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Abstract: This paper deals with the implementation of an adaptive speed controller applied for
two electrical machines coupled by a long shaft. The two main parts of the study are the synthesis
of the neural adaptive controller and hardware implementation using a low-cost system based on
an STM Discovery board. The framework between the control system, the power converters, and
the motors is established with an ARM device. A radial basis function neural network (RBFNN) is
used as an adaptive speed controller. The net coefficients are updated (online mode) to ensure high
dynamics of the system and correct work under disturbance. The results contain transients achieved
in simulations and experimental tests.
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1. Introduction

The rapid growth of the semiconductor industry leads to the development of pro-
grammable devices with high computational power, allowing the development of new
control techniques. Fast microcontrollers allow efficient implementation of advanced elec-
trical drive control algorithms. Classic control schemes such as PI controllers [1] require
very low computational power and have been effectively applied [2] for many years now.
In the application of advanced techniques, the power requirements are much higher. Digital
Signal Processors (DSP) have become very popular in the implementation of enhanced
control structures because of the sufficient performance offered in signal processing [3–5].
Among many available devices, the most common DSP family used for electrical drive
purposes is TMS32 manufactured by Texas Instruments. These DSPs offer all the required
peripherals, many inputs, and outputs, as well as PWM modules, and offer high speed of
computation, which can execute even the most advanced algorithms [6,7].

Another common approach is to use a fast-prototyping dSpace card [8]. It offers
a wide range of input and output ports, communication standards, and much-needed
computational power. The other benefit of a dSpace is Control Desk software that helps in
managing the data, e.g., transients, change in the parameters. With all its features, it comes
with one downside — the cost. The FPGA is also a common choice when it comes to the
implementation of control algorithms [9]. It is used mostly when parallel processing of
data is needed [10].

The higher computational power of new chips allows the price of the previously
released boards to be lowered. Often cheaper chips [11] offer similar possibilities only at the
cost of ports and/or communication standards. However, they can still be used as a com-
munication framework between the drive and the control structure [12]. Such changes are
important for the developers. Reduced availability of microprocessors should be also men-
tioned [13]. It also drives the possibility to develop more sophisticated and smart machines
without the cost increase. Thus, the research contribution was to develop a functional
control structure without the application of the commonly used laboratory hardware.
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Alongside the improvement in processing power, new ways of programming em-
bedded devices have been developed. Instructions of low-level programming languages,
such as Assembly, strongly correspond to the hardware design of the microcontroller. Al-
though this feature gives developers the ability to manually assign resources to a given
task, higher-level languages gain more popularity due to better code readability and reuse.
Recently, visual programming languages have been used to synthesize control structures
and perform Hardware-in-the-Loop verifications [14–17]. Among programming environ-
ments that offer such a possibility, Simulink and LabVIEW can be listed. They include code
generators that use the created model to produce high-level language code. After compila-
tion, the code can be loaded into a DSP. The additional advantage of visual programming
languages is a possibility for program development without high user expertise [18].

The high precision and dynamics of the drive are one of the most basic requirements
of modern electrical drives. The two interconnected machines with a long shaft are seen in
many industrial applications, such as rolling mills [19,20], wind turbines [21], or industrial
robots [22,23]. Due to the complexity of their mechanical construction, it can sometimes be
difficult to achieve the aforementioned conditions [24]. Forces acting on the elastic shaft
lead to a difference between the speeds of the two motors and the oscillations of the state
variables [25–27]. To overcome these phenomena, many strategies have been developed.

PI control schemes with a combination of feedbacks from different state variables have
been proposed [28,29]. It has been shown that additional feedback loops can reduce the
oscillations of state variables in two-mass drives by setting a desired value of the damping
coefficient. The state controllers have also been implemented with great success [30].
The state–space controller is promising when the drive parameters do not change over
time. The controller should be updated continuously with new gains suitable for the time
constant of the drive. Such an approach requires an additional observer [31] that calculates
the new value of the time constant. On the other hand, an adaptive state–space controller
can be employed. The gains of the state controller are repeatedly updated [32–34].

Adaptive controllers are growing in popularity because they can operate well under
different conditions of the drive. The presently most advanced adaptive algorithms include
neural network structures [35]. They can be divided into multiple groups. The most
basic distinction is based on the learning process — online neural networks [36] work by
continuously updating weights based on the data from the previous sample time. Data are
constantly fed to the network, and weights and the output are updated based on the chosen
learning algorithm. Offline networks [37] work based on large previously gathered data
sets. These sets are fed into the network which finds the correlation between the points,
and finally, weights can be adjusted. The points provided for offline learning should cover
all possible states of the drive so that the output can be generated for different operating
points. Another distinction can be made regarding the activation function of the network.
The most common neural networks employ sigmoidal transfer functions [38], whose output
range can vary based on the application. Wavelet neural networks [39] consist of neurons
with wavelet activation functions in the hidden layers of the network. It can be used in
different applications as estimators [40] or controllers [41]. The other set is based on radial
basis functions (RBF) [42,43], which are derived from the Gaussian distribution function.
What is different about RBF neural networks, unlike any other network, is that they consist
of only one hidden layer with radial neurons (Figure 1). Only the number of hidden
neurons is selected. It can be important for RBF networks trained offline [44,45], since data
separation is based only on RBF neurons.

