f1-scores) were
statistically significant. The fine-tuned BERT performed significantly better than SVM
and RF.

Figure 6. Visualizing accuracies (left) and f1-scores (right) across all models obtained in 5-fold CV
with 13-class data. The p-values from the t-tests are labeled between SVM and RF, SVM and BERT,
and RF and BERT.

In Section 1, we described how our project was motivated by Chakravarty et al. [41],
who performed transfer learning and trained three classifiers, including a pretrained BERT,
for the task of question answering in an interview context where the input was the question–
answer pair. Their DA scheme was adapted from the early work by Jurafsky et al. [81], and
led to the development of a rich dataset of interview questions and answers that they used
to fine-tune a pretrained BERT with an f1-score of 0.84. Our DA scheme builds on their
work and that of Jurafsky et al. [32,40], and achieves similar results, with an f1-score of
0.87. Our score is likely slightly higher due to the difference in the number of classes, and
because we were performing single-sentence text classification, which has no dependence

Signals 2023, 4 372

on the question. Their fine-tuned BERT model may have a high f1-score when compared to
the scores of the other two models they trained; however, it failed to classify two labels,
including one that is similar to query. Coincidently, their classifier produced the same
f1-score for the so label (0.67). Recent research by Wu et al. [58], introduces two further
pretrained BERT models for task-oriented dialogue (TOD-BERT) using the BERT-base-
uncased model. After pretraining, they fine-tuned their TOD-BERT model for downstream
tasks such as DA classification. Although our model had not been further pretrained on
other datasets, our micro-f1 score of 0.92 or 92.2% is in line with their DA classification
results (91.7%, 93.8%, and 99.5%) achieved on three task-oriented datasets with several
domains. These comparisons to previous research further demonstrate the potential of our
model to perform well on job interview-related utterances. The results also suggest that
further pretraining of our model data will likely improve performance. As for our baseline
models, they perform significantly better than those mentioned in [47], which also aimed
to classify DA (in the context of online chat forums) using traditional ML methods with
10-fold CV.

6. Conclusions

Autistic individuals face disproportionately poor employment outcomes. Though pre-
vious job interview training systems have shown promise, they lack an automated response
understanding/labeling mechanism that can be used by the system to automatically classify
the types of responses received for a question, regardless of the domain. In this article, we
discuss the contributions of our project. First, we present a DA classification scheme in
the context of job interviews and provide original data comprising interviewee utterances
collected via a virtual job interview training environment. We also share the interview
script for use in future data collection studies, which we hope will pave the way for more
available data for virtual reality-based job interview training systems for all individuals,
including autistic individuals. Second, we present a classifier based on the pretrained BERT,
fine-tuned via transfer learning on our original data, that performs with acceptable accu-
racy across each class, ready to be integrated into a job interview platform for automatic
classification of interviewee responses. Automated classification of interviewee utterances
in existing job interview training environments can help create adaptive environments
where the virtual interviewer (the conversational agent) can understand the basic intent of
an interviewee’s utterance, which can then be used to create individualized and naturalistic
training experiences. The DA detected may also provide insights into the performance
of the autistic interviewee to facilitate individualized feedback for improvement. Further,
a future developer may experiment with different combinations of classes on which to
train their models or further train our fine-tuned BERT, to see what fits best with their
application (e.g., another job interview system may only require the utterances from sno,
query, and yes/no type of answers). Appendix A.3 describes the process on how to further
train our fine-tuned BERT model for classification.

Despite the above accomplishments, our work has a few limitations. The original
dataset, with the addition of more data, is still quite small, and the results reported are
on a very small number of samples as support for each class. A larger sample of par-
ticipants and more training data would be ideal for comparing the efficacy of our ML
models. Our ability to carry this out is limited by two key factors: (1) we are sampling
a specialized population—working-age, employment-seeking autistic adults; (2) CIRVR
currently requires participants to physically come into our lab, where all the multimodal
data (responses to questions, eye gaze tracking data, stress detection, etc.) can be collected.
We are, however, working to partner with other organizations who work with autistic
adults preparing for employment to collect more data by deploying CIRVR at their sites
or having these partner organizations help identify a set of participants willing and able
to come to our lab. We are also in the early stages of developing a version of CIRVR that
can be used on the user’s personal device in any location they prefer, which would help in
acquiring more data in the future.

Signals 2023, 4 373

As for improvements, to further address the limited training data, we will explore
data augmentation methods that have been accepted for use with autistic data [82,83].
It would be useful in future work to examine how a pretrained BERT that has not been
fine-tuned on our data performs on the entire dataset. Furthermore, in hopes to improve
individual label accuracy of the minority classes, we will explore variations of BERT, such
as those in current works [84–86], and explore fine-tuning of TOD-BERT [58] on our data
to observe differences in accuracy, and in turn, determine the best-performing method on
our data. Future research also needs to evaluate the model’s real-world performance by
integrating the final BERT classifier trained on the entire dataset, where the predicted labels
will be used by the conversational agent to direct the flow of the interview. The interview
script and annotation guidelines in Supplementary Materials can aid in replication of our
study. The final BERT model has been provided to allow for integration in existing work or
for further fine tuning (please contact corresponding author for all data, the model, and
the code).

Supplementary Materials: The following are available online at: https://www.mdpi.com/artic
le/10.3390/signals4020019/s1, Data Entry Clerk Script and CIRVR Job Interview Conversation
Coding Guidelines.

Author Contributions: Conceptualization, D.A. and N.S.; methodology, D.A. and K.C.; software,
D.A.; validation, D.A.; formal analysis, D.A.; investigation, D.A.; resources, N.S. and J.W.; data
curation, D.A., K.C., J.W., T.J.V. and M.M.; writing—original draft preparation, D.A.; writing—review
and editing, D.A. and N.S.; visualization, D.A.; supervision, N.S.; project administration, J.W., D.A.,
N.S. and K.C.; funding acquisition, N.S., J.W. and D.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Science Foundation, grant numbers 1936970 and
2033413. The Article Processing Charge (APC) was funded by the Vanderbilt Award for Doctoral
Discovery (VADD).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Vanderbilt
University (protocol code #191277 and date of approval 6 August 2019).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent has been obtained from the patient(s) to publish this paper.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

VR Virtual Reality
BERT Bidirectional Encoder Representations from Transformers
DA Dialogue Act
ASD Autism Spectrum Disorder
SVM Support Vector Machine
DAN Deep Average Network
RNN Recurrent Neural Network
SwDA Switchboard Dialogue Act
POS Parts of Speech
DBSCAN Density-Based Spatial Clustering of Applications with Noise
RoBERTa Robustly Optimized BERT Approach
MLM Masked Language Modeling
NSP Next Sentence Prediction

https://www.mdpi.com/article/10.3390/signals4020019/s1
https://www.mdpi.com/article/10.3390/signals4020019/s1

Signals 2023, 4 374

TOD-BERT Task-Oriented Dialogue BERT
CNN Convolutional Neural Network
CV Cross-Validation
LSTM Long Short-Term Memory
CIRVR Career Interview Readiness in Virtual Reality
IRB Institutional Review Board
CSV Comma-Separated Values
NLTK Natural Language Toolkit
RBF Radial Basis Function
JSON JavaScript Object Notation

Appendix A

Appendix A.1

Categorical features such as text in sentences are represented as one-hot encoded
vectors. Suppose we have the following utterances spoken by the interviewee or participant:

data = [“I don’t have experience with Microsoft Word”, “I don’t know”]
The vocabulary would then consist of the following words when the above sentences

are tokenized and converted to lowercase:
vocab = [“i”, “do”, “n’t”, “have”, “experience”, “with”, “microsoft”, “word”, “know”]
The tokenized data will look like the following:
toknenized_data = [[“i”, “do”, “n’t”, “have”, “experience”, “with”, “microsoft”, “word”],

[““i”, “do”, “n’t”, “know”]]
The encoded data will comprise each data sample represented as a list of zeros with

the length of the vocabulary. If a token exists in the vocabulary, we mark the presence of the
token with a 1 in the position of the word in the vocabulary list (like an “on-and-off” binary
switch from 0 to 1). In this example, the vocabulary has nine words; each data sample will
start with [0, 0, 0, 0, 0, 0, 0, 0, 0]. The first utterance will be [1, 1, 1, 1, 1, 1, 1, 1, 0], and
the second sentence will be represented as [1, 1, 1, 0, 0, 0, 0, 0, 1], where 1 is marked for
the presence of the word “know” in the vocabulary. The final encoded data will look like
the following:

encoded_data = [[1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 0, 0, 0, 0, 0, 1]]
Since the encoding is carried out by the position of the word in the vocabulary list, the

order of words in the utterance is lost.

Appendix A.2

Building on the example from Appendix A.1, integer encoding by the BERT tokenizer
maintains the order of words/tokens in an utterance. We define a maximum limit of the
length of each feature vector representing each utterance. For this example, let us say that
the maximum length of the feature vector is 15 tokens. Since the lengths of the utterances
vary, the tokenizer fills the empty space in the feature vector with padding, which represents
“no presence of tokens” in those spaces. Each of the words in the vocabulary list above
would be assigned a unique integer identifier. Here, we use the position of the word in the
vocabulary list to assign the unique identifier for each word, which can be imagined as
a hash table. We assign integer 0 for the token <PAD>, which represents padding.

vocab_dictionary = “<PAD>”: 0, “i”: 1, “do”: 2, “n’t”: 3, “have”: 4, “experience”: 5, “with”:
6, “microsoft”: 7, “word”: 8, “know”: 9

Following the same concept, the tokenizer will encode the data according to the
dictionary above, where each feature vector is of a maximum length of 15 tokens.

encoded_data = [[1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0], [1, 2, 3, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
Although we did not need to encode the data ourselves, we have presented the

underlying concept of how the BERT model accepts feature vectors.

Signals 2023, 4 375

Appendix A.3. Training a Fine-Tuned BERT

There are several libraries and methods to fine-tune a pretrained BERT model. We use
functions from the Hugging Face transformers library to demonstrate the process of training
a fine-tuned BERT model. Just as we loaded the bert-base-uncased model for fine-tuning,
a user can load the fine-tuned model for further pretraining for classification tasks.

The fine-tuned BERT model, when saved, has the following files in a single folder,
which we named "fine-tuned-BERT":

• config.json has the BERT-base-uncased architecture and configuration of the model,
saved in JavaScript Object Notation (JSON).

• pytorch_model.bin is the model in a binary file format.
• special_tokens_map.json has the [CLS], [SEP], and more special tokens stored as JSON.
• tokenizer.json consists of the tokenizer information, as well as the indices of the tokens

in the vocabulary.
• tokenizer_config.json has the tokenizer configuration of the fine-tuned BERT model.
• training_args.bin is a binary file of the training arguments used while training the model.
• vocab.txt consists of all the words in the BERT-base vocabulary in a text file.

Below, we describe the process of loading the model for further training/fine-tuning
on new data. The programs were written in Python, and the models are stored as PyTorch
models that accept PyTorch tensors:

1. Data Preprocessing
The first step is to prepare the data. Based on the task, a user may choose to preprocess
their data, as we describe in Section 3.4. For further fine tuning of BERT, a user may
have fewer or more classes than what the model was previously trained to predict.
The utterances need to be in text (not tokens) and stored in the first column of a CSV
file with the header “text”. The labels should be encoded to be represented as unique
integers. For example, if your labels are ‘positive’, ‘negative’ or ‘neutral’, you can
encode the labels as ‘positive’: 0, ‘negative’: 1, ‘neutral’: 2. The encoded label for
each corresponding utterance should be in the second column of the CSV file with
the header ‘label’. The training and testing data are to be separated into a training.csv
file and a testing.csv file, and the columns in both files should have the same headers
“text” and “label” (see Figure A1). Note that the training data can be further split
into a training and validation set for evaluation of models during training, which is
especially useful for early stopping.

Figure A1. CSV file format for BERT training.

In the program, the CSV files are loaded using the load_dataset() function of the Python
datasets library.
train_data = load_dataset(‘csv’, ‘train’: ‘training.csv’)
For tokenization and feature extraction, we use the BERTFastTokenizer from the trans-
formers library, which has a from_pretrained() function that loads the saved tokenizer
in fine-tuned BERT. The function takes the model name as an argument or the name

Signals 2023, 4 376

of the folder where the fine-tuned BERT model files are stored, i.e., fine-tuned-BERT.
The second parameter is do_lower_case = True, which internally converts the text to
lowercase if it is not already. Below is the line of code to load the tokenizer.
tokenizer = BERTFastTokenizer.from_pretrained(‘fine-tuned-BERT’, do_lower_case = True)
Once loaded, the dataset is tokenized one sample at a time, where the tokenizer accepts
a few arguments: padding = [True, False], truncation = [True, False],
max_length = integer value. For example, to make all samples a fixed length, we
can set padding to True; if the sentences are very long (greater than 512 tokens), we can
set truncation to True; or if we want each sequence to be of a specific length, e.g., 32
tokens, then we can set max_length to that value. The preprocess function passed each
sample in the train_data and returns the tokenized data.
def preprocess(samples): return tokenizer(samples[‘text’], padding = True)
tokenized_train_data = train_data.map(preprocess)
Once the training and testing sets have been tokenized, we move on to the model.

2. Loading the Model
Here, we use the transformers library’s BertForSequenceClassification to load the model
using the function from_pretrained(), as shown below.
model = BERTForSequenceClassification.from_pretrained (“fine-tuned-BERT”, num_labels = 3)
We can also specify where we want to store the model: on the GPU or on the CPU. To
store the model on the GPU, we use model.to(“cuda”), and to store it on CPU, we use
model.to(“cpu”).

3. Defining Training Arguments
There are several hyperparameters that can be initialized before training. Here, we use
the TrainingArguments function of the transformers library to set the hyperparameters.
Specifically, we focus on the number of training epochs or training cycles, the learning
rate, and the batch size, which can be affected by the amount of free memory we have
available on our system. Here, we had a GPU memory of 16GB, which stores the
model and the training data at any given time. Hence, we were only able to initiate the
maximum batch size to 32. Other parameters in the TrainingArgs can be found at [87].
Just as we conducted hyperparameter tuning using an in-house randomized search
on 5 folds of data, the user can follow the same method, or experiment with different
values and use early stopping to find the best model. More hyperparameter-tuning
options can be found in [88]. The training arguments, for example, are initialized
as follows:
training_args = TrainingArguments(
num_train_epochs = 40,
learning_rate = 5e-5,
per_device_batch_size = 8,
weight_decay = 0.01,
output_dir= “Models/fine-tuned-BERT2”)

4. Model Training
We use the transformers Trainer function to train the model. This function takes
a few arguments. The first is the model loaded in Step 2; then, the args, which are
the training_args from Step 3. The tokenized_train_data from Step 1 is passed to the
train_dataset parameter. The tokenizer parameter is set to the tokenizer that we loaded
from the pretrained model. Another optional parameter is the Data Collator. Data
collators [89] are objects that form batches of data from a list of data input. Here, we
used DataCollatorWithPadding and passed the tokenizer as an argument:
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
trainer = Trainer (model =model,
args = training_args,
train_dataset = tokenized_train_data,
tokenizer = tokenizer,
data_collator = data_collator)

Signals 2023, 4 377

Next, we call the Trainer’s train() function.
trainer.train()
After training, the model can be saved along with the learned weights and data using
the Trainer’s save(model name) function.
trainer.save(model name)

5. Inference
For predictions, we create an inference pipeline. For this task, we can switch to the
CPU if not enough GPU space is available. The text input, for example, “Hi there!”, is
first preprocessed by converting to lower case and by removing any punctuation, as
described in Section 3.4. The input is converted into tokens by the tokenizer with the
same arguments as those used to tokenize the training set (e.g., padding = True). This
input is passed to the model, from which we obtain the outputs on which we apply
SoftMax, which gives us three probabilities for each class that add up to 1. The argmax
of the probabilities is the predicted class label.

References
1. Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson,

A.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental
disabilities monitoring network, 11 sites, United States, 2018. Mmwr Surveill. Summ. 2021, 70, 1. [CrossRef] [PubMed]

2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric
Association: San Francisco, CA, USA, 2013; pp. 50–59. [CrossRef]

3. Taboas, A.; Doepke, K.; Zimmerman, C. Preferences for identity-first versus person-first language in a US sample of autism
stakeholders. Autism 2023, 27, 565–570. [CrossRef] [PubMed]

4. Roux, A.M.; Rast, J.E.; Anderson, K.A.; Shattuck, P.T. National Autism Indicators Report: Developmental Disability Services and
Outcomes in Adulthood; Life Course Outcomes Program, AJ Drexel Autism Institute, Drexel University: Philadelphia, PA,
USA, 2017.

5. Wehman, P.; Taylor, J.; Brooke, V.; Avellone, L.; Whittenburg, H.; Ham, W.; Brooke, A.M.; Carr, S. Toward Competitive
Employment for Persons with Intellectual and Developmental Disabilities: What Progress Have We Made and Where Do We
Need to Go. Res. Pract. Pers. Sev. Disabil. 2018, 43, 131–144. [CrossRef]

6. Hayward, S.M.; McVilly, K.R.; Stokes, M.A. Autism and employment: What works. Res. Autism Spectr. Disord. 2019, 60, 48–58.
[CrossRef]

7. Booth, J. Autism Equality in the Workplace. Removing Barriers and Challenging Discrimination; Jessica KIngsley Publishers: London,
UK, 2016.

8. Harmuth, E.; Silletta, E.; Bailey, A.; Adams, T.; Beck, C.; Barbic, S.P. Barriers and facilitators to employment for adults with autism:
A scoping review. Ann. Int. Occup. Ther. 2018, 1, 31–40. [CrossRef]

9. Ohl, A.; Grice Sheff, M.; Small, S.; Nguyen, J.; Paskor, K.; Zanjirian, A. Predictors of employment status among adults with
Autism Spectrum Disorder. Work 2017, 56, 345–355. [CrossRef]

10. Flower, R.L.; Dickens, L.M.; Hedley, D. Barriers to Employment: Raters’ Perceptions of Male Autistic and Non-Autistic Candidates
During a Simulated Job Interview and the Impact of Diagnostic Disclosure. Autism Adulthood 2021, 3, 300–309. [CrossRef]

11. Maras, K.L.; Norris, J.E.; Nicholson, J.; Heasman, B.; Remington, A.; Crane, L. Ameliorating the disadvantage for autistic job
seekers: An initial evaluation of adapted employment interview questions. Autism 2020, 25, 1060–1075. [CrossRef]

12. Smith, M.J.; Ginger, E.J.; Wright, K.; Wright, M.A.; Taylor, J.L.; Humm, L.B.; Olsen, D.E.; Bell, M.D.; Fleming, M.F. Virtual reality
job interview training in adults with autism spectrum disorder. J. Autism Dev. Disord. 2014, 44, 2450–2463. [CrossRef]

13. Haruki, K.; Muraki, Y.; Yamamoto, K.; Lala, D.; Inoue, K.; Kawahara, T. Simultaneous Job Interview System Using Multiple
Semi-autonomous Agents. In Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue,
Edinburgh, UK, 7–9 September 2022; Association for Computational Linguistics: Edinburgh, UK, 2022; pp. 107–110.

14. Smith, M.J.; Pinto, R.M.; Dawalt, L.; Smith, J.; Sherwood, K.; Miles, R.; Taylor, J.; Hume, K.; Dawkins, T.; Baker-Ericzén, M.; et al.
Using community-engaged methods to adapt virtual reality job-interview training for transition-age youth on the autism
spectrum. Res. Autism Spectr. Disord. 2020, 71, 101498. [CrossRef]

15. Baur, T.; Damian, I.; Gebhard, P.; Porayska-Pomsta, K.; André, E. A Job Interview Simulation: Social Cue-Based Interaction
with a Virtual Character. In Proceedings of the 2013 International Conference on Social Computing, Alexandria, VA, USA, 8–14
September 2013; pp. 220–227. [CrossRef]

16. Strickland, D.C.; Coles, C.D.; Southern, L.B. JobTIPS: A transition to employment program for individuals with autism spectrum
disorders. J. Autism Dev. Disord. 2013, 43, 2472–2483. [CrossRef]

17. VirtualSpeech: Soft Skills Training with VR, 2021. Available online: https://virtualspeech.com/ (accessed on 12 January 2023).
18. Smith, M.J.; Smith, J.D.; Jordan, N.; Sherwood, K.; McRobert, E.; Ross, B.; Oulvey, E.A.; Atkins, M.S. Virtual Reality Job Interview

Training in Transition Services: Results of a Single-Arm, Noncontrolled Effectiveness-Implementation Hybrid Trial. J. Spec. Educ.
Technol. 2021, 36, 3–17. [CrossRef]

http://doi.org/10.15585/mmwr.ss7011a1
http://www.ncbi.nlm.nih.gov/pubmed/34855725
http://dx.doi.org/10.1176/appi.books.9780890425596
http://dx.doi.org/10.1177/13623613221130845
http://www.ncbi.nlm.nih.gov/pubmed/36237135
http://dx.doi.org/10.1177/1540796918777730
http://dx.doi.org/10.1016/j.rasd.2019.01.006
http://dx.doi.org/10.3928/24761222-20180212-01
http://dx.doi.org/10.3233/WOR-172492
http://dx.doi.org/10.1089/aut.2020.0075
http://dx.doi.org/10.1177/1362361320981319
http://dx.doi.org/10.1007/s10803-014-2113-y
http://dx.doi.org/10.1016/j.rasd.2019.101498
http://dx.doi.org/10.1109/SocialCom.2013.39
http://dx.doi.org/10.1007/s10803-013-1800-4
https://virtualspeech.com/
http://dx.doi.org/10.1177/0162643420960093

Signals 2023, 4 378

19. Smith, M.; Sherwood, K.; Ross, B.; Smith, J.; DaWalt, L.; Bishop, L.; Humm, L.; Elkins, J.; Steacy, C. Virtual interview training for
autistic transition age youth: A randomized controlled feasibility and effectiveness trial. Autism 2021, 25, 1536–1552. [CrossRef]

20. Damian, I.; Baur, T.; Lugrin, B.; Gebhard, P.; Mehlmann, G.; André, E. Games are Better than Books: In-Situ Comparison of
an Interactive Job Interview Game with Conventional Training. In Artificial Intelligence in Education; Conati, C., Heffernan, N.,
Mitrovic, A., Verdejo, M.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 84–94.

21. Schmid Mast, M.; Kleinlogel, E.P.; Tur, B.; Bachmann, M. The future of interpersonal skills development: Immersive virtual reality
training with virtual humans. Hum. Resour. Dev. Q. 2018, 29, 125–141. [CrossRef]

22. Kwon, J.H.; Powell, J.; Chalmers, A. How level of realism influences anxiety in virtual reality environments for a job interview.
Int. J. Hum. Comput. Stud. 2013, 71, 978–987. [CrossRef]

23. Zhao, W. How Different Virtual Reality Environments Influence Job Interview Anxiety. Bachelor’s Thesis, The University of
Twente, Enschede, The Netherlands, July 2022. Available online: http://essay.utwente.nl/91801/ (accessed on 4 April 2023).

24. Villani, D.; Repetto, C.; Cipresso, P.; Riva, G. May I Experience More Presence in Doing the Same Thing in Virtual Reality than in
Reality? An Answer from a Simulated Job Interview. Interact. Comput. 2012, 24, 265–272. [CrossRef]

25. Adiani, D.; Breen, M.; Migovich, M.; Wade, J.; Hunt, S.; Tauseef, M.; Khan, N.; Colopietro, K.; Lanthier, M.; Swanson, A.; et al.
Multimodal job interview simulator for training of autistic individuals. Assist. Technol. 2023, 1–18. [CrossRef]

26. McTear, M.F.; Callejas, Z.; Griol, D. The Conversational Interface; Springer: Cham, Switzerland, 2016; Volume 6.
27. Searle, J.R. What is a speech act. Perspect. Philos. Lang. Concise Anthol. 1965, 2000, 253–268.
28. Chatterjee, A.; Sengupta, S. Intent Mining from past conversations for Conversational Agent. In Proceedings of the 28th

International Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; International Committee on
Computational Linguistics: Barcelona, Spain, 2020; pp. 4140–4152. [CrossRef]

29. Enayet, A.; Sukthankar, G. Poster: A Transfer Learning Approach for Dialogue Act Classification of GitHub Issue Comments. In
Proceedings of the International Conference on Social Informatics, Pisa, Italy, 6–9 October 2020. [CrossRef]

30. Montenegro, C.; López Zorrilla, A.; Mikel Olaso, J.; Santana, R.; Justo, R.; Lozano, J.A.; Torres, M.I. A Dialogue-Act Taxonomy for
a Virtual Coach Designed to Improve the Life of Elderly. Multimodal Technol. Interact. 2019, 3, 52. [CrossRef]

31. Ahmadvand, A.; Choi, J.I.; Agichtein, E. Contextual Dialogue Act Classification for Open-Domain Conversational Agents. In
Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris,
France, 21–25 July 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1273–1276. [CrossRef]

32. Stolcke, A.; Ries, K.; Coccaro, N.; Shriberg, E.; Bates, R.A.; Jurafsky, D.; Taylor, P.; Martin, R.; Ess-Dykema, C.V.; Meteer, M.
Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech. Comput. Linguist. 2000, 26, 339–373.
[CrossRef]

33. Wood, A.; Eberhart, Z.; McMillan, C. Dialogue Act Classification for Virtual Agents for Software Engineers during Debugging.
In Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, New York, NY, USA,
27 June–19 July 2020; pp. 462–469. [CrossRef]

34. Liu, L.; Tang, L.; Dong, W.; Yao, S.; Zhou, W. An overview of topic modeling and its current applications in bioinformatics.
SpringerPlus 2016, 5, 1–22. [CrossRef] [PubMed]

35. Khatri, C.; Goel, R.; Hedayatnia, B.; Metanillou, A.; Venkatesh, A.; Gabriel, R.; Mandal, A. Contextual Topic Modeling for Dialog
Systems. In Proceedings of the 2018 IEEE Spoken Language Technology Workshop (SLT), Athens, Greece, 18–21 December 2018;
pp. 892–899. [CrossRef]

36. Boyer, K.E.; Grafsgaard, J.F.; Ha, E.Y.; Phillips, R.; Lester, J.C. An Affect-Enriched Dialogue Act Classification Model for Task-
Oriented Dialogue. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Portland, OR,
USA, 19–24 June 2011; pp. 1190–1199.

37. Saha, T.; Gupta, D.; Saha, S.; Bhattacharyya, P. Emotion aided dialogue act classification for task-independent conversations in
a multi-modal framework. Cogn. Comput. 2021, 13, 277–289. [CrossRef]

38. Rangarajan, V.; Bangalore, S.; Narayanan, S. Exploiting prosodic features for dialog act tagging in a discriminative modeling
framework. In Proceedings of the Interspeech, Antwerp, Belgium, 27–31 August 2007.

39. Adiani, D.; Itzkovitz, A.; Bian, D.; Katz, H.; Breen, M.; Hunt, S.; Swanson, A.; Vogus, T.J.; Wade, J.; Sarkar, N. Career Interview
Readiness in Virtual Reality (CIRVR): A Platform for Simulated Interview Training for Autistic Individuals and Their Employers.
ACM Trans. Access. Comput. 2022, 15, 1–28. [CrossRef]

40. Jurafsky, D.; Shriberg, E.; Biasca, D Switchboard SWBD-DAMSL Shallow-Discourse-Function Annotation Coders Manual, Draft
13. University of Colorado at Boulder &+ SRI International, 1997. Available online: https://www1.icsi.berkeley.edu/pubs/spee
ch/tr-97-02.pdf (accessed on 4 April 2023).

41. Chakravarty, S.; Chava, R.V.S.P.; Fox, E.A. Dialog Acts Classification for Question-Answer Corpora. In Proceedings of the Third
Workshop on Automated Semantic Analysis of Information in Legal Text (ASAIL@ICAIL), Montreal, QC, Canada, 17–21 June
2019. Available online: https://ceur-ws.org/Vol-2385/paper6.pdf (accessed on 4 April 2023).

42. Sadohara, K.; Kojima, H.; Narita, T.; Nihei, M.; Kamata, M.; Onaka, S.; Fujita, Y.; Inoue, T. Sub-lexical Dialogue Act Classification
in a Spoken Dialogue System Support for the Elderly with Cognitive Disabilities. In Proceedings of the Fourth Workshop on
Speech and Language Processing for Assistive Technologies, Grenoble, France, 21–22 August 2013; pp. 93–98.

43. Fernandez, R.; Picard, R.W. Dialog act classification from prosodic features using support vector machines. In Proceedings of the
Speech Prosody 2002, Aix-en-Provence, France, 11–13 April 2002; pp. 291–294.

http://dx.doi.org/10.1177/1362361321989928
http://dx.doi.org/10.1002/hrdq.21307
http://dx.doi.org/10.1016/j.ijhcs.2013.07.003
http://essay.utwente.nl/91801/
http://dx.doi.org/10.1016/j.intcom.2012.04.008
http://dx.doi.org/10.1080/10400435.2023.2188907
http://dx.doi.org/10.18653/v1/2020.coling-main.366
http://dx.doi.org/10.48550/arXiv.2011.04867
http://dx.doi.org/10.3390/mti3030052
http://dx.doi.org/10.1145/3331184.3331375
http://dx.doi.org/10.1162/089120100561737
http://dx.doi.org/10.1145/3387940.3391487
http://dx.doi.org/10.1186/s40064-016-3252-8
http://www.ncbi.nlm.nih.gov/pubmed/27652181
http://dx.doi.org/10.1109/SLT.2018.8639552
http://dx.doi.org/10.1007/s12559-019-09704-5
http://dx.doi.org/10.1145/3505560
https://www1.icsi.berkeley.edu/pubs/speech/tr-97-02.pdf
https://www1.icsi.berkeley.edu/pubs/speech/tr-97-02.pdf
https://ceur-ws.org/Vol-2385/paper6.pdf

Signals 2023, 4 379

44. Surendran, D.; Levow, G.A. Dialog act tagging with support vector machines and hidden Markov models. In Proceedings of the
2006 Interspeech, Pittsburgh, PA, USA, 17–21 September 2006.

45. Grau, S.; Sanchis, E.; Castro, M.J.; Vilar, D. Dialogue act classification using a Bayesian approach. In Proceedings of the 9th
Conference Speech and Computer, St. Petersburg, Russia, 20–22 September 2004.

46. Keizer, S.; Akker, R.O.D. Dialogue act recognition under uncertainty using Bayesian networks. Nat. Lang. Eng. 2007, 13, 287–316.
[CrossRef]

47. Moldovan, C.; Rus, V.; Graesser, A.C. Automated Speech Act Classification For Online Chat. In Proceedings of the Midwest
Artificial Intelligence and Cognitive Science Conference, Cincinnati, OH, USA, 16–17 April 2011.

48. Fiel, M. Machine learning techniques in dialogue act recognition. Eest. Raken. Uhingu Aastaraam. 2007, 3, 117–134. [CrossRef]
49. Raheja, V.; Tetreault, J. Dialogue Act Classification with Context-Aware Self-Attention. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis,
MN, USA, 2–7 June 2019; pp. 3727–3733. [CrossRef]

50. The Switchboard Dialog Act Corpus. Available online: https://compprag.christopherpotts.net/swda.html (accessed on
4 April 2023).

51. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA,
2–4 August 1996; pp. 226–231.

52. Bozinovski, S. Reminder of the First Paper on Transfer Learning in Neural Networks, 1976. Informatica 2020, 44 291–302.
[CrossRef]

53. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for 586 Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers) (NAACL-HLT 2019), Minneapolis, MN, USA, 2–7 June 2019;
pp. 4171–4186. [CrossRef]

54. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
[CrossRef]

55. Duran, N.; Battle, S.; Smith, J. Sentence encoding for Dialogue Act classification. Nat. Lang. Eng. 2021, 1–30. [CrossRef]
56. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.
57. Noble, B.; Maraev, V. Large-scale text pre-training helps with dialogue act recognition, but not without fine-tuning. In

Proceedings of the 14th International Conference on Computational Semantics (IWCS), Groningen, The Netherlands, 14–18 June
2021; pp. 166–172.

58. Wu, C.; Hoi, S.C.H.; Socher, R.; Xiong, C. ToD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogues.
arXiv 2020, arXiv:2004.06871.

59. Microsoft Azure| Speech-to-Text Documentation. Available online: https://learn.microsoft.com/en-us/azure/cognitive-servic
es/speech-service/index-speech-to-text (accessed on 13 January 2023).

60. Xu, B.; Tao, C.; Feng, Z.; Raqui, Y.; Ranwez, S. A Benchmarking on Cloud based Speech-To-Text Services for French Speech and
Background Noise Effect. In Proceedings of the 6th National Conference on Practical Applications of Artificial Intelligence,
Bordeaux, France, 2021. [CrossRef]

61. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan,
S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30.

62. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to fine-tune bert for text classification? In Proceedings of the Chinese Computational
Linguistics: 18th China National Conference, CCL 2019, Kunming, China, 18–20 October 2019; pp. 194–206.

63. Kim, S.N.; Cavedon, L.; Baldwin, T. Classifying dialogue acts in one-on-one live chats. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, Cambridge, MA, USA, 9–11 October 2010; pp. 862–871.

64. Webb, G. Overfitting. In Encyclopedia of Machine Learning and Data Mining; Sammut, C.; Webb, G.I., Eds.; Springer: Boston, MA,
USA, 2017; pp. 947–948. [CrossRef]

65. Branco, P.; Torgo, L.; Ribeiro, R.P. A Survey of Predictive Modeling on Imbalanced Domains. ACM Comput. Surv. 2016, 49.
[CrossRef]

66. Li, D.; Hasanaj, E.; Li, S. 3-Baselines, 2010. Available online: https://blog.ml.cmu.edu/2020/08/31/3-baselines/ (accessed on 13
January 2023).

