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Abstract: Wearable sensor data can be integrated and interpreted to improve the treatment of chronic
conditions, such as diabetes, by enabling adjustments in treatment decisions based on physical activity
and psychological stress assessments. The challenges in using biological analytes to frequently detect
physical activity (PA) and acute psychological stress (APS) in daily life necessitate the use of data from
noninvasive sensors in wearable devices, such as wristbands. We developed a recurrent multi-task
deep neural network (NN) with long-short-term-memory architecture to integrate data from multiple
sensors (blood volume pulse, skin temperature, galvanic skin response, three-axis accelerometers) and
simultaneously detect and classify the type of PA, namely, sedentary state, treadmill run, stationary
bike, and APS, such as non-stress, emotional anxiety stress, mental stress, and estimate the energy
expenditure (EE). The objective was to assess the feasibility of using the multi-task recurrent NN
(RNN) rather than independent RNNs for detection and classification of AP and APS. The multi-task
RNN achieves comparable performance to independent RNNs, with the multi-task RNN having F1
scores of 98.00% for PA and 98.97% for APS, and a root mean square error (RMSE) of 0.728 cal

hr.kg for
EE estimation for testing data. The independent RNNs have F1 scores of 99.64% for PA and 98.83%
for APS, and an RMSE of 0.666 cal

hr.kg for EE estimation. The results indicate that a multi-task RNN
can effectively interpret the signals from wearable sensors. Additionally, we developed individual
and multi-task extreme gradient boosting (XGBoost) for separate and simultaneous classification
of PA types and APS types. Multi-task XGBoost achieved F1 scores of 99.89% and 98.31% for the
classification of PA types and APS types, respectively, while the independent XGBoost achieved
F1 scores of 99.68% and 96.77%, respectively. The results indicate that both multi-task RNN and
XGBoost can be used for the detection and classification of PA and APS without loss of performance
with respect to individual separate classification systems. People with diabetes can achieve better
outcomes and quality of life by including physical activity and psychological stress assessments in
treatment decision-making.

Keywords: multi-task learning; recurrent neural network; long short-term memory; acute psychological
stress classification; physical activity classification; energy expenditure estimation; wearable devices;
diabetes

1. Introduction

Chronic diseases, such as diabetes, require frequent adjustments to treatment decisions
to tailor and personalize the treatment to individual patients for improved outcomes. More
frequent assessment of the instantaneous state and conditions of the subject can further
enable and enhance precision diabetes treatment. People with Type 1 diabetes (T1D) can
keep their blood glucose values in a desired range by incorporating their physical activity
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(PA) and acute psychological stress (APS) information in their insulin dosing decisions.
The type and intensity of PA and the nature of APS experienced by an individual affect
a range of endocrine and metabolic pathways. Frequently measuring the variations in
biological analytes in free-living conditions and throughout daily life is not practical, which
necessitates different modalities for noninvasive sensing to infer information on PA and
APS required to adjust the diabetes therapy [1].

The need to assess PA and APS information from noninvasive sensors has spurred
the development of novel wearable devices with advanced sensors and new algorithms
to interpret the raw data. Sensors such as three-axis accelerometers (ACC) and heart rate
(HR) monitors based on photoplethysmography that measures blood volume pulse (BVP)
enabled noninvasive detection of PA. Detection of APS requires additional biosignals such
as electrodermal activity (EDA) measured by galvanic skin response (GSR) sensor, and skin
temperature (ST) [2]. The data generated by these sensors need to be cleaned of the noise
and artifacts corrupting the signal to enhance the information extracted from the signals.

After cleaning the raw data, the signals must be mapped to features that can inform
the algorithms on the type and intensity of PA and nature of the APS. Various machine
learning algorithms have been developed and trained in the literature to detect PA and
APS, including naïve Bayes classification, nearest neighbor methods, logistic regression,
decision trees, support vector machines, and neural networks (NN) [3–5].

Novel NN architectures and training algorithms can identify intricate and hidden
patterns in the signals to gain information on PA and APS. The use of recurrent neural
networks (RNN) with long short-term memory (LSTM) has shown promising results in
predicting the type and intensity of PA and the type of APS episode [6,7]. An issue with the
data collected to train the models is the class imbalances, which can bias the performance of
the algorithms to favor the majority class at the expense of lower accuracy for the minority
class. Although the sizes of the classes may be balanced by either downsampling the
majority class or upsampling the minority class, it risks discarding useful information
if samples are removed or biasing the algorithms towards the samples that are repeated
multiple times when upsampled [8]. Addressing the class imbalances requires more
sophisticated upsampling algorithms that generate new data samples or incorporating
weighted learning when training the model.

Training independent models to predict the type of PA and APS without connecting
the shared information between the two tasks can require more training data and longer
training time. Exploiting the shared representations in the data by training one model
to predict the related tasks jointly can potentially improve data efficiency and reduce the
training time. However, learning multiple tasks simultaneously can be challenging [9–12].
The combination of the tasks must be considered when handling the class imbalances. The
tasks also must be partially related with overlapping feature maps to reinforce the join
learning of multiple tasks. We showed in previous works that a unified common feature
map can encompass the features required to predict the types of PA and APS [6].

The detection of PA and APS, whether they occur alone or simultaneously, can affect
the treatment decision for T1D [13]. People with T1D must continuously monitor their
blood glucose levels using continuous glucose monitors (CGM) and evaluate their insulin
requirements based on their glucose levels, meal, PA, and APS information. Incorporating
all these diverse sources of information to continuously adjust insulin administration is
an arduous process. Artificial pancreas (AP) systems connect a CGM sensor to an insulin
pump via an algorithm to calculate and administer insulin accordingly in people with Type
1 diabetes [14]. AP systems developed by our research group have extended the traditional
AP structure (based exclusively on CGM and insulin information collected automatically
and manual entries of meal and exercise information) by incorporating additional signals
from wearable devices, such as wristbands, to provide information on PA and adjust
insulin dosing accordingly [15,16]. Although PA and APS are both similar in their effects
on some signals, such as increasing HR, they must be accurately classified to avoid adverse
outcomes. Moderate intensity PA usually lowers blood glucose levels, which requires a
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decrease in the insulin dose to maintain stable blood glucose levels within the safe target
range. APS increases blood glucose levels, which may necessitate an increase in the insulin
dose to maintain the glucose levels in the target range. Despite their opposing effects
on blood glucose levels, the presence of PA and APS can be easily misinterpreted if the
classification decision relies on only a limited set of measurements, such as relying solely
on HR.

Motivated by the above considerations, the main contributions of this work are:

• Multi-task learning of RNN with LSTM architecture for simultaneously classifying the
type and intensity (i.e., energy expenditure) of physical activity events (sedentary
state, stationary bike, or treadmill run) and type of acute psychological stress events
(non-stress, emotional anxiety stress, or mental stress) using a common feature map and
comparing the performance of the multi-task model with the independent models for
each task.

• Multi-task learning of extreme gradient boosting (XGBoost) for simultaneously classi-
fying the type of PA (sedentary state, stationary bike, or treadmill run) and the type of
APS (non-stress, emotional anxiety stress, or mental stress) using a common feature
map and comparing the performance of the multi-task XGBoost to the independent
XGBoost models for each task.

• Simultaneously classifying the type of PA (sedentary state, stationary bike, or treadmill
run) and the type of APS (non-stress, emotional anxiety stress, or mental stress) using
data collected during daily life activities relying only on the physiological signals
measured noninvasively by the Empatica E4 wristband.

• Employing random convolutional kernel transformation to extract a large number of
features from the time series signals.

• Comparatively evaluating two different feature selection techniques to determine the
most informative set of features: PLS-DA for the classification tasks and PLS for the
regression task.

• Evaluating the performance of two different approaches to handle the imbalanced
classes: weighted training and adaptive synthetic (ADASYN) sampling approach.

Section 2 details the methods for collecting the data, preprocessing the signals, ex-
tracting feature maps, selecting the informative features useful for the multi-task learning,
handling class imbalances, and the architecture of the trained recurrent NN models and
the XGBoost model. Section 3 presents the results of the multitask RNN with LSTM
and XGBoost algorithms, and comparatively evaluates their performance against their
respective independent models. Section 4 provides a discussion on the advantages of
the approach and possible improvements in future works. Finally, Section 5 provides the
concluding remarks.

2. Materials and Methods

Many physiological variables can be valuable to classify the occurrence of PA from
APS [17–23], such as hormonal changes of lactate and cortisol levels, eye-tracking [24], and
speech wave analysis. However, currently, these variables cannot be measured noninva-
sively and frequently in free living. In this work, we used data collected noninvasively
by the Empatica E4 wristband. Empatica E4 has a 3-axis ACC that captures motion-based
activity, a photoplethysmography (PPG) sensor that measures BVP from which HR and
HR variability is derived by an internal algorithm of E4, an infrared thermopile to read
peripheral ST, and EDA, also known as GSR, to measure the electrical activity conducted
through sweat glands in the skin. A Cosmed K5 wearable metabolic system is used to mea-
sure energy expenditure (EE) to determine the intensity of the PA (the ground-truth) [25]
to compare with the EE estimated from E4 signals. A limited number of experiments are
conducted using the Bioplux finger-tip PPG sensor device that provides a higher accuracy
PPG and electrocardiogram (ECG) signal as the ground-truth measurement [26]. The char-
acteristics of physiological variables recorded by Empatica E4, Cosmed K5, and Bioplux
are summarized in Table 1.
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Table 1. The characteristics of measurement devices Empatica E4, Cosmed K5, Bioplux.

Device Sensor Frequency of Measurement

Empatica E4
Wristband Gyroscope Continuous triple axis acceleration within ±2 g with

frequency of 32 Hz

Empatica E4
Wristband PPG Continuous BVP signal with sampling rate of 64 Hz

Empatica E4
Wristband Infrared Thermopile Continuous ST with the sampling rate of 4 Hz

Empatica E4
Wristband

Electrodermal Continuous GSR with the
frequency of 4 Hz activity sensor Continuous GSR with the sampling rate of 4 Hz

Empatica E4
Wristband - Inter beat interval (IBI) calculated from BVP signal

(only available in the offline mode)

Empatica E4
Wristband - Heart rate (HR) values with the sampling rate of 1 Hz

Cosmed K5
Calorimeter VO2 measurement B-B measurement of metabolic equivalent of task (MET)

values each (variant frequency)

Bioplux PPG BVP signal with the sampling rate of 1000 Hz

Bioplux ECG ECG signal with the sampling rate of 1000 Hz

The signals collected from the Empatica E4 wristband are preprocessed to remove
noise and artifacts. Random convolutional kernel transformation (ROCKET) is utilized
to extract a large number of feature maps. Features with the most predictive power are
selected using partial least squares discriminant analysis (PLS-DA) and partial least squares
(PLS) for classification and regression tasks, respectively. The selected features are used to
train the machine learning (ML) algorithms including multi-task RNN with an LSTM layer
for simultaneously classifying the type and intensity of PA and the type of APS. To deal
with imbalanced class sizes and avoid bias in model training, we used adaptive synthetic
sampling (ADASYN) [27,28] and weighted training.

2.1. Data Collection

A total of 34 subjects participated in 166 clinical experiments approved by the Institu-
tional Review Boards (IRB) at the universities conducting the experiments. Table 2 shows a
general overview of the participants’ demographics.

Table 2. Detailed demographic information on participants [6].

Demographic
Variable Average Min–Max Variance

Age 25.0 20–31 11.7

Height (cm) 171.2 154–184 97.1

Weight (kg) 61.9 49–82.9 123.7

BMI (kg/m2) 21.1 16.5 8.2

Max HR (bpm) 195.0 189.0–200.0 11.7

The experiments involve being in a sedentary state (SS) or performing two types of
PA, either treadmill running (TR) or stationary bike (SB). Subjects perform PA under no
psychological stressor non-stress (NS), or under the influence of stressors that induces APS,
either mental stress (MS) or emotional anxiety stress (EAS). The APS inducement methods
are standard reliable techniques that have been reported in the literature in previous
studies [1,19,22,23,29–33].
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The SS experiments are divided into three subcategories: NS events, EAS inducement,
and MS inducement. In NS, subjects perform free living activities such as reading books,
watching neutral videos or surfing the internet. In EAS inducement, subjects meet with their
supervisors to report progress of their work, drive a car, and solve test problems in a specific
time frame. In MS inducement, subjects solve mental or mathematics exam or IQ test, or
puzzle games or perform the Stroop test. Similarly, APS inducement during PA (TR and
SB experiments) are split into three subcategories. An NS experiment involves watching
natural videos or listening to music. During EAS inducement sessions, subjects watch
surgery videos or car crash videos, while in MS inducement experiments, they solve mental
math problems. Figure 1 describes the data acquisition system for the data collection.
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Figure 1. A schematic representation of the data acquisition system for the data collection.