In this paper, an adaptive RBFNN controller is applied to a two-mass drive. A detailed
mathematical description of the controller and plant is given in the next section. The paper
also presents the simulation tests and the results obtained from the experimental bench,
which consists of two DC motors and a Discovery board. The final remarks are presented
in the last chapter of the article.
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Figure 1. Structure of the Radial Basis Function Neural Network.

2. Description of the Plant and the Controller

The analyzed cascade control structure (Figure 2) consists of two loops: the outer
loop with the speed controller (RBFNN), and the inner loop, which is tied to the power
converter; the last part of the system is the plant—the two-mass drive.

Figure 2. The control structure with the adaptive RBFNN speed controller applied to the two-
mass drive.

The current loop (the inner loop) is responsible for creating an electromagnetic torque
and can be described in the following manner:

Gi(s) =
1

Tf s + 1
(1)

where Tf is the total time of the current control loop and the power electronics operation, s
is the Laplace operator.
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It was assumed that there was no delay in this part of the drive. Hence, the time
constant was set to zero, and the final equation can be rewritten as:

Gi(s) = 1. (2)

The plant is based on two electrical machines coupled by a long shaft. Such a system is
often referred to as the two-mass system [46,47]. Nonlinear phenomena such as friction
and backlash were omitted in the equations [48–52]:

ω1s =
me −ms

T1
(3)

ω2s =
ms −mL

T2
(4)

mss =
ω1 −ω2

Tc
(5)

where ω1 and ω2 are the speed of the motor and the load, respectively, me and ms are
the electromagnetic and torsional torque, mL is the disturbance (the load torque). T1, T2,
and Tc are the time constants which correspond to the motor, the load, and the shaft.
The parameters of the control system were adjusted to the laboratory setup so that the time
constants correspond. All variables were assumed to be observable and available to the
control algorithm.

RBF neural networks are a special case of feedforward neural networks [53]. Their
distinctive feature is that they always have one hidden layer whose neurons have radial
activation functions. The most commonly used radial basis function can be described using
the following formula [54]:

hi = exp

(
−‖x− µi‖

2

2σ2
i

)
(6)

where hi—the output of the i-th hidden layer neuron, x—the input vector, µj—the center
vector of the j-th neuron, || · ||—euclidean distance, σj—the width of the activation function.
The output of the RBF neural network can then be calculated as:

yout =
n

∑
i=0

wihi (7)

with wi being the i-th weight. The online weight update approach was chosen to ensure
adaptability and robustness to changes in parameters. The gradient descent algorithm
was selected to update weights of the neural network. The weights are updated as in the
equation presented below:

wi(k + 1) = wi(k) + ∆wi(k). (8)

With the cost function described as:

E(k) =
1
2

(
ωre f m(k)−ω1(k)

)2
(9)

where ωre f m(k) — the desired value of the angular speed from the reference model in the
k-th iteration [12]. The correction value for the i-th weight can be calculated as:

∆wi(k) = η
∂E(k)
∂wi(k)

= −η
(

ωre f m(k)−ω1(k)
)

hi(k) (10)
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where η — learning rate. To adjust the structure of the network, the parameters of the radial
activation function are also subject to adaptation. The new values of center and widths are
calculated as follows:

µi(k + 1) = µi(k) + ∆µi(k) (11)

σi(k + 1) = σi(k) + ∆σi(k). (12)

The following equations describing the adaptation for centers µi and widths σi were applied:

∆µi(k) = γem(k)hi(k)wi(k) ·
x− µi

σ2
i

(13)

∆σi(k) = γem(k)hi(k)wi(k) ·
‖x(k)− µi(k)‖2

σ3
i

(14)

where γ is learning rate associated with the parameters of the radial basis functions.

3. Simulation Results

The numerical tests were conducted to determine the behavior of the proposed control
structure. The calculations were carried out with a calculation step of 0.1 ms. The initial
weight values were randomly assigned in the range of (0, 0.1). The adaptation of widths
started with the value of σi = 0.5. The initial center matrix—µ—was established empirically
(the arrangement is symmetrical). There are five radial neurons in the hidden layer of the
RBF neural network. The input vector of the network consists of two signals: the value of
the speed error in the current and the previous iteration.

The behavior of the system (the rotational speed of the load and the electromagnetic
and torsional torques) that works under nominal conditions is presented in Figures 3 and 4.
The speed of the load machine follows the reference value ωre f m with high precision. The re-
sponse to the load disturbance is dynamic and does not generate significant oscillations.
The control system operates in a stable manner.

Figure 3. Operation of the drive under nominal conditions—rotational speed of the load machine.
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Figure 4. Operation of the drive under nominal conditions—electromagnetic (me) and torsional
(ms) torques.

To additionally test the adaptation efficiency of the proposed control scheme, a change
in drive parameters was introduced. In applications such as paper winding machines,
the inertia of the load machine increases over time. Therefore, the operation of the drive
with an increased time constant T2 was verified. The simulation results obtained for this
case are presented in Figure 5. The adaptation of all parameters can be seen. With each
reversion, the overshoot is reduced, resulting in a smoother transition between the steady
states. The changes in the adapted parameters: weights, centers, and widths are presented
in Figure 6a, b and c, respectively. The most significant changes can be observed in the
transients of weights and widