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Abstract: Through the development of artificial intelligence, some capabilities of human beings
have been replicated in computers. Among the developed models, convolutional neural networks
stand out considerably because they make it possible for systems to have the inherent capabilities
of humans, such as pattern recognition in images and signals. However, conventional methods are
based on deterministic models, which cannot express the epistemic uncertainty of their predictions.
The alternative consists of probabilistic models, although these are considerably more difficult to
develop. To address the problems related to the development of probabilistic networks and the
choice of network architecture, this article proposes the development of an application that allows the
user to choose the desired architecture with the trained model for the given data. This application,
named “Graphical User Interface for Probabilistic Neural Networks”, allows the user to develop
or to use a standard convolutional neural network for the provided data, with networks already
adapted to implement a probabilistic model. Contrary to the existing models for generic use, which
are deterministic and already pre-trained on databases to be used in transfer learning, the approach
followed in this work creates the network layer by layer, with training performed on the provided
data, originating a specific model for the data in question.

Keywords: artificial intelligence; graphical interface; probabilistic convolutional neural network;
no-code development platform

1. Introduction

Humans can identify patterns and objects, such as a clock, a chair, a dog, or a cat.
However, for a computational model, pattern analysis is a considerable challenge. Using
artificial intelligence (AI) [1] makes it possible for computer systems to perform pattern
recognition. However, it is necessary to develop models capable of learning. Through these
models, it is possible to achieve methods that align with how the human brain performs
the analysis. Machine learning (ML) [2] can be seen as a subtopic of AI, whose algorithms
make it possible for software applications to have high accuracy in predicting outcomes,
even if they have not been specifically programmed to do so.

ML is translated into the execution of algorithms, thus automatically creating models
capable of learning based on a set of data. It is necessary to train the ML models, giving
them an appropriate set of data so that in this training process, the employed algorithm
“learns”, and iteratively adjusts itself. After training, the created model can make predictions
with a high assertiveness value. Despite the substantial number of algorithms developed
for ML, artificial neural networks (ANNs) have consistently been demonstrated to be the
most adaptable, especially with the emergence of deep learning (DL) [3]. Theoretically,
one can use ANNs for the detection of complex patterns, such as those present in images,
but in practice, it may be unfeasible due to the number of calculations required being
extremely high. This occurs because in a conventional ANN, each pixel is connected to
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each neuron. In this case, the computational load added makes the network unfeasible for
image analysis [4].

Convolutional neural networks (CNNs) have made pattern recognition in images
feasible. When considering an image, the proximity of the pixels has a strong correlation,
and the CNNs specifically use this relationship. Nearby pixels have a higher probability
of being related than pixels further apart. Convolution solves the problem of the need for
a high number of connections that occurs in conventional ANNs, making it possible to
process images by filtering connections by proximity. In a given layer, instead of connecting
each input to each neuron, CNNs restrict the connections intentionally so that any neuron
accepts inputs only from a small part of the previous layer (such as 5 × 5 or 3 × 3 pixels).

The evolution of graphics processing units (GPUs) and the availability of libraries,
such as TensorFlow (TF) [5] and Keras [6], have substantially facilitated the development
of CNNs. Despite the high accuracy that DL-based models can achieve, the problem
associated with the level of confidence that the user has in the prediction of the network
still remains. This can be solved through the use of probabilistic models (PMs), as they
allow the expression of epistemic uncertainty in the predictions generated by the models.
These models are computationally demanding and have only recently become feasible
with the development of variational inference (VI) [7]. The creation of probabilistic CNNs
became simpler through the emergence of models based on the estimators, such as Flipout,
and their inclusion in TF probability [8].

Pre-trained deterministic models (DMs) with conventional architectures are available
with optimization performed on large data sets, allowing transfer techniques to be used
to achieve high accuracy. However, PMs do not yet have this transfer option because,
typically, the distributions that these models learn are strongly associated with the data
used to train the models. Thus, it is usually necessary to fully train the models on the train
data sets, whose distributions should be learned.