67. Suthaharan, S. Support vector machine. In Machine Learning Models and Algorithms for Big Data Classification; Springer: Cham,
Switzerland, 2016; pp. 207–235. [CrossRef]

68. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
69. Schabus, D.; Krenn, B.; Neubarth, F. Data-Driven Identification of Dialogue Acts in Chat Messages. In Proceedings of the

Conference on Natural Language Processing, Bochum, Germany, 19–21 September 2016.
70. Malik, U.; Barange, M.; Saunier, J.; Pauchet, A. Performance comparison of machine learning models trained on manual vs ASR

transcriptions for dialogue act annotation. In Proceedings of the 2018 IEEE 30th International Conference on Tools with Artificial
Intelligence (ICTAI), Volos, Greece, 5–7 November 2018; pp. 1013–1017.

http://dx.doi.org/10.1017/S1351324905004067
http://dx.doi.org/10.5128/ERYa3.08
http://dx.doi.org/10.18653/v1/N19-1373
https://compprag.christopherpotts.net/swda.html
http://dx.doi.org/10.31449/inf.v44i3.2828
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1017/S1351324921000310
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/index-speech-to-text
https://learn.microsoft.com/en-us/azure/cognitive-services/speech-service/index-speech-to-text
http://dx.doi.org/10.48550/arXiv.2105.03409
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1145/2907070
https://blog.ml.cmu.edu/2020/08/31/3-baselines/
http://dx.doi.org/10.1007/978-1-4899-7641-3_9
http://dx.doi.org/10.1023/A:1010933404324

Signals 2023, 4 380

71. Dantas, J. The Importance of k-Fold Cross-Validation for Model Prediction in Machine Learning. Towards Data Science. 2020.
Available online: https://towardsdatascience.com/the-importance-of-k-fold-cross-validation-for-model-prediction-in-machi
ne-learning-4709d3fed2ef (accessed on 4 April 2023).

72. KFold. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html (accessed on
4 April 2023).

73. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly
Media, Inc.: Sebastopol, CA, USA, 2009.

74. Label Encoder. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
(accessed on 4 April 2023).

75. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al.
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [CrossRef]

76. Randomized Search Cross Validation. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.model_sele
ction.RandomizedSearchCV.html (accessed on 4 April 2023).

77. Sreenivasa, S. Radial Basis Function (RBF) Kernel: The Go-To Kernel. 2020. Available online: https://towardsdatascience.com/r
adial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a (accessed on 4 April 2023).

78. Hugging Face Transformers. Available online: https://huggingface.co/docs/transformers/index (accessed on 4 April 2023).
79. Fast Tokenizer. Available online: https://huggingface.co/learn/nlp-course/chapter6/3 (accessed on 4 April 2023).
80. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
81. Jurafsky, D.; Shriberg, E.; Fox, B.; Curl, T. Lexical, prosodic, and syntactic cues for dialog acts. In Discourse Relations and Discourse

Markers; Association for Computational Lingustics (ACL): Montreal, QC, Canada, 1998.
82. Shushma, G.; Jacob, I.J. A Semantic Approach for Computing Speech Emotion Text Classification Using Machine Learning

Algorithms. In Proceedings of the 2022 First International Conference on Electrical, Electronics, Information and Communication
Technologies (ICEEICT), Trichy, India, 16–18 February 2022; pp. 1–5.

83. Hendr, A.; Ozgunalp, U.; Erbilek Kaya, M. Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks.
Electronics 2023, 12, 612. [CrossRef]

84. Wu, T.W.; Su, R.; Juang, B.H. A Context-Aware Hierarchical BERT Fusion Network for Multi-turn Dialog Act Detection. In
Proceedings of the 2021 Interspeech, Brno, Czechia, 30 August–3 September 2021.

85. Wu, T.W.; Juang, B.H. Knowledge Augmented Bert Mutual Network in Multi-Turn Spoken Dialogues. In Proceedings of the
ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22–27 May
2022; pp. 7487–7491.

86. Peng, W.; Hu, Y.; Xing, L.; Xie, Y.; Zhang, X.; Sun, Y. Modeling intention, emotion and external world in dialogue systems. In
Proceedings of the ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 22–27 May 2022; pp. 7042–7046.

87. Hugging Face Training Arguments. Available online: https://huggingface.co/docs/transformers/v4.28.1/en/main_classes/tra
iner#transformers.TrainingArguments (accessed on 4 April 2023).

88. BERT HyperParameter Tuning. Available online: https://huggingface.co/docs/transformers/hpo_train (accessed on
4 April 2023).

89. Data Collator. Available online: https://huggingface.co/docs/transformers/main_classes/data_collator3 (accessed on
4 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://towardsdatascience.com/the-importance-of-k-fold-cross-validation-for-model-prediction-in-machine-learning-4709d3fed2ef
https://towardsdatascience.com/the-importance-of-k-fold-cross-validation-for-model-prediction-in-machine-learning-4709d3fed2ef
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
http://dx.doi.org/10.48550/arXiv.1201.0490
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://huggingface.co/docs/transformers/index
https://huggingface.co/learn/nlp-course/chapter6/3
http://dx.doi.org/10.3390/electronics12030612
https://huggingface.co/docs/transformers/v4.28.1/en/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/v4.28.1/en/main_classes/trainer#transformers.TrainingArguments
https://huggingface.co/docs/transformers/hpo_train
https://huggingface.co/docs/transformers/main_classes/data_collator3

	Introduction
	Related Work
	Materials and Methods
	Data Collection via Job Interview Training System
	The BERT Architecture and Fine-Tuning BERT for Text Classification
	Dialogue Act Labeling
	The Data
	Model Training

	Results
	Discussion
	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3

	References