The Cosmed K5 portable indirect calorimetry system is used to measure the EE
(the ground truth). To ensure the PA is consistent across all experiments, the EE was
compared across NS, EAS, and MS. In addition, the State-Trait Anxiety Inventory Trait
STAI-T and the State-Trait Anxiety Inventory State STAI-S scores are calculated for each
participant to assess the anxiety response [34–36]. Before and after each nonstress and
emotional anxiety stress inducement experiment, the State-Trait Anxiety Inventory (STAI)
self-reported questionnaire is collected. The STAI-T scale consists of 20 statements that ask
people to describe how they generally feel. On a daily basis, it describes how one feels
stressed, anxious, or uncomfortable. The STAI-S scale also consists of 20 statements, but the
instructions require subjects to indicate how they feel at a particular moment in time. It is
used to determine the actual levels of anxiety intensity induced by the stressful experiment.
Table 3 lists the experiments conducted for data collection.
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Table 3. Experiments Conducted for Data Collection [3].

PA with APS Inducements

PA Number of Experiments Number of Subject Minutes

SS 89 10 3172

TR 57 20 2164

SB 61 19 1713

SS with APS Inducement

APS Number of Experiments Number of Subject Minutes

NS 28 6 846

EAS 29 9 1129

MS 32 6 1197

TR Experiments with APS Inducement

APS Number of Experiments Number of Subject Minutes

NS 28 20 1162

EAS 12 12 676

MS 17 8 326

SB Experiments with APS Inducement

APS Number of Experiments Number of Subject Minutes

NS 29 19 891

EAS 24 12 585

MS 8 7 237

2.2. Signal Processing

Determining of the label of each event, namely, PA or APS and its type, requires a
specific duration of biosignals recorded by the wristband sensor. Signal segmentation
enables the trained model to be evaluated frequently. The signal segmentation includes
splitting a long duration of biosignals into consecutive and overlapping segments. Re-
cursively estimating the labels of different PA and APS requires information from the
current time-window of biosignals as well as several past segments of the signal. Hence,
all biosignals are split into segments with a duration of 10 s and each observation of the
biosignal is made of 5 overlapped segments of these biosignals. Each two-consecutive
time-window of biosignals has a 50% overlap, which accounts for 5 s of mutual samples in
biosignals for consecutive time segments. The label of each segment was determined from
the label of the last second of the segment. This formation of the data is suited to train NN
models that are capable of capturing the time-dependency in the data. Therefore, RNN with
LSTM architectures are an ideal choice for this purpose. Figure 2 illustrates this notation
for labeling each segment of the signal and demonstrates the process of stacking samples
with their chronological order for training a RNN model with LSTM architecture [6].

Due to the sensitivity of the PPG sensor to position on the wrist and movement,
Empatica E4 signals are corrupted by noise and motion artifacts. A number of factors, such
as sensor detachment or communication loss, may result in missing information in raw
signals. Signal processing is used to remove noise and artifacts and to impute missing data.

The 3-axis ACC provides the main signal used to capture and discriminate between
different types of PA. Since almost all of the human activity frequencies lie between 0 and
10 Hz [37], a low-pass filter or a band-pass filter with a lower frequency close to zero can
be used to reject frequencies that are not associated with body movement. We used a 4th
order Butterworth bandpass filter with cutoff frequencies 0.1–10 Hz.
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The variables that are most informative for determining which PA or APS a patient
has are the estimation of HR, the variability in HR, and the breath rate. Since HR values
can range from 40 to 200 BPM, the values outside of this range are likely to be either
high-frequency noise or motion artifacts. Therefore, we passed the BVP signal through
a 4th order Butterworth bandpass filter with cutoff frequencies 0.2–3.3 Hz to remove all
oscillation and noises outside of this range.

There are two types of information in the EDA signals, tonic skin conductance level
(SCL) and phasic skin conductance response (SCR). It is possible to consider SCL as the
baseline for evaluating EDA changes. In contrast, SCR occurs as a result of rapid changes
in short-term environmental stimuli, such as sight and noise, as well as other factors that
precede participation, such as fear, anticipation, and decision-making. Upsampling the
signal and estimating the baseline are the primary steps in the preprocessing of EDA, after
which the SCL and SCR are extracted after differentiating them from the signal. Figure 3
summarizes the pipeline of signal preprocessing of each physiological variable [6].
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2.3. Feature Extraction

Following the cleaning of the raw data, the signals must be mapped to features that
are processed by the algorithms in determining the type and intensity of PA and the type of
APS. Calculating features and different fingerprints from biosignals is crucial for two main
reasons: First, different biosignals are calculated and streamed at different sampling rates
and they need to be fed to the NN model with a similar frequency. Second, raw signals
need to be transformed into a new feature space to better represent the target variables
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(i.e., the class labels). The new feature space introduces nonlinearity to the data and hence,
more complex patterns between input and the class labels are used to develop and train the
model. We utilized random convolutional kernel transformation (ROCKET) [38] to extract
1800 features from the time-series signals [39]. By generating random convolutional kernels
of random length, weight, bias, dilation, and padding, ROCKET extracts feature vectors.
In addition, deep convolutional LSTM NN models can also be used for this step [40].
Convolution layers incorporated into 1D convolutional LSTM RNN models require a large
number of data samples, and GPUs are not yet optimized to run LSTM layers efficiently.
ROCKET runs faster, is resistant to dilation, and is more flexible by applying convolutional
kernels with different sizes, padding, etc.

Using Equation (1), we extracted dilated convolutional-based feature map from each
segment of signals by calculating the maximum and the proportion of positive values of
the filtered signal [38–41].

F == ∑m−1
i=0 f (i).xD(s− d.i), D ∈

{
BVP, Accx, Accy, Accz, SCR, SCL, ST

}
(1)

where 1D signal X ∈ R10× f sI and the kernel filter f : 0, . . . , m − 1 → R. The length m
of each kernel filter is selected as 2 × f sI where f sI is the sampling rate of biosignal I.
Variable d is the dilation factor.

In addition, we transformed the BVP signal into the frequency domain using the fast
Fourier transform in order to extract the modified power spectrum peaks orthogonal to the
3-axis ACC signals (Equation (2) [42,43]).

NBVP⊥Acct = NBVP ∏
t∈x,y,z

(
Inh f−nl f +1 −

NAcct NT
Acct

NT
Acct

NAcct

)
(2)

where N BVP and NAcct , t ∈ x, y, z represents the normalized power spectrum of the BVP
and 3-axis ACC signal, respectively. I(nh f−nI f )

represents the identity matrix, and nh f nI f > 0
are indexes of spectral bins, expressed in BPM, corresponding to the highest and the lowest
frequency of heart beats. In addition, the frequency, height, width, and the prominence of
the highest, peak, artifact-free power spectrum NBVP ⊥ Acct

is also integrated with the set of
all feature maps.

2.4. Sample Imputation

The raw data collected by Empatica E4 wristband may have missing samples due to
factors such as sensor detachment and loss of communication. Data imputation is essential
to replace the missing samples with meaningful values before training the ML models.
The sample imputation is performed after extracting the feature variables by ROCKET to
leverage the calculated feature maps and the relations among the features in estimating the
missing samples. Imputation could be performed by simple methods such as replacing the
missing values with the mean or the median values or by more advanced approaches such
as splines or probabilistic principal component analysis (PPCA) [44,45]. In this work, we
used PPCA with 5 principal components to estimate the missing samples.

2.5. Feature Selection

A feature selection method is needed to select the most informative features that
correlate with the output targets from the 1800 features extracted by ROCKET.

Uninformative feature variables are determined and excluded from the model. The
truncated number of feature variables not only enhances the prediction power of the model,
but also reduce computational complexity of the pipeline model. Firstly, we excluded
551 features with the highest co-linearity index (Pearson correlation coefficient), followed
by PLS-DA and PLS feature selections methods to extract the most informative features of
the remaining 1249 features for the classification tasks and the regression task respectively,
where the topmost 200 informative features were selected for each output target. Therefore,
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we selected the 200 features corresponding to the largest variable important for projection
(VIP) scores of the PLS-DA (the largest 200 absolute coefficient of the PLS-DA).

PLS is a cross-decomposition technique. It derives the latent variables (LV) by maxi-
mizing the covariance between the features and the output variable; as a result, PLS will
ensure that the first LV has the highest degree of correlation with the response variable(s).
PLS-DA is an extension of PLS to deal with datasets with categorical target variables (i.e.,
class labels). PLS-DA is used to determine class separation and to identify the variables
containing class-defining information [46].

A total of 244 features are selected by combining features from APS and the pair-wise
mutual features from PA and EE to train the multi-task LSTM RNN model that makes
simultaneous classification of APS types (NS, EAS) and PA types (SS, SB, TR) and EE
estimation. A total of 296 features are selected by combining features from APS and PA
for use in the multi-task LSTM RNN model and multi-task XGBoost for the simultaneous
classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR).

2.6. Multi-Task RNN Models with LSTM

We used three different model architectures: a multi-task LSTM RNN model that can
make simultaneous classification of APS types (NS, EAS) types and PA types (SS, SB, TR)
and estimation EE (Figure 4a), a multi-task LSTM RNN model that can make simultaneous
classification of APS types (NS, EAS, MS) types and PA types (SS, SB, TR) (Figure 4b). Three
separate models of the independent LSTM RNN model are developed for classification of
APS types (NS, EAS, MS) and PA types (SS, SB, TR) as in Figure 4c and estimation of EE
(Figure 4d) [6]. The nodes in RNN networks are connected in a cycle, so that output from
one node affects the input to another, causing RNNs to demonstrate dynamic behavior over
time [47,48]. Ordinary RNN suffer from the vanishing gradients and exploding gradients
problems. LSTM is a class of RNN that is capable of learning long-term dependencies.
Unlike RNN, the LSTM unit is able to handle the problem of vanishing gradients and
exploding gradients problems [49,50]. The RNN models with LSTM used in this study have
several layers (Figure 4): an input layer, an LSTM with 40 units, a dropout layer 20%, a fully
connected layer with 40 units, a dropout layer 20%, and output layers. For classification
tasks, the output layer has softmax as an activation function to predict the probability
distribution of target classes [50,51]. The model parameters are summarized in Table 4.

Table 4. The value of adjustable parameters used in the LSTM RNN models [6].

Variable Value/Technique

Number of units in the LSTM layer 40

Dropout in the LSTM layer 20%

Number of units in the dense layer 40

Dropout in the dense layer 20%

Number of units in the softmax layer 2 or 3

Learning rate 10−5

Optimization algorithm Adam

β1 0.9

β2 0.999

ε 10−7

Batch size 1000 or 10,000 approximately equal to
9% of the number of training samples

Activation function ReLU

Number of epochs Variable, depending on the target variable and
the size of samples
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2.7. Class Imbalances

Training NN models without accounting for the relative weight of each class distri-
bution will result in poor performance for samples from minority classes, since during
training, the model weights are updated relatively more according to the majority class.
To address the issue of the imbalanced classes, two different approaches are employed:
weighted training and ADASYN. Weighted training/cost-sensitive optimization involves
updating the model parameters and loss function so that samples are weighted inversely
proportional to the number of samples in each class [52,53]. ADASYN generates synthetic
samples based on density distributions, where additional samples for the minority class
are generated that are harder to learn than those that are easier to learn. Table 5 shows the
size of training splits before and after applying ADASYN for balancing the training split of
the data for classification tasks. When balancing the training splits using ADASYN, we
considered all 9 combinations of PA and APS types.

Table 5. The size of training splits before and after applying ADASYN for balancing the training split
of the data for classification tasks.

NS-SS NS-SB NS-TR EAS-SS EAS-SB EAS-TR MS-SS MS-SB MS-TR

Before ADASYN 10,860 5641 6025 96,704 2950 1684 15,088 2559 3465

After ADASYN 96,985 96,426 96,806 96,704 96,667 96,691 97,112 96,590 96,753

2.8. Extreme Gradient Boosting (XGBoost)

As an alternative, we developed multi-task XGBoost classification of APS and PA and
compared its performance against the independent XGBoost models and RNNs. XGBoost is
a scalable and efficient tree boosting supervised ML algorithm [54]. XGBoost is a branch of
gradient boosted decision trees (GBM). Boosting is an ensemble learning method that works
by constructing a strong classifier from various weak classifiers. Ensembles are constructed
from Decision Tree (DT) models as the weak learner model, where DT is added sequentially
to the ensemble and fit to reduce the prediction errors made by the preceding models.
Models are fit by gradient boosting using a gradient descent optimization algorithm.
XGBoost is designed to enhance the accuracy and to reduce the computational time over
the alternative boosting ML algorithms.

3. Results

We used a stratified shuffle split approach for each dataset with the proportion of
75:15:10 corresponding to training, validation, and testing, respectively. Then, we used the
two alternative approaches ADASYN and weighted training/cost-sensitive optimization to
address imbalanced classes in the training set, as discussed in the previous section. In order
to better evaluate the performance of the ML models for predicting class labels of PA and
APS classification, we have used the precision, recall, and F1-score (Equations (3)–(5)) where
TP is true positive, FN is false negative, and FP is false positive. Table 6 summarizes F1 score
for PA and APS classification using LSTM models. Table A1 summarizes precision, recall,
and F1 score for PA classification using LSTM models. Table A2 summarizes precision,
recall, and F1 score for APS classification using LSTM models.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 Score =
2 ∗ (Recall ∗ Precision)
(Recall + Precision)

(5)
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Table 6. F1-score for PA and APS Classification (LSTM RNN models).

Model F1 Score (%) for
PA Classification

F1 Score (%) for
APS Classification

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB,

TR) and estimation of EE.
98.00 98.97

Multi-task LSTM RNN model for classification of APS types (NS, EAS,
MS) and PA types (SS, SB, TR) with Weighted Training. 99.8 99.3

Multi-task LSTM RNN model for classification of APS types (NS, EAS,
MS) types and PA types (SS, SB, TR) with ADYSN. 99.69 98.83

Independent LSTM RNN model with Weighted Training. 99.58 98.83

Independent LSTM RNN model with ADYSN. 99.64 98.15

Root Mean Squared Error equation (RMSE) is used to assess the performance of EE
regression, Equation (6):

RMSE =

√
Σ(actual value− predicted value)2

n
(6)

where n is the number of testing samples. All numerical studies are performed using
TensorFlow 2.0 environment. In addition, several other Python libraries were used for data
preprocessing [39,55,56].

Additionally, we compared the performance of the multi-task XGBoost classification
of APS types (NS, EAS, MS) and PA types (SS, SB, TR) to the independent XGBoost
classification of APS types (NS, EAS, MS) and the independent XGBoost classification PA
types (SS, SB, TR). We used ADASYN to address imbalanced classes in the training set.
Table 7 summarizes the F1-score for PA and APS classification using XGBoost models.
Table A3 summarizes precision, recall, and F1 score for PA classification using XGBoost
models. Table A4 summarizes precision, recall, and F1 score for APS classification using
XGBoost models.

Table 7. F1 score for PA and APS Classification (XGBoost models).

Model F1 Score (%) for
PA Classification

F1 Score (%) for
APS Classification

Multi-task XGBoost model for classification of APS types (NS, EAS,
MS) and PA types (SS, SB, TR) with ADYSN. 99.89 98.31

Independent XGBoost model for classification of APS types (NS, EAS,
MS) and PA types (SS, SB, TR) with ADYSN. 99.68 96.77

3.1. Multi-Task Classification of PA Types, APS Types and EE Estimation

Figure 5a shows the confusion matrix of PA types classification by using multi-task
LSTM RNN model designed to simultaneously perform classification of APS types, clas-
sification of PA types and estimation of EE. Figure 5b depicts the confusion matrix of the
corresponding APS classes estimated form multi-task LSTM RNN model. The results
for mental stress are excluded because not enough EE data were collected during mental
stress sessions. PLS-DA is used for feature selection for the classification task. A total
of 244 features were selected by combining features from APS and the pair-wise mutual
features from PA and EE. Weighted training is used to handle the imbalanced classes. The
model achieved a RMSE of 0.728 cal

hr.kg for EE estimation. The architecture of multi-task
LSTM RNN classification of APS types and PA types and estimation of EE is shown in
Figure 4a.
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Figure 6a shows the confusion matrix of PA types classification (SS, SB, TR) using 
multi-task classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) obtained 
from multi-task RNN model tuned with weighted training, Figure 6b also shows the con-
fusion matrix APS types classification (NS, EAS, MS) using multi-task classification of APS 
types (NS, EAS, MS) and PA types (SS, SB, TR) with weighted training. PLS-DA is used 
for feature selection for the classification tasks. A total of 296 features were selected by 
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Figure 5. (a) Confusion matrix of PA classification using the multi-task LSTM RNN model designed to
simultaneously perform classification of APS types, classification of PA types and estimation of EE; (b)
Confusion matrix of APS types using the multi-task LSTM RNN model designed to simultaneously
perform classification of APS types, classification of PA types, and estimation of EE which excludes
the results for MS because not enough EE data were collected during MS sessions to do the multitask
classification for this case.

3.2. Multi-Task Classification of APS Types (NS, EAS, MS) and PA Types (SS, SB, TR)
3.2.1. Multi-Task Classification of APS Types and PA Types with Weighted Training

Figure 6a shows the confusion matrix of PA types classification (SS, SB, TR) using
multi-task classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) obtained
from multi-task RNN model tuned with weighted training, Figure 6b also shows the
confusion matrix APS types classification (NS, EAS, MS) using multi-task classification of
APS types (NS, EAS, MS) and PA types (SS, SB, TR) with weighted training. PLS-DA is
used for feature selection for the classification tasks. A total of 296 features were selected
by combining features from APS and PA. Weighted training is used to handle the issue of
imbalanced classes. The architecture of the multi-task classification of APS types and PA
types is shown in Figure 4b.
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Figure 6. (a) Confusion matrix of PA types classification using the multi-task LSTM RNN classification
of APS types and PA types (class imbalance mitigated by weighted training); (b) Confusion matrix of
APS types classification using the multi-task LSTM RNN classification of APS types and PA types
(weighted training).
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3.2.2. Multi-Task Classification of APS Types and PA Types with ADYSN

Figure 7a shows the confusion matrix of PA types classification using dual task RNN
classifier ADYSN. Figure 7b shows the confusion matrix APS types classification using the
dual task classification of APS types and PA types with ADYSN technique for addressing
the problem of imbalanced classes. PLS-DA is also used for feature selection for the
classification tasks.
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3.3. Independent Classification of PA Types and APS Types (Weighted Training and ADYSN), and
EE Regression
3.3.1. Independent Classification of PA Types and APS Types with Weighted Training

Figure 8a shows the confusion matrix of PA types classification using the independent
LSTM RNN. Figure 8b shows the confusion matrix of APS types classification using the inde-
pendent LSTM RNN Model. PLS-DA is used as a feature selection method to select the topmost
informative 200 features for the classification tasks. Weighted training is used to handle the class
imbalance. The architecture of the independent LSTM RNN is shown in Figure 4c.
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(Weighted Training). Imbalanced classes issue was mitigated by weighted learning approach.
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3.3.2. Independent LSTM RNN Classification of PA Types and APS Types with ADYSN

Figure 9a,b display confusion matrices of PA and APS classification tasks. Both
confusion matrices were calculated based on predictions made by two independent RNN
classifiers to discriminate different types of PA and APS. Synthetic samples of minority
classes were generated for unbiased model training. The architecture of the independent
LSTM RNN is shown in Figure 4c.
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Figure 9. (a) Confusion matrix of PA types classification using the independent LSTM RNN (class
imbalance mitigated by ADYSN); (b) Confusion matrix of APS types classification using the indepen-
dent LSTM RNN. Synthetic samples from training split were regenerated by using ADYSN to avoid
biased model training.

3.3.3. Independent LSTM RNN for EE Estimation

In the independent EE regression task, PLS is used to narrow down the most informa-
tive features. The regression model achieved an RMSE of 0.666 cal

hr.kg . Figure 4d shows the
architecture of the independent LSTM RNN model for regression. Figure 10a compares
the EE estimation using the independent LSTM RNN model and the measured EE by the
indirect calorimeter (Cosmed K5) for an independent testing data for an individual subject
running on the treadmill and experiencing EAS. Figure 10b compares the EE estimation
using the multi-task LSTM RNN model and the measured EE by the indirect calorimeter
for the same subject.

3.4. XGBoost Classification of PA Types and APS Types with ADYSN
Multi-Task XGBoost Classification of PA Types and APS Types (ADYSN)

In order to better compare the performance of the multi-task RNN classifiers, a multi-
task XGBoost was trained by same training splits and confusion matrices for each classifica-
tion tasks were calculated.

Figure 11a shows the confusion matrix of PA types classification using the multi-task
XGBoost classification of APS types and PA types. Figure 11b shows the confusion matrix
APS types classification using the multi-task XGBoost classification of APS types and PA
types. PLS-DA is used for feature selection for the classification tasks and ADYSN is used
to handle the class imbalance.



Signals 2023, 4 182

Signals 2023, 4, FOR PEER REVIEW  16 
 

 

3.3.3. Independent LSTM RNN for EE Estimation 
In the independent EE regression task, PLS is used to narrow down the most informa-

tive features. The regression model achieved an RMSE of 0.666 . . Figure 4d shows the 
architecture of the independent LSTM RNN model for regression. Figure 10a compares 
the EE estimation using the independent LSTM RNN model and the measured EE by the 
indirect calorimeter (Cosmed K5) for an independent testing data for an individual subject 
running on the treadmill and experiencing EAS. Figure 10b compares the EE estimation 
using the multi-task LSTM RNN model and the measured EE by the indirect calorimeter 
for the same subject. 

  
(a) (b) 

Figure 10. EE estimation using an independent testing data. (a) EE estimated using the independent 
LSTM RNN model versus the measured EE by the indirect calorimeter. (b) EE estimated using the 
multi-task LSTM RNN model versus the measured EE by the indirect calorimeter. 

3.4. XGBoost Classification of PA Types and APS Types with ADYSN 
Multi-Task XGBoost Classification of PA Types and APS Types (ADYSN) 

In order to better compare the performance of the multi-task RNN classifiers, a multi-
task XGBoost was trained by same training splits and confusion matrices for each classi-
fication tasks were calculated. 

Figure 11a shows the confusion matrix of PA types classification using the multi-task 
XGBoost classification of APS types and PA types. Figure 11b shows the confusion matrix 
APS types classification using the multi-task XGBoost classification of APS types and PA 
types. PLS-DA is used for feature selection for the classification tasks and ADYSN is used 
to handle the class imbalance. 

Figure 10. EE estimation using an independent testing data. (a) EE estimated using the independent
LSTM RNN model versus the measured EE by the indirect calorimeter. (b) EE estimated using the
multi-task LSTM RNN model versus the measured EE by the indirect calorimeter.

Signals 2023, 4, FOR PEER REVIEW  17 
 

 

  
(a) (b) 

Figure 11. (a) Confusion matrix of PA types classification using the multi-task XGBoost classifica-
tion of APS types and PA types (class imbalance mitigated by ADYSN); (b) Confusion matrix of 
APS types classification using the multi-task XGBoost classification of APS types and PA types 
(ADYSN). 

4. Independent XGBoost Classification of PA Types and APS Types with (ADYSN) 
Independent estimation of the PA and APS was also studied for a comparison with 

independent RNN classifiers. 
Figure 12a shows the confusion matrix of PA types classification using the independ-

ent XGBoost classification of PA types with ADYSN. Figure 12b shows the confusion ma-
trix APS types classification using the independent XGBoost classification of APS types 
with ADYSN. PLS-DA is used for feature selection for the classification tasks and ADYSN 
is used to handle the class imbalance. 

  
(a) (b) 

Figure 12. (a) Confusion matrix of PA types classification using the independent XGBoost classifi-
cation (class imbalance mitigated by ADYSN); (b) Confusion matrix of APS types classification 
using the independent XGBoost (ADYSN). 

  

Figure 11. (a) Confusion matrix of PA types classification using the multi-task XGBoost classification
of APS types and PA types (class imbalance mitigated by ADYSN); (b) Confusion matrix of APS
types classification using the multi-task XGBoost classification of APS types and PA types (ADYSN).

4. Independent XGBoost Classification of PA Types and APS Types with (ADYSN)

Independent estimation of the PA and APS was also studied for a comparison with
independent RNN classifiers.

Figure 12a shows the confusion matrix of PA types classification using the independent
XGBoost classification of PA types with ADYSN. Figure 12b shows the confusion matrix
APS types classification using the independent XGBoost classification of APS types with
ADYSN. PLS-DA is used for feature selection for the classification tasks and ADYSN is
used to handle the class imbalance.
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5. Discussion

In this work, we used a multi-task learning approach to train both an RNN with
LSTM architecture and XGBoost for simultaneously classifying the type and intensity of
PA and the type of APS using a common feature map. We used data collected during
activities of daily living and exercise sessions, relying only on the physiological signals
measured noninvasively by the Empatica E4 wristband. The measured biosignals used
for discrimination between different APS and PA include a 3-axis accelerometer, BVP, ST,
and GSR (HR is reported by E4 based on BVP). The data obtained from the wristband
are processed to impute the missing values and to reduce the noise and the artifacts that
compromise the data quality. We employed random convolutional kernel transformation to
extract a large number of features from the time series signals. We used two different feature
selection techniques to select the most informative features, PLS-DA for the classification
tasks and PLS for the regression tasks. In order to address the issue of the imbalanced
classes, two different approaches are employed: weighted training and ADASYN.

The advantage of the multi-task RNN model is that only a single model is devel-
oped and maintained rather than many independent classification and regression models.
Moreover, in cases where there is similarity between the tasks, multi-task learning can
provide consistency in the predictions. Additionally, mutual features were used for multi-
classification regression tasks, therefore enhancing the prediction power of the model, and
reducing the computational complexity, which makes it a great candidate for real-time
implementation on platforms with low computational power.

The multi-task LSTM RNN model designed to simultaneously perform classification of
APS types (NS, EAS), classification of PA types (SS, SB, TR), and estimation of EE achieves
comparable performance to the independent RNNs, with the multi-task RNN having F1
scores of 98.00% for PA and 98.97% for APS, and an RMSE of 0.728 cal

hr.kg for EE estimation
using independent testing data. In contrast, the independent RNNs have F1 scores of
99.64% for PA and 98.83% for APS, and an RMSE of 0.666 cal

hr.kg for EE estimation. Multi-task
XGBoost achieved F1 scores of 99.89% and 98.31% for the classification of PA types and
APS types, respectively, while the independent XGBoost achieved F1 scores of 99.68% and
96.77%, respectively. The results illustrate that multi-task NN and multi-task XGBoost can
effectively assess the signals from wearable sensors and effectively enhance the detection
of PA and APS. This can be explained by the potential for improved data efficiency in
exploiting the shared representations in the data by training one model to predict the
related tasks PA and APS jointly. Training independent models to predict the type of PA
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and APS without connecting the shared information between the two tasks may require
more training data and longer training time to achieve a high level of accuracy.

It is crucial to consider the relative risk of misclassification of the different types of
PA and APS to the patients with diabetes. For instance, in the case of misclassification of
APS events, whether MS or EAS as an NS event, the AP system will not take the proper
action on regulation of blood glucose concentration, and consequently, hyperglycemia may
occur. Alternately, misclassification of NS as an MS or EAS is harmful since the AP will
incorrectly inject additional insulin in an attempt to mitigate APS, leading to hypoglycemia.
Similarly, misclassification of SS as SB or TR will lead to hyperglycemia due to reduction
of insulin injection by the AP, while misclassification of SB or TR as SS is dangerous since
AP will not reduce insulin infusion during PA leading to hypoglycemia or potentially
severe hypoglycemia.

A few of the EAS inducement samples were misclassified as NS, as shown in the
confusion matrix of APS classification Figure 5b (i.e., EAS recall = 98.43% as indicated in
Table A2). The main reason that some APS samples are predicted as non-stressful episodes
can be caused by over-smoothing the biosignals, especially BVP, since the variation of IBI is
the main biosignal conveying the information on psychological stress. Additionally, the
experiments were conducted under the review and monitoring of the IRB to ensure the
safety and welfare of the subjects. As a result, the APS experiments are limited to mild
APS inducement; consequently, some of the physiological variables during EAS resemble
NS events.

Classification of different APS is a challenging task: for one reason, different classes,
in particular, milder MS and EAS, can be misclassified interchangeably. Another factor
in our data is the difference in data sizes, the number of samples in EAS dominates other
class labels (NS and MS). Usually, handling imbalance labels in the training split improves
the performance of the model with unseen data. Yet, intervention between NS and EAS
indicates a low signal-to-noise ratio in some collected samples. The noise in the data causes
estimation of the probability of each class close to the threshold value. Hence, the trained
model results in estimating samples with low confidence. Similarly, during SB sessions, the
variation of the 3D accelerometer signals can be similar to the SS condition and therefore,
other biosignals such as BVP become rather important to distinguish between SS and SB.

SB and TR samples are readily distinguishable from each other. Figures 5a–9a and 11a
show no misclassification between SB and TR, because the TR experiments do not con-
tain high magnitude measurements from the three-axis ACC which distinguishes the
SB experiments.

Overall F1 scores for classification of PA types (SS, SB, TR) are higher than classification
of APS types (NS, EAS, MS) for all models considered. The 3-axis accelerometer signal is the
main signal contributing only to discrimination of PA types while the 3-axis accelerometer
signal is not correlated with APS types. Sympathetic activation stimulates the sweat glands.
Hence, EDA is an indicator of sweating rate, and is strongly correlated with PA intensity as
well as APS level. The magnitude of the physiological variables such as HR in response to
PA is more pronounced compared to APS.

The multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and
PA types (SS, SB, TR) with weighted training had F1 scores of 99.8% for PA and 99.3% for
APS. On the other hand, the multi-task LSTM RNN model for classification of APS types
(NS, EAS, MS) types and PA types (SS, SB, TR) with ADYSN had F1 scores of 99.69% for PA
and 98.83% for APS. A comparison between Figures 6 and 7 reveals that adding synthetic
samples based on the density and similarity between samples does not efficiently address
the issue of imbalanced samples. Adding synthetic samples using ADYSN assumes the
observations with high similarity will have similar labels. Although this assumption in
many applications is valid, different types of APS often show similar behavior and these
three classes are not simply separable. Therefore, some synthetic samples with their labels
are considered as the main reason for the increased number of misclassified samples in
comparison to the weighted training technique for handling the imbalanced classes.
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Similarly, comparison of the performance of models trained by ADYSN-balanced
samples and weighted classes were performed for the independent model architectures.
As expected, the ADYSN technique is not the optimal solution for addressing the problem
of imbalanced samples in the data. The high similarity between different types of APS and
NS classes causes biased interpretation of the trained model from the synthetic samples.

A comparison between Figures 6 and 8 illustrate the difference in architecture of the
two models. In the multi-task architecture, mutual features contributing to both classes
were used for the classification task. It should be noted that the number of model layers,
trainable units, and other hyper parameters remain invariant. Hence, overfitting of “data-
hungry” LSTM layers drops the performance of classification. However, this issue can be
solved by introducing a regularization feature in trainable layers. The independent models
also require performing of repeating feature engineering for each model; hence, the issue
can be troublesome in model deployment in real time.

The estimated EE values for an individual subject running on the treadmill under the
influence of EAS are illustrated in Figure 10. The EE estimation algorithms for both the
independent LSTM RNN model and the multi-task LSTM RNN model are able to track the
EE measured by the Cosmed K5 Calorimeter with high accuracy.

A significant drop in the performance of XGboost models can be observed as compared
with both independent and multi-task NN architectures. Training XGboosted trees is a
challenging task and requires constant monitoring of models to avoid the problem of
overfitting as well as biased model training. For both XGboost models, off-diagonal
predictions in the confusion matrices Figures 11b and 12b increased drastically. Apart from
biased predictions that stemmed from synthetic samples, a range number of samples were
misclassified as NS events. A major difference between the two models is the time series
structures in RNN models while XGboost models only trained on a single slice of the data
and no past time windows were used in the model. Since different episodes of APS and PA
take place in piece-wise patterns, the recurrent model is a better choice for modeling from
these types of measurements, as RNN models capture the dynamic behavior in estimating
the probability of the classes. In contrast, the trained XGboost only predicts probabilities
based on the current snapshot of biosignals and as a consequence, non-smooth predictions
and more oscillations between the predicted classes are anticipated.

A limitation of the current work is that the EE data collected during MS experiments are
not sufficient to include MS type in the case of multi-task LSTM RNN classification of APS
types and PA types and estimation of EE. The presented approach can cover the common PA
in daily life. Future work will extend the presented approach to include other classification
scenarios to obtain an accurate classification during all kinds of daily activities.

Incorporating information on the type and intensity of PA in diabetes therapies im-
proves time in range (TIR) and prevents hypoglycemia in people with T1D by modulating
the insulin requirements to counteract the effects of PA on the blood glucose dynam-
ics [15,57]. Additionally, incorporating information on the APS can improve treatment
outcomes. Researchers have documented that athletic competition stress increases blood
glucose levels and reduces insulin sensitivity in individuals with type 1 diabetes preceding
and during an athletic competition in comparison to the same physical activity performed
in training at the same intensity [58]. In addition to incorporation of PA information, future
work will incorporate APS information in AP systems to adjust the insulin dosage in people
with diabetes to account for the glycemic disturbance effects of both PA and APS.

6. Conclusions

The advantage of the multi-task learning approach is that a single model is developed
and maintained instead of many independent classification and regression models. Ex-
ploiting the shared representations in the data by training one model to predict the related
tasks of PA and APS jointly can improve data efficiency. We used data collected during
exercise sessions and daily life activities relying only on the physiological signals measured
noninvasively by Empatica E4 wristband. Random convolutional kernel transformation is
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employed to extract a large number of features from the time series signals. Two different
feature selection techniques are used to select the most informative features, PLS-DA for
the classification tasks and PLS for the regression task. In order to address the issue of
the imbalanced classes, two different approaches are employed: weighted training and
ADASYN. The multi-task RNN model with LSTM is developed to simultaneously classify
the type of PA and estimate its intensity and classify the type of APS. Multi-task LSTM
RNN classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with weighted
training achieved the highest F1 score for both APS and PA types. A multi-task XGBoost
model is developed to simultaneously classify the type of PA and the type of APS where the
multitask XGBoost achieved higher F1 scores in comparison to the independent XGBoost.
The results illustrate that multi-task NN and multi-task XGBoost can effectively assess the
signals from wearable sensors and effectively enhance the detection of PA and APS.
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Appendix A

Table A1. Precision, Recall, and F1 score for PA Classification using (LSTM models).

Precision (%)

Model SS SB TR Mean

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB, TR) and estimation of EE. 91.43 100 99.75 97.06

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with Weighted Training. 99.99 99.4 99.66 99.68

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN 99.96 99.45 99.32 99.58

Independent LSTM RNN model for classification of PA types (SS, SB, TR) with Weighted Training. 99.93 99.18 99.32 99.47

Independent LSTM RNN model for classification of PA types (SS, SB, TR) with ADYSN. 99.93 99.66 99.18 99.59

Recall (%)

Model SS SB TR Mean

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB, TR) and estimation of EE. 98.46 99.12 99.5 99.03

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with Weighted Training. 99.91 99.93 99.93 99.93

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN 99.89 99.86 99.66 99.8

Independent LSTM RNN model for classification of PA types (SS, SB, TR) with Weighted Training. 99.86 99.86 99.32 99.68

Independent LSTM RNN model for classification of PA types (SS, SB, TR) with ADYSN. 99.89 99.79 99.38 99.69

F1 Score (%)

Model SS SB TR Mean

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB, TR) and estimation of EE. 94.81 99.56 99.63 98.00

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with Weighted Training. 99.95 99.67 99.8 99.8

Multi-task task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 99.92 99.66 99.49 99.69

Independent LSTM RNN model for classification of PA types (SS, SB, TR) with Weighted Training. 99.89 99.52 99.32 99.58

Independent LSTM RNN model for classification of PA types (SS, SB, TR) with ADYSN. 99.91 99.73 99.28 99.64
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Table A2. Precision, Recall, and F1 score for APS Classification (LSTM models).

Precision (%)

Model NS EAS MS Mean

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB, TR) and estimation of EE. 97.5 100 - 98.75

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with Weighted Training. 98.91 99.71 99.06 99.23

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 98.01 99.58 98.41 98.67

Independent LSTM RNN model for classification of APS types (NS, EAS, MS) with Weighted Training. 97.98 99.73 97.79 98.5

Independent LSTM RNN model for classification of APS types (NS, EAS, MS) with ADYSN. 96.77 99.3 97.63 97.9

Recall (%)

Model NS EAS MS Mean

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB, TR) and estimation of EE. 100 98.43 - 99.21

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with Weighted Training. 98.74 99.6 99.78 99.38

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 98.68 99.3 99.02 99.0

Independent LSTM RNN model for classification of APS types (NS, EAS, MS) with Weighted Training. 98.81 99.17 99.53 99.17

Independent LSTM RNN model for classification of APS types (NS, EAS, MS) with ADYSN. 97.79 98.88 98.55 98.41

F1 Score (%)

Model NS EAS MS Mean

Multi-task LSTM RNN model designed to simultaneously perform
classification of APS types (NS, EAS), classification of PA types (SS, SB, TR) and estimation of EE. 98.73 99.21 - 98.97

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with Weighted Training. 98.83 99.66 99.42 99.3

Multi-task LSTM RNN model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 98.34 99.44 98.72 98.83

Independent LSTM RNN model for classification of APS types (NS, EAS, MS) with Weighted Training. 98.39 99.45 98.65 98.83

Independent LSTM RNN model for classification of APS types (NS, EAS, MS) with ADYSN. 97.28 99.09 98.09 98.15
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Table A3. Precision, Recall, and F1 score for PA Classification (XGBoost models).

Precision (%)

Model SS SB TR Mean

Multi-task XGBoost model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 99.95 100 99.93 99.96

Independent XGBoost model for classification of PA types (SS, SB, TR) with ADYSN. 99.90 99.86 99.52 99.76

Recall (%)

Model SS SB TR Mean

Multi-task XGBoost model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 99.99 99.79 99.66 99.82

Independent XGBoost model for classification of PA types (SS, SB, TR) with ADYSN. 99.95 99.66 99.18 99.60

F1 Score (%)

Model SS SB TR Mean

Multi-task XGBoost model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 99.97 99.90 99.79 99.89

Independent XGBoost model for classification of PA types (SS, SB, TR) with ADYSN. 99.93 99.76 99.35 99.68

Table A4. Precision, Recall, and F1score for APS Classification (XGBoost models).

Precision (%)

Model NS EAS MS Mean

Multi-task XGBoost model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 94.02 99.67 99.56 97.75

Independent XGBoost model for classification of APS types (NS, EAS, MS) with ADYSN. 89.78 99.48 98.32 95.86

Recall (%)

Model NS EAS MS Mean

Multi-task XGBoost model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 99.32 98.57 98.88 98.92

Independent XGBoost model for classification of APS types (NS, EAS, MS) with ADYSN. 98.71 97.49 97.32 97.84

F1 score (%)

Model NS EAS MS Mean

Multi-task XGBoost model for classification of APS types (NS, EAS, MS) and PA types (SS, SB, TR) with ADYSN. 96.60 99.12 99.22 98.31

Independent XGBoost model for classification of APS types (NS, EAS, MS) with ADYSN. 94.03 98.47 97.81 96.77
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