One of the biggest barriers to the use of DL models by inexperienced users is the
complexity associated with programming the components. Actually, the need for tools
that can help the development of ML models has been identified since the beginning of
this field. However, more recently, the Classification Lerner Application from Matlab [9]
employed an innovative approach to address this need. It uses a simple button-based
interface with short messages to guide the user, allowing any user to develop conventional
ML models without requiring a deep understanding of all concepts underlying the models,
having only to know how to use the developed model. This no-code approach allows for
accelerating the use of these models in diverse areas of knowledge. With the large interest
that ML has attracted in recent years, some newer platforms aimed at addressing this need
for simple-to-use platforms for ML development. An example of such a platform is the
Orange Data Mining application [10], which is free and developed in Python. It is also
based on a simple button-based interface with small messages to guide the user.

By analyzing the state-of-the-art of GUIs for developing ML models, a gap was found
concerning the PMs, especially with probabilistic CNNs. This gap is of particular relevance
since these models require high knowledge in the areas of statistics and DL. Additionally,
there is still little documentation on the procedures necessary for the development of these
models. This restricts the mass use of these models, being only accessible to specialists
with knowledge in the area. Considering the great interest that DL based on probabilistic
CNNs has had recently, especially by programmers interested in making applications for
pattern recognition, it becomes necessary to obtain a simple, user-friendly, and easy-to-use
alternative that allows the creation of the models.

Therefore, the main objective of this work was the development of a graphical user
interface (GUI) that allows any user without previous knowledge in the area of DL, giving
the capability to develop PMs based on CNNs with a no-code approach that follows
Matlab’s Classification Learner Application concept. Two processes were developed; one
containing models with standard architectures in the DL area, and another where the user
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can create a model layer by layer with the desired architecture, with the possibility of
selecting the desired number and type of layers and their characteristics.

This work has the following organization: presentation of the materials and methods
in Section 2; performance assessment of the developed algorithms in Section 3; discussion
of the results in Section 4; and conclusions of the work in Section 5.

2. Materials and Methods

The developed GUI presents multiple options that guide the user in the process of
selecting the architecture of the ANN to be developed, defining the training procedure,
and obtaining the resulting model in a simple and intuitive manner. However, it also
allows the inexperienced user to train models with a small number of choices using the
pre-defined recommended values for the options. It is only necessary to load the data sets,
select the desired model, and start training it. Essentially, the developed GUI was designed
to allow the development of a probabilistic CNN to be done in three steps: insertion of the
desired parameters for training and choice of the architecture; training of the model; and
visualization of the results.

When developing CNNs, one of the first issues that occur is choosing the architecture
to be used. This defines the types and sequence of layers, the parameters, the number
of inputs, the number of outputs, and the activation functions (AFs). All these options
are available in the developed GUI, and the user can either choose the recommended
(default) options or can select the available alternatives. If needed, the user can develop
new modules for the GUI or edit the existing ones.

The entire code was developed in Python 3, including the GUI and the development of
the models, and is available (in open source) in the public repository: (https://github.com/
achaves37/Interface-Grafica-para-desenvolvimento-de-Redes-Neuronais-Convolucionais-
Probabiliticas/, accessed on 2 February 2023). Two versions are provided, one called
“TestInterface” and another called “Interface”. In the latter, the user will need to load his
data sets, which are intended to be used for developing the custom models. In contrast,
the first uses standard ML datasets (useful for testing proposed architectures and getting
familiarized with the interface). All the code is documented and organized to make it
possible to add/edit some models in a simple and direct way. It is recommended that users
be familiar with basic operations with a Python console [11]. The user and the program
interact through Tkinter [12] and IPython. The PMs were also developed in Python, using
the TF libraries. However, the computational performance is not affected by the choice of
this language because TF internally converts the models described for the compute unified
device architecture (CUDA) [13], C++, and is optimized for GPU use.

2.1. Convolutional Neural Networks

CNNs are usually developed to be deterministic and are associated with pattern
recognition in images or signals, presenting a high efficiency in classification. The process
of data classification by the networks is carried out by means of the several layers that
compose them [14]. These layers are typically of three types: convolution, pooling, and
dense. A data alteration by ANNs takes place in all these layers, usually having non-linear
AFs, such as the rectified linear unit (ReLU), to increase the learning capacity. The input
and output layers are the ones that interact with the outside (they are not hidden).

CNNs use filters that consist of randomly initialized weights, subsequently updated at
each new input, through the back-propagation algorithm to learn the patterns. The region
of the input, where the filter is applied, is called the receptive field. Pooling is used to
reduce the information from the previous layer, decreasing the number of weights to be
learned and avoiding overfitting [15]. As in convolution, an area unit is chosen to traverse
the entire output of the previous layer. Furthermore, it is necessary to choose how the
filtering will be done. The most used is the choice of the maximum value (maxpooling),
where only the largest number of the unit is passed to the output.

https://github.com/achaves37/Interface-Grafica-para-desenvolvimento-de-Redes-Neuronais-Convolucionais-Probabiliticas/
https://github.com/achaves37/Interface-Grafica-para-desenvolvimento-de-Redes-Neuronais-Convolucionais-Probabiliticas/
https://github.com/achaves37/Interface-Grafica-para-desenvolvimento-de-Redes-Neuronais-Convolucionais-Probabiliticas/
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2.2. Probabilistic Models

One of the main advantages of PMs over DMs is the ability to present the epistemic
uncertainty of predictions. However, the development of these PMs is typically more
complex, requiring additional knowledge on how to build them, frequently using VI
approximation [16]. It allows approximating probabilistic inference as an optimization
problem, searching for an alternative a posteriori distribution that minimizes the Kullback–
Leibler divergence (KLD) [17] with the true a posteriori distribution. In this way, all the
weights W of the network are replaced by a probabilistic distribution, and the distribution
is optimized during network training. In this case, the Gaussian distribution [18] is often
used to represent these distributions.

Specifically, VI involves selecting a member q from a family of distributions Q, which
is similar to the target distribution using KLD to measure the fit. In essence, the idea
behind variational inference is to reframe our approximate Bayesian inference problem
as an optimization problem. This reframing enables the leverage of the full range of
mathematical optimization techniques to tackle the problem. By optimizing the parameters,
denoted as θ, for q, the solution that is closest to the conditional interest P(W|D) can be
found using KLD, where D is the training data. The optimal solution can be obtained by
solving [16]

q∗(W|θ) =arg min
q(W|θ)∼Q KLD[q(W|θ)||P(W|D)] (1)

Since P(W|D) is unknown, a different objective needs to be optimized in order to
minimize the KLD. The standard approach is to use the evidence lower bound (ELBO),
which can be calculated by [16]

−ELBO = KLD[q(W|θ)||P(W)]− Eq(W|θ)∼Q[log[P(D|W)]] (2)

The cost function can be seen as a composition of two parts. The first part of the
function is typically viewed as the complexity cost, which leads to the search for solutions
whose densities are close to the prior. The second part is dependent on the data; it is usually
referred to as the likelihood cost because it describes the probability of the data given to
the model, leading to solutions that better explain the observed data. As a result, this cost
function interprets a compromise between satisfying the simplicity of the prior probability
distribution P(W) and the complexity of the data.

Although this approximation can be achieved through VI, using a prior distribution of
the model weights to produce a regularization effect, the exact calculation of the ELBO as
presented is computationally prohibitive. Another relevant aspect is the usual approach of
using a Gaussian distribution for the model weights, with two parameters, the mean and
the standard deviation, as it facilitates implementation. An approximation of the ELBO is
required to enable the optimization of the network with gradient descent methods based
on this loss function. This approximation is given by [16]

ELBO ≈
n

∑
i=1

log[q(wi|θ]− log[P(Wi)]− log[P(D|Wi)] (3)

To decrease the time required to train the networks, the Flipout estimator [19] is used
to minimize the ELBO. Therefore, the output of each layer for all examples in the subgroup
X, considering the activation function φ and the average weights W̄, is given by [19]

Y = φ[XW̄ + [(X · B)∆̂W] · A (4)

Since A and B are independently sampled from ∆̂W and W̄, it is possible to back-
propagate with respect to X, ∆̂W, and W̄, optimizing, in this way, the network parameters.
In short, VI directly approximates the posterior distribution with a simpler distribution,
avoiding the calculation of the likelihood of all occurrences [20].
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2.3. Graphical Interface

The developed GUI is shown in Figure 1. This is made up of five tabs:

• The first tab, called “Start” gives a brief summary of how the application works in
order to use the different data sets.

• On the second tab, denoted as “Insert|Run”, the user can edit the parameters to
develop the desired model and then train the model.

• The third tab, named “Results”, allows the user to visualize the results.
• The fourth tab, designated as “FAQ”, allows the user to access tutorial videos (available

at https://www.youtube.com/channel/UC9bZjefkicHKC6VJPGLLZJA, accessed on
2 February 2023) and verify the versions, and check if the required libraries for the
GUI to work are installed.

• Lastly, the fifth tab, called “About”, displays a message about the authorship of the
development of the GUI.

Figure 1. Developed graphical user interface tabs.

In Figure 2, the “Start” tab is presented, where GUI provides information regarding its
use for all datasets. The GUI obtains data from four comma-separated value (CSV) files
(stored in specific folders such as DataSet1d or DataSet2d for one- or two-dimensional
classification data, respectively), using one for training data, one for training labels, one for
testing data, and one for testing labels. The data for training and testing must be organized
in rows, where each row represents a sample, and each column denotes a feature of the
sample. If two-dimensional data are being used, they must be flattened, and the program
will internally recreate the original shape to feed the models. Additionally, the labels file
should have one row for each sample in the data file (matching the raw number in the files)
and be encoded in decimal or one hot encoding. The user can carry out preprocessing of
the data, such as normalization or standardization, and the result can be stored in the data
CSV files. All generated results will also be stored in folders according to the used model,
as shown in Figure 3.

https://www.youtube.com/channel/UC9bZjefkicHKC6VJPGLLZJA


Signals 2023, 4 302

Figure 2. “Start” tab, showing the steps for using the GUI for all data sets.

Figure 3. Folder organization of the developed GUI, where the user should save the data with the
indicated names of the example, and the results folder will save all outputs of the trained model
(each model is saved in a different folder).

The subsequent tab called “Insert|Run” is shown in Figure 4. Here, the user can
introduce the parameters that will control the models’ training. If necessary, the user
can compare with the recommended values. These values are already pre-filled, and
if the user wants to use those values, he only has to click on the “Insert|Save” button.
Otherwise, the user must insert the values and then press the button. By pressing the
button, the confirmation message is shown on the IPython console (for visual confirmation
of the parameters previously inserted), as shown in the example of Figure 5. The left side
of the Figure 5 is for classification using a one-dimensional data set, and the right side
is for a regression two-dimensional data set using. The user can also perform regression
with one-dimensional data and classification with two-dimensional data. If needed to
expand to higher dimensions, the user can add new modules (or edit an existing one) to
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the GUI, copying the code from the two-dimensional models and changing the number of
dimensions to the desired value.

(A) (B)

Figure 4. Menu for adding the parameters of the GUI, separator “Insert|Run”, for the (A) one-
dimensional and (B) two-dimensional data.

Figure 5. IPython console displaying the confirmation of chosen parameters.

Figure 6 shows the tab named “Insert|Run”. Here, the user can select which standard
model should be trained, or, if preferred, create a model (create layer by layer). If needed,
the user can add new standard architectures (or edit the existing ones) to the GUI, requiring
only adding the structure of the model to a predefined file. The default optimizer is
the ADAM algorithm. However, the user can change to another optimizer if needed.
Additionally, accuracy was the tracked metric for classification while the mean squared
error was the examined metric for regression. The training process is already prepared to
perform early stopping if a minimum improvement is not attained in a sequence of epochs
defined by the user (if the user does not pretend to use early stopping, then it just needs to
specify the patience value to be higher than the number of epochs intended to be executed).

Figure 6. Tab “Insert|Run”, displayed after inserting parameters.
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After pressing the “Train Model” button, the program starts training the selected
model. Figure 7 shows the console indicating the progress in training the model. Fur-
thermore, the user can create the model by inserting it layer by layer, having to select the
layer type; in this case, convolution, pooling, or dense. The insertion window is shown in
Figure 8.

Figure 7. IPython console with information on the training progress of the model.

Figure 8. Creation of a custom model by choosing the sequence of its composing layers.

In the “Results” menu, shown in Figure 9, the results of the models’ training are pre-
sented. The user is required to select which model should be examined. Pressing “See all the
results in a plot” displays a single plot with all performance metrics. Furthermore, pressing
“See each result in a plot” displays one plot with the chosen performance metric to be
plotted. Pressing “Print each result in IPython” displays the values in the IPython console.

Figure 9. Presentation of the “Results” tab.

The tab denoted “FAQ”, represented in Figure 10, shows the user information about li-
braries that should be installed and checks if they are present in the system. Lastly, the “About”
tab, represented by Figure 11, shows the user information about GUI development.
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Figure 10. Depiction of the “FAQ“ tab, showing the required modules/libraries and the button for
viewing the videos.

Figure 11. Presentation of the “About“ tab.

3. Interface Development

The developed GUI was developed in three iterations by having first meetings with
machine learning specialists to highlight which requisites they consider to be essential for
the tool. A quality attribute workshop was then carried out by five specialists to vote on
which requisites they consider relevant. The identified requisites, their attribute, and the
number of votes were as follows:

• The GUI should allow the examination of 1D and 2D data while keeping the option
to easily integrate higher-dimensional data. Usability attribute voted as relevant by
three specialists.

• The GUI should have standard default parameters to help the inexperienced user.
Usability attribute voted as relevant by three specialists.

• The GUI should allow the default parameters to be changed and to easily add new
elements to its code. Usability attribute voted as relevant by three specialists.

• The GUI should allow the user to develop PM based on CNN for both regression and
classification problems. Usability attribute voted as relevant by five specialists.

• The GUI should allow the user to change the model’s architecture. Usability attribute
voted as relevant by two specialists.

• The GUI should be responsive to the user commands, while requiring no coding
from the user side to develop a model. Usability attribute voted as relevant by
four specialists.

• The GUI should provide the user with feedback when an error occurs, specifying the
source of the error. Testability attribute voted as relevant by two specialists.
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• It should be possible to transition between any tab in less than 5 s. Performance
attribute voted as relevant by four specialists.

• When the training procedure finishes, the model and the performance results (training
and testing) should be saved and made available for the user. Availability attribute
voted as relevant by three specialists.

• The GUI execution should be independent of the operating system. Interoperability
attribute voted as relevant by two specialists.

• The GUI should provide feedback to the user during the training procedure. Avail-
ability attribute voted as relevant by two specialists.

• The GUI should provide the user with a list of all parameters that are going to be used
to train the model. Usability attribute voted as relevant by two specialists.

From the carried-out workshop, it was concluded that the main concerns focused on
usability issues related to the graphical interface, i.e., how easy it is for the user to perform
tasks. Therefore, the graphical user interface was developed to benefit the usability quality
attribute the most.

The second iteration was a discussion with GUI specialists on how to properly present
all functionalities while using a simple functionality-oriented interface. After defining
the desired entity-relationship model and the use case diagram, a navigation map was
proposed with six main scenarios as depicted in Figure 12. These scenarios were as follows:

• Scenario 1: represents the beginning of the GUI; information is displayed to guide the
user in the process of using the GUI.

• Scenario 2: presents the most frequent questions regarding the use of the GUI.
• Scenario 3: contains the GUI development information.
• Scenario 4: in this scenario, the parameters for the model must be inserted; the

parameters differ for different datasets, being possible to choose the model with
predefined architecture or create a model with the architecture defined layer by layer.

• Scenario 5: after choosing or editing the model, it is possible to proceed to the training
procedure, developing the desired model.

• Scenario 6: in this scenario, it is possible to observe the results in different ways.

Figure 12. Navigation map developed for the GUI.
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Low- and high-fidelity prototypes were made with the specialist during this second
iteration. Figure 13 shows all created prototypes, depicting low-fidelity on the top and
high-fidelity on the bottom. Usability tests were carried out in the last iteration, which was
performed on 13 subjects (ten males and two females) with an age range of 25 to 36 years
old (average of 29.4). All subjects had used machine learning before, with eight subjects
reporting having substantial experience, while the remaining five reported having minimal
to some experience.

Figure 13. Low- and high-fidelity prototypes developed for the GUI.
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Several tasks were created to cover all potential usage scenarios, each requiring the
selection of a model, training, and analysis of results. Once the tasks were completed,
the system usability scale [21] was utilized to assess the system’s performance. The out-
comes showed an average score of 4.4 out of 5, equivalent to 88%, which falls under the
“Excellent” category.

During the test, the users identified two main flaws in the high-fidelity prototypes.
The first one was the lack of a button to go back if, by mistake, they chose the wrong model
(it required the user to restart the GUI to do so); hence, a button to add this functionality
was included. The second one was the lack of relevant information presented in the “FAQ”
tab. This problem was addressed by adding a button that leads the user to video tutorials
and by including more information regarding the versions of the sued libraries.

4. Results

The GUI was tested for performing classification and regression tasks with one- and
two-dimensional data. The first example to illustrate the GUI procedures is composed
of a model for two-dimensional classification. Specifically, image data of hand-drawn
numbers (MNIST dataset) were used (available at http://yann.lecun.com/exdb/mnist,
accessed on 2 February 2023). For this purpose, the standard LeNet-5 model (available at
the GUI), with the default GUI options, was used as presented in Figure 14. It is important
to highlight that the purpose of the next examples is to show the use of the developed GUI
and not the performance of the models used here as examples.

Figure 14. Parameters used for the LeNet-5 model for the two-dimensional dataset (MNIST).

After training the LeNet-5 model, the following results are obtained at the model
output:

• Model’s training error, shown on the right side of Figure 15.
• Performance metrics, such as accuracy presented on the left side of Figure 15.
• Confusion matrix, shown in Figure 16.
• Model’s epistemic uncertainty, shown in Figure 17.
• The window where it is possible to select a specific sample to visualize it (allowing,

for example, to check a sample that was misclassified), shown in Figure 18.

http://yann.lecun.com/exdb/mnist
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(A) (B)

Figure 15. Example of the attained (A) test accuracy and (B) training error for the LeNet-5 model,
trained on a two-dimensional dataset (MNIST).

Figure 16. Confusion matrix for the LeNet-5 model, trained on a two-dimensional dataset (MNIST).
correct (in green) and wrong (in red).

Figure 17. Example of the test data epistemic uncertainty from a trained model, where a high
uncertainty sample (number 2927) is highlighted in the left panel, and then a zoom is performed in
the right panel to further show the sample’s amplitude.
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Figure 18. Analysis of sample number 2927 from the presented example, showing the sample’s image
on the right panel and the model output on the bottom panel.

On the left side of Figure 17, the epistemic uncertainty of the trained model is presented.
In this example, one of the points where the uncertainty is higher is chosen, and on the
right side, a zoom is performed to identify the sample number. After attaining the sample
number, it can then be further analyzed as presented in Figure 18. Pressing the “Check”
button the sample is presented. Through IPython, it is possible to check into which class
the model classified the sample, what was its true class, and the result of the model
classification. It is possible to observe that the model classified the sample number 2927 as
class 2. Its true class was 3, that is, the model failed to classify the sample correctly. Finally,
in Figure 19, the epistemic uncertainty distributed over the various classes is shown.

Figure 19. Epistemic uncertainty distributed across the various classes, relative to the LeNet-5 model
for the two-dimensional dataset (MNIST). The green line is the median of the class data.
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In the “Results” tab, pressing “See all the results in a plot” displays a single plot in a
new window with the most relevant classification performance metrics: accuracy (Acc);
area under the receiver operating characteristic curve (AUC); negative predictive value
(NPV); positive predictive value (PPV); sensitivity (Sen); specificity (Spe).

The obtained results are shown on the left in Figure 20. The user can select to view
only one performance metric to ease the interpretation, as depicted on the right side of
Figure 21, where only Acc is shown. In the same tab, pressing “Print each result in IPython”
prints the values of the chosen result on the IPython console.

Figure 20. Performance metrics presented when choosing “Print each result in IPython” for the
example using LeNet-5 model for the two-dimensional dataset (MNIST).

(A) (B)

Figure 21. Example of the plots depicted when choosing (A) “See all the results in a plot” and (B) “See
each result in a plot”, relative to the example using the LeNet-5 model for the two-dimensional dataset
(MNIST).

All trained models and results are saved in a local folder, allowing the user to retrieve
them for further use on other applications. The user can also resume training on a previously
trained model and can perform transfer learning by loading a previously trained model
and then retraining it on data from another problem.

The subsequent examination was performed on a regression test, where the goal
was to determine the house prices in a Boston suburb or town using a standard dataset
(Boston housing dataset, available at https://www.cs.toronto.edu/~delve/data/boston/
bostonDetail.html, accessed on 2 February 2023), using 14 features to feed the model.
For this purpose, the LeNet-4 architecture was built using the custom model creation
option (layer-by-layer specification).

The training performance is presented to the user as shown in the example of Figure 22.
Furthermore, the test data predictions are also presented to the user. The PM also allows
presenting the 95% confidence interval, as depicted in Figure 23, allowing the user to clearly
identify where the model is confident enough on its forecasts.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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(A) (B)

Figure 22. Performance of the regression model (LeNet-4 created using the layer-by-layer creation
option) during training using a standard regression dataset (Boston housing), presenting the estimated
(A) mean squared error and (B) loss.

Figure 23. Forecasts of the regression model (LeNet-4 created using the layer-by-layer creation
option) in the test data training using a standard regression dataset (Boston housing), where the 95%
confidence interval is presented.

5. Conclusions

This work presents a graphical user interface for the development of probabilistic
CNNs. This type of model can express epistemic uncertainty, a characteristic that is of
great importance since it indicates the level of confidence the model has in its predictions.
For instance, in medical fields where the outcome of the decision can affect the diagnosis,
knowing the confidence level in the forecast is critical. Through the developed tool, it
is possible to build PMs in a no-code approach without requiring in-depth knowledge
in the domain of DL with probabilistic models, potentially speeding the development of
applications where PMs are necessary. To the best of the author’s knowledge, no previous
work has provided an interface for PMs, not even in the most popular platforms, such as
Matlab Classification Learner (which conceptually is the closest to this work), Orange Data
Mining, Rapid Miner, or Dataiku, making a direct comparison unfeasible. Furthermore,
the developed tool employs a GUI that was shown, in usability tests, to be easy to use and
capable of addressing the needs of users who want to develop probabilistic CNNs in a
simple and straightforward way.

The implemented approach allows the user to either use standard architectures (al-
ready adapted for implementing a PM) for the model or to create a custom model, having
the three most common layers (convolution, pooling, and dense) in DL available. Further-
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more, the tool is fully adaptable and, if needed, the user can add or edit elements to it,
including new standard models, performance metrics, and visualization methods.

The proposed tool was designed to allow the user to develop and test the models,
requiring only to load the data (or use the standard datasets available in the tool’s database),
select or specify the architecture, initiate the training, and then check the test results.
The support documentation instructs the inexperienced user on how to use the tool, and the
trained models are saved in a standard format, allowing the user to further use them on
other applications. The following main paths are proposed as future steps in this research:
the first is to implement a web-based version of the tool, allowing the back end to be run on
a server while the front end can be executed on a browser; and the second path is to further
expand the data visualization resources, allowing the user to carry out exploratory data
analysis before starting the model development. Regarding the subsequent improvements,
it is intended to add full support for cross validation. It can be done with the current
version, but it requires the user to prepare the datasets outside of the developed tool.
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