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Abstract: Motor imagery (MI)-based brain–computer interfaces (BCI) have shown increased potential
for the rehabilitation of stroke patients; nonetheless, their implementation in clinical practice has
been restricted due to their low accuracy performance. To date, although a lot of research has
been carried out in benchmarking and highlighting the most valuable classification algorithms in
BCI configurations, most of them use offline data and are not from real BCI performance during
the closed-loop (or online) sessions. Since rehabilitation training relies on the availability of an
accurate feedback system, we surveyed articles of current and past EEG-based BCI frameworks who
report the online classification of the movement of two upper limbs in both healthy volunteers and
stroke patients. We found that the recently developed deep-learning methods do not outperform the
traditional machine-learning algorithms. In addition, patients and healthy subjects exhibit similar
classification accuracy in current BCI configurations. Lastly, in terms of neurofeedback modality,
functional electrical stimulation (FES) yielded the best performance compared to non-FES systems.

Keywords: brain–computer Interfaces; electroencephalogram; motor imagery; machine learning;
deep learning; classification; neurorehabilitation

1. Introduction

Worldwide, stroke is a leading cause of adult long-term disability [1]. Growing
evidence supports that chronic stroke patients maintain brain plasticity, meaning that
there is still potential for additional recovery of impaired limbs [2]. Consequently, various
motor rehabilitation techniques have been developed, including motor training [3], mirror
therapy [4], motor imagery (MI) [5] and action observation (AO) [6].

Presently, there is increasing evidence that motor imagery practice combined with
brain–computer interfaces (MI-BCI’s) in a closed-loop could promote long-lasting improve-
ments in motor function in chronic stroke patients [7–9]. Specifically, BCI’s can act as an
alternative non-muscular communication channel between the user’s brain and a computer
system for motor rehabilitation. MI is the cognitive process of imagining the movement of
a body part without actually moving it [10]. Through MI, stroke rehabilitation effectively
promotes structural and functional reorganization [11]. This is achieved due to the repeated
recruitment of motor-neuron circuits which repair connections between damaged neurons
through neural plasticity, and eventually improve motor dysfunction [12].

The neurophysiological mechanisms underlying the MI practice are reflected in senso-
rimotor rhythms (SMR), recorded through electroencephalography (EEG) [13]. This type
of rhythmic oscillation refers to the organized neural activity modulated by the MI and
recorded over the sensorimotor cortex as decreases in the Alpha (8–12 Hz, also known as
Mu rhythm) and Beta (13–26 Hz) frequency bands. When activity in a frequency band
increases in response to stimuli, it is called event-related synchronization (ERS), while a
decrease is called event-related desynchronization (ERD) [14].
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The translation of the brain signals to the output of the BCI, as a neurofeedback, is
accomplished through the distinct features aroused by the MI of different limbs. Tradition-
ally, the classification involves a machine-learning algorithm [15]. However, EEG signals
pose processing challenges, since they exhibit low signal-to-noise ratio (SNR) and are prone
to signal artifacts and external noise. Therefore, pre-processing is mandatory in order to re-
move those signals that are unrelated to the brain (i.e., heartbeats, eye blinking, tongue and
muscle movements, electronic equipment and environmental noise). This notwithstanding,
combined with the high dimensionality of EEG signals, interpretation, and classification
of brain signals is a difficult task, with many of the approaches utilized suffering from
poor classification accuracy. In addition, the training of the subject and the BCI system
is usually prolonged, as most of the classification methods require a significant amount
of data to predict the MI label accurately [16]. However, motivation and attention have
an important influence on the emergence of distinguishable features for various MI tasks
and the stability of EEG patterns. A monotonous MI-based BCI practice frequently affects
the engagement and concentration levels of the subjects, leading to the poor translation
of the brain signals by the computer interface and a decline in therapy effectiveness [17].
Consistent with this viewpoint, several studies have reported that the feedback modalities
of BCI systems create a more immersive and motivating environment, which increases
the embodiment of the user and, thus, provides more robust EEG features [18]. Therefore,
machine-learning algorithms should adapt to non-stationary brain signals, while human
learning approaches should assist in the production of more consistent EEG patterns for
the user.

The feedback modalities used for BCI motor rehabilitation include: non-embodied
simple two-dimensional graphics on a screen [19], embodied avatar representation of
the patient on a screen or with virtual reality (VR) [20], functional electrical stimulation
(FES) [21] or robotic exoskeletal movement [22]. In VR, the subject can perceive the imag-
ined motor action, which could potentially activate mirror neurons that are also employed
by mirror therapy for stroke rehabilitation [23]. The decoded brain oscillations are used to
control a VR avatar which reproduces the imagined actions, most commonly between left
and right-hand movement. This “closed-loop” feedback is presented in real time; therefore,
the classification algorithm used should be fast, as well as accurate. Moreover, sensory
feedback has been suggested to improve not only the performance [24], but also induce
neuroplastic changes in post-stroke patients [9]. This is achieved mainly by involving a
greater part of the sensorimotor system (e.g., visual, auditory, haptic and tactile feedback)
and producing more distinguishable features [25].

During the process of identifying classification methods more suitable to the nature
of EEG signals, many researchers were motivated to address the difficulties involved in
classifying MI-EEG signals by employing deep-learning methods. Deep learning was
selected due to its successful development in different fields, such as computer vision and
speech analysis. Unlike conventional machine-learning approaches, deep learning can
automatically identify individualized features from raw MI-EEG data using deep architec-
ture, while eliminating the need for pre-processing and time-consuming feature extraction,
since it can execute feature engineering by itself [26]. However, their disadvantages are
also evident, since a large amount of data is required; in addition, the large number of
hyperparameters which must be learned during training can increase the training time
compared to other methods [27].

Another vital limitation of EEG-based BCIs is variability across subjects. It is found that
the discriminative information of EEG signals varies based on the basic characteristics (e.g.,
demographics, prior BCI experience) and psychological states (e.g., motivation, confidence
and frustration) of the BCI users [28]. This phenomenon, combined with the need for
minimizing the training and calibration time of the BCI system, leads to the use of transfer
learning [29,30]. Transfer learning describes the procedure of using data to solve one
problem and applying it to a different but related problem. Transfer functions are employed
so that the classification models can be adapted from the source domain to different target
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domains. However, the effectiveness of transfer learning strongly depends on how well
related the two subject domains are [31].

Nonetheless, we cannot neglect the fact that stroke patients suffer from individualized
lesions, which might evoke different EEG patterns. Therefore, current efforts might be
directed towards adaptive models to tailor the individual use of the system [32]. In other
words, the difficulty in reducing individual differences is to consider individual attributes
comprehensively, and then to select some of the attributes that are effective for the system.

Although a lot of research has been devoted to identifying and comparing the best
algorithm in offline BCI systems with healthy subjects, detailed information on which
classifiers lead to the most accurate prediction of motor imagery is still missing in online
BCI systems with post-stroke patients. It is still unclear whether the cortical lesions of post-
stroke patients evoke discriminable EEG patterns for different body parts. Our perspective
is that if both traditional and novel classification algorithms induce insufficient accuracy,
then the features generated by the EEG MI signals of post-stroke patients might not be
distinguishable. Overall, it is widely agreed that recovery may be promoted through
contingent activation of efferent and afferent pathways. A good level of BCI accuracy is,
thus, a prerequisite (otherwise, there is no adequate contingency between the BCI command
“efference” and the feedback). Thus, the main goal of this survey is to identify the current
MI classification methods and highlight their limitations in BCI’s for neurorehabilitation.

2. Motor Imagery Classification Pipelines

In this section, we provide a brief background for all the steps that are necessary in
order to extract typical MI-related EEG features, and the different classifier algorithms.

2.1. Pre-Processing

Initially, the task of filtering is to prepare the recorded signals for processing by
enhancing the SNR. In most studies, the simultaneous electro-oculography (EOG), electro-
myography (EMG) and electro-cardiography (ECG) is used, to exclude irrelevant signals.
In addition, band-pass filtering within specific frequency bands is employed. However,
this processing is challenging, since each subject expresses motor imagery ERD’s and ERS’s
in varying frequency patterns [33]. Other filtering methods involve principal components
analysis (PCA) and independent component analysis (ICA), which separate artifacts from
the EEG signals either by excluding correlated activity or by transforming EEG signals into
temporal and spatial independent components, respectively [34]. A simpler approach is
to subtract common activity from the position of interest with common average reference
(CAR) [35]. Lastly, spatial filtering with Laplacian filters is robust against the artifacts
generated at regions that are not covered by an electrode cap, and it solves the “electrode
reference problem” [36].

2.2. Feature Extraction and Selection

EEG-based BCIs typically collect data from multiple electrodes placed on the scalp,
and each electrode produces a separate time series of measurements. This means that an
EEG data set can have hundreds or thousands of dimensions, depending on the number
of electrodes used. This gives rise to a common challenge referred to as “the curse of
dimensionality” ([15]). However, there are techniques that can be used to mitigate the
impact of the curse of dimensionality, such as dimensionality reduction through feature
extraction. The extracted EEG features are able to capture signal characteristics which can
be used as a basis for the differentiation between task-specific brain states.

During feature extraction, EEG characteristics are extracted from the signals in either
the time, frequency and/or space domains. The most common type of EEG feature used
in MI is the band power. Band-power (or rhythm) features represent the power of EEG
signals for a given frequency band averaged over a time window, and over specific scalp
locations [37]. These bands are usually divided into five main frequency ranges: Delta
(0.5–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Beta (12–30 Hz), and Gamma (30–100 Hz) [38].
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The simplest frequency domain feature-extraction method is fast Fourier transform (FFT).
However, FFT does not take time information into account. An alternative approach is the
short-time Fourier transform (STFT), which divides the signal into multiple overlapping
frames [36]. Nonetheless, the spectra obtained from FFT over short epochs still have poor
resolution when compared to an autoregressive model (AR) [36]. However, the validity of
power-spectra estimates depends on the selection of a proper model order. The adaptive
autoregressive (AAR) model establishes the parameters of the model [39].

Nevertheless, FFT and AR provide spectral characteristics of EEG and are not very
robust due to the non-stationarity of the EEG signals. In contrast, wavelet transform (WT)
uses varying size windows such that high frequencies are evaluated on the shorter window
and low frequencies over a longer window contrast [40]. Thus, WT could perform better in
the time resolution of high frequencies compared to STFT [37].

However, we cannot ignore that, in MI BCI, multichannel EEG recordings are used
to discriminate the motor imagery patterns. Therefore, feature-extraction and selection
methods are important in multichannel EEG in order to further reduce the feature space
and improve the accuracy [41], and avoid the loss of crucial data in MI tasks [42].

For example, the use of the coefficient of determination [43], or r2, can provide a
measure for the extent to which a particular EEG feature (i.e., power at a specific frequency
and electrode location) is influenced by the subject’s mental task (e.g., rest vs. hand
movement) [44]. Similarly, the Fisher score is commonly used for determining how strongly
a feature (e.g., band power) is correlated with the labels (i.e., motor vs. rest), and in which
channel [45]. Moreover, spatial filters have been widely used to extract spatial information
from features. The most common method is the common spatial pattern (CSP) filter. CSP
generates spatial filters that minimize the variance in one class and maximize the variance
in other classes simultaneously [46]. The CSP performance depends on the operational
frequency band of EEG [47]. Therefore, several approaches have been proposed to fine
tune the subject-specific frequency range for CSP algorithm, such as filter bank common
spatial pattern (FBCSP) [33]. Further, within the last few years, several papers in the
literature investigated the use of automatic channel-selection methods, including Pearson
correlation [48], regularized common spatial pattern with aggregation (RCSPA) [49], and
the use of the standard deviation of wavelet coefficients (stdWC) across channels [50].

2.3. Classification

After feature extraction, the signals are classified into various classes of movement
imagination (e.g., left or right MI) through the use of classifiers. A classifier is a model
that is used to predict the class to which the feature belongs. There are two main types
of classifiers: supervised and unsupervised [51]. Supervised classifiers are trained on
labeled data, where the correct class for each feature is known. Examples of supervised
classifiers include logistic regression, decision trees, and support vector machines (SVM).
Unsupervised classifiers, on the other hand, are trained on data that is not labeled with
the correct class. Examples of unsupervised classifiers include k-means clustering and
Gaussian mixture models. In general, supervised classifiers tend to perform better than
unsupervised classifiers because they are trained on more informative data [52]; hence,
they are the most used classifier type in BCIs.

Most of the reviews in the literature classified the classification methods into linear clas-
sifiers, non-linear classifiers, neural networks and deep neural networks [13,15,37]. The two
main types of linear classifiers are linear discriminant analysis (LDA) [53–58] and support
vector machine (SVM) [21,59,60]. LDA has low computational requirements; however, it
might provide poor results on complex non-linear EEG data [37]. SVM overcomes this
obstacle by using non-linear kernel functions to map the data onto higher dimensional
space [36]. Non-linear classifiers, on the other hand, are not as widespread and popular
as linear classifiers and neural networks [61,62]. Although k-nearest neighbor (k-NN) [63]
and Bayesian classifiers [64] are generative and easy to implement, they are sensitive to
irrelevant and redundant features [36]. Finally, fuzzy classification is another approach
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used for EEG classification, since EEG classification is a decision-making problem suited
for fuzzy logic [40].

An important upside of artificial neural networks (ANN) is that they take into account
the dynamic nature of an EEG signal. They are assemblies of artificial neurons, arranged
in layers, which can be used to approximate any nonlinear decision boundary. The multi-
layer perceptron (MLP) and the Gaussian classifier are the most used neural-network
architectures used in BCI research [65,66]. In contrast to traditional neural networks, where
weights have to be chosen carefully, deep-learning approaches, such as convolutional
neural networks (CNN) [67,68] and recurrent neural networks (RNN) [69,70], have high
descriptive power.

Further, deep-learning algorithms, particularly CNNs, have been successful at per-
forming feature extraction on EEG data. This allows the network to automatically learn
features from the raw data that are relevant for a given task, such as classification [71].
However, it should be noted that CNNs were adopted in EEG signal processing after first
being established as a tool in image processing. Therefore, when using CNNs for the
classification of MI EEG, pre-processing of the input data might be needed. Either raw data
is fed into the CNN, and the first layers of the network are devoted to extracting spatial
and temporal information, or a time-frequency domain image is obtained from the data
using STFT or WT [72,73].

Another way to use deep learning for feature extraction on EEG data is to use RNN,
such as a long short-term memory (LSTM) networks [74]. LSTMs are able to capture
temporal dependencies in the data by processing the data sequentially in time and using
the hidden state to “remember” information from previous time points.

Finally, additional deep-learning approaches include the use of restricted Boltzmann
machines (RBMs), deep belief network (DBN), generative adversarial networks (GAN),
and the variational autoencoder (VAE) [26].

3. Methods

In this section, we describe our search criteria for this review, including the statistical
tests used for the comparison. The scientific database used for this review was Scopus
database (https://www.scopus.com, accessed on 25 November 2022) (Elsevier, Amsterdam,
Netherlands). Scopus covers over 23,000 titles from more than 5000 international publishers,
making it one of the largest abstract and citation databases in the world. Further, Scopus
has a rigorous selection process for inclusion in the database, which helps ensure the quality
and relevance of the content.

3.1. Searching Criteria

The searching string utilized in Scopus consisted of the following format: TITLE-ABS-
KEY (“brain computer interface” AND “motor imagery” AND stroke AND classification).
The initial searching procedure yielded 138 results; however, we applied a set of inclusion
criteria to further narrow our search. Specifically, we selected a sub-set of papers which
reported online accuracies (with new data from actual participants); originating from EEG-
based MI-BCI’s; and included two-class classification of upper limbs (left- and right-hand
MI); this further reduced the sample to 18 papers (Table 1). The exclusion criteria were:
offline BCI studies; data not recorded by EEG (e.g., fNIRS); multi-class classification (three
and above); two-class studies using data coming from MI of limbs other than the two
hands (e.g., feet, tongue, etc.); two-class studies classifying hand-movement imagination
and resting state; and studies using data from other BCI types, such as steady-state visual-
evoked potentials or P300.

The features gathered from each paper were: (1) author name; (2) date of publication;
(3) classifier; (4) type of classifier (e.g., traditional/ deep learning); (5) classification accuracy;
(6) number of electrodes used; (7) number of subjects; (8) healthy or patients; (9) BCI
protocol (number of sessions and trials); (10) feedback modality (e.g., screen, robot, etc.);
and (11) average age of participants (Table 1).

https://www.scopus.com
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Table 1. Summary of papers included in the review.

Author Classifier Performance
Feature

Extraction
Number of
Electrodes

Number of
Subjects

Number of
Sessions

Number of
Trials

Feedback
Modality Participants Years

Herman [75] T2FLS 69% PSD 2 6 7 160 Screen Healthy -
Prasad [19] T2FLS 69% PSD 2 5 12 160 Screen Patients 59

Pan [76] QDA 67% CSP+AR 3 3 1 230 Screen Healthy -
Chen [53] Autoencoder 74% CSP 16 4 144 15 Screen+ FES Patients 62

Xu [77] LDA 86% WT+AR 2 8 3 40 Robotic Healthy 27
Irimia [78] LDA 95% CSP 45 2 10 240 Screen+FES Patients 50
Zhao [79] SVM 74% CSP 41 5 1 40 Screen Healthy -
Irimia [80] LDA 87% CSP 64 5 18 160 Screen+FES Patients 60
Tayeb [81] CNN 84% FT 3 20 2 90 Robotic Healthy 31

Karacsony [82] CNN 72% - 16 10 - - VR Healthy 25
Vidaurre [83] LDA 82% CSP 64 15 1 300 Robotic Healthy -

Raza [84] CNN 70% CSP 12 10 1 120 Robotic Patients 41
Mousavi [85] LR 62% CSP 64 12 1 180 Screen Healthy 20

Benzy [86] NB 68% PLV 64 16 2 50 Screen Patients 50
Achanccaray [21] SVM 93% CSP 16 20 - - VR+FES Healthy 26

Gaur [22] LDA 80% CSP 12 10 3 40 Robotic Patients 41
Vasilyev [87] NB 80% CSP 30 11 6 - Screen Healthy 26
Zhang [16] LDA 75% WT+AR 16 7 3 200 Screen Patients 60

3.2. Statistical Tests

Firstly, for assessing the normality of the data, we performed a Kolmogorov–Smirnov
test. Since data distributions were not normal, but also due to the small sample size, non-
parametric tests were used. Specifically, for comparing the classification performance of
patients and healthy subjects or traditional machine-learning methods and deep-learning
techniques, we used the Wilcoxon rank sum test. Next, for identifying the influence
of the various types of neurofeedback, a Kruskal–Wallis and Dunn’s post-hoc test was
employed. Finally, for the evaluation of the correlation of a parameter with the classification
performance of the BCI configuration, we used the Pearson’s correlation coefficient (r). For
all statistical comparisons, the significance level was set to 5% (p < 0.05) and results were
computed using MATLAB R2016b.

4. Results

In this section, we present the classification accuracy of different ML algorithms and
for different feature-extraction methods. Moreover, we investigate the influence of non-ML
factors, such as user demographics (e.g., age), the user type (e.g., patient vs. healthy), and
experimental setup (e.g., number of: trials, electrodes, subjects) on the BCI performance.

4.1. Comparison of the Algorithms Used for Classifying Motor Imagery

Here, we focus on identifying features and classification algorithms which identify
the imagination of upper-limb movements with the best performance.

According to the various studies surveyed, the classification performance ranges from
62% to 95%, with an average of 77% (Table 1). The majority of papers use CSP for extracting
the MI features that will afterwards be classified, in most cases by LDA [16,22,77,78,80,83].
The rest of the papers used either traditional machine-learning methods, such as SVM [21,79],
logistic regression (LR) [85], naïve Bayes (NB) [86,87], quadratic discriminant analysis
(QDA) [76], and fuzzy logic systems (T2FLS) [19,75], or deep-learning techniques, such
as convolutional neural networks (CNN) [81,82,84] and autoencoder [19]. Further, Irimia
et al., 2017 [78] and Anchancarray et al., 2021 [21] reported the best classification accuracy
at 95% and 93% utilizing LDA and SVM, respectively. In both cases, the feature-extraction
method used was CSP. As illustrated in Figure 1a, there is no statistically significant correla-
tion between the classification performance and time in years (r = 0.3, p = 0.23).
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Figure 1. Feature extraction, classifier and neurofeedback influence on classification accuracy. (a) Evo-
lution of classification accuracy over time. Each dot represents the average classification accuracy
of traditional classifiers, and deep-learning classifiers have an asterisk. Different colors designate
the algorithm used. (b) Feature extraction, classification algorithm and neurofeedback modality in
relation to classification performance. Each line denotes the modalities used for each study. Solid
lines represent the studies with classification accuracy above the average of all the papers included
in the analysis (0.77), while dashed lines indicate the algorithms with accuracy below the average.
(c) Comparison of the classification performance for different neurofeedback modalities used in
stroke rehabilitation. (d) No statistical significant difference is identified between the traditional
machine-learning algorithms and the deep-learning methods.

Apart from the various classification methods utilized in the BCIs, it is important to
investigate the features that are extracted from the EEG signal and the neurofeedback that
is provided to subjects. In an attempt to discover if there is a particular BCI configuration
that gives rise to the best performance, we present the different feature-extraction methods
and types of neurofeedback with respect to the classification accuracy (Figure 1b). With
solid blue lines, we indicate the BCI approaches that exceed the average classification
accuracy (77%), while dashed lines indicate the BCI configurations that performed with a
classification accuracy below the average.

In the literature, we discovered various feature-extraction techniques, such as spa-
tial filters; CSP was the most used and provided the most distinguishable features. The
other methods used are selecting the features either from the frequency domain, FT and
power spectrum density (PSD), or the time-frequency domain, WT and AR. Lastly, Benzy
et al., 2020 [86] used phase locking value (PLV) for discriminating the two upper-limb MI,
while three other papers employed a combination of spatial and time-frequency domain
feature-extraction methods [16,76,77]. Although the results are not robust for the feature-
extraction and classification techniques, the neurofeedback modality provided to the sub-
jects seems to have an important impact on the classification performance (Figure 1b,c).
We show that the quality of the neurofeedback during the BCI experiment has a vital
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role, since the BCI approaches using VR, robotic arm and/or FES have higher classifica-
tion accuracy than BCI systems that employ only feedback via a computer screen. This
result agrees with previous surveys which argue that neurofeedback evokes more dis-
tinguishable features in the EEG signal [88,89]. Nonetheless, no statistically significant
differences were found between the groups (χ2(4) = 9.76, p = 0.044; Figure 1c). Finally, no
statistically significant differences had been found between deep-learning and traditional
methods (Z = 0.2127, p = 0.8315; Figure 1d). Overall, we can observe that LDA performed
satisfyingly on average, whenever it was employed.

4.2. Influence of User’s Characteristics to the BCI Performance

BCI systems can also be affected by anthropogenic factors; thus, it is hard to draw
solid conclusions based only upon the limitations of the machine level.

Thus far, we have examined the influence of different types of classifiers, feature-
extraction methods, and the impact of providing different feedback modalities. Nonetheless,
since our target is the applicability of BCIs in neurorehablitation, we also accounted for
the user type, and, specifically, compared the performance between healthy and patients.
Previous research has revealed that the EEG of patients is considerably different from
signals recorded in healthy subjects [90]. In fact, it is not yet clear if post-stroke patients
have features distinguishable from the imagination of upper-limb movements. Hence, our
survey included studies examining the classification accuracy in both patients and healthy
participants. Contrary to our expectations, patients and healthy subjects performed with a
similar accuracy (Figure 2a, (Z = −0.0890, p = 0.9291).

In terms of the user’s characteristics, we attempted to determine the effect of the
subject’s age on the BCI performance. Interestingly, the correlation of the user’s age and
BCI performance was almost zero (Figure 2b, r = −0.03, p = 0.91). These results are in-line
with the prior work of Blanco-Mora et al., 2022, where no statistically significant correlation
was found between age and classifier performance [91]. However, we cannot neglect the
negative trend, which declines among the classification performance and the age of the
subjects in each experiment.

Figure 2. Impact of user’s characteristics to the BCI performance. (a) No statistical significant
difference is found between the classification performance between the healthy and the patient group.
(b) Relation between the average age of the subjects and the classification performance.

4.3. Correlation of Classification Accuracy with Various Parameters of BCI Framework

Up to this point, our study is missing an evaluation of the BCI experimental protocol
employed for each study. Therefore, we collected various parameters, such as the number
of electrodes, the total number of trials (number of session * number of trials for each
session) and the number of subjects that participated in each survey (Table 1). At this stage,
it is important to provide some information about the presentation of these parameters.
The number of electrodes reported in this review includes the electrodes used in the feature-
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extraction methods and not the recording process. Moreover, the total number of trials
consists of both training and testing sessions.

Concerning the number of electrodes, no significant relationship was found with
classification accuracy (Figure 3a; r = 0.05, p = 0.84). According to the literature, there is
contradictory evidence about the impact of the number of channels used and the classifica-
tion performance. Although Meng et al., 2018 [92] found that subjects’ average online BCI
performance using a large EEG montage does not show significantly better performance
than a smaller montage [92], Farquhar et al., 2013 [93] reported an effect when varying the
number of electrodes used as features for the analysis [93].

The number of trials, and by extension the trials used for training the classifier, showed
the highest correlation to the BCI performance (Figure 3b). Although the correlation of these
two parameters is not statistically significant (r = 0.38, p = 0.16), we have to acknowledge
the positive trend of interaction between the number of trials and the classification accuracy.
In addition, it is important to mention that studies including post-stroke patients had more
sessions, due to the neurorehabilitation longitudinal protocol.

Figure 3. Effect of BCI system parameters on the classification-accuracy relation between (a) the
number of electrodes, and (b) the number of total trials used for the BCI training. The color of each
point indicates if the data originates from healthy subjects (blue) or patients (red).

5. Discussion

Many of the classification methods surveyed in reviews are evaluated using offline
BCI data [13,15,27,30–32,37,94]. However, an actual BCI application is fundamentally
online. Based on the papers surveyed in this manuscript, we attempted to identify some
guidelines on whether to use various types of classification and feature-extraction methods,
neurofeedback modalities and BCI experimental parameters.

One of the major issues in MI-BCI research is to define the direction of future studies
regarding the classification methods. Since the BCI pipeline is evolving rapidly and
novel approaches such as deep learning and transfer learning are increasingly used for
discriminating EEG signals, one of our main concerns was if traditional and new approaches
exhibit significant differences. According to our research, machine-learning methods are
not inferior to deep-learning techniques. If we consider deep learning as an approach
which is able to identify individualized separation rules for each subject, it would be logical
to focus future work towards CNN and recurrent neural networks (RNN). Nonetheless, the
application of transfer learning in future studies seems more appealing, since traditional
and novel classifiers perform with similar accuracy. In addition, patients and healthy
subjects did not show significant differences with respect to the classification performance;
therefore, the training of robust and powerful traditional classification methods in the
healthy domain and the adaptation to each patient’s domain might be the next direction
that should be taken in online BCI systems.

Contrary to our results, Tayeb et al., 2019 [81] achieved better classification perfor-
mance with deep-learning models compared to traditional machine-learning techniques,
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suggesting a route ahead for developing new robust techniques for EEG signal decoding.
Tayeb et al., 2019 [81] was one of the few papers that attempted several classification
methods with online data; however, in our research, only the algorithm with the best
performance from each paper is mentioned. Another important detail of the classification
accuracy reported in our manuscript is that, in many cases where the BCI performance was
presented along with the neurorehabilitation period, we decided to outline the accuracy of
the final week’s sessions, since it was the value that the authors presented.

Apart from the significant variety of factors influencing the classification performance,
mentioned in the Section 4, we should not neglect the diverse methods of computing the
classification performance in different studies. The usual way of calculating the classifi-
cation performance in BCI systems is by training the algorithm with data deriving from
several starting sessions and evaluating the performance based on the testing sessions.
However, Irimia et al., 2017 [78], for instance, trained the classifier from data recorded
during the first four runs of each session and testing the accuracy of the model in the last
two runs of each session.

Future surveys should include the clinical improvement in the patients and translate
the impact of the classification accuracy to the clinical outcome. Unfortunately, this was
impossible in this current version, since only three papers in our survey reported the clinical
evaluation of the patients [19,78,80].

6. Limitations

Although this study collected and explored 138 EEG datasets, it was limited (N = 18).
Our findings, therefore, have limited statistical power, and should be interpreted with
caution. In addition, the statistical outcomes of our measurement and the comparisons
presented here are exploratory and not confirmative.

Moreover, an important aspect of BCI configurations is to evaluate their clinical impact
on the patients. However, not all studies report the clinical scale. In addition, even if
the clinical scale is reported, different scale measures are used, which makes it difficult
to relate the clinical outcome to the classification performance. Nonetheless, we tried to
cluster the clinical outcome between improved and not-improved patients, which yielded
ten patients with reported improvement and two with stable conditions. Due to the
unbalanced clustering of these studies, we decided not to further investigate possible
relationships through correlations. Finally, so far, we have not been able to find studies
with negative results, nor reported non-improvements in patients after interventions.

7. Conclusions

In this survey, we identified the EEG classification approaches that have been devel-
oped and evaluated in MI-based BCI systems using EEG recordings for the classification of
upper-limb movement. From existing data, we can see no significant differences in terms of
classification accuracy between patients and healthy volunteers. This suggests that current
BCI configurations used in rehabilitation, although not optimal, provide patients with
modest benefits.

Regarding the parameters and demographics used in BCI configurations, we found
that although there is a positive trend towards better classification accuracy over the
years, no significant correlations are detectable. Moreover, with respect to neurofeedback
modalities, FES yielded the best performance in both Screen and VR modalities compared
to non-FES. Finally, in terms of the classifier’s performance, we found that traditional
methods (e.g., LDA, SVM, etc.) are still not surpassed by current deep-learning methods.
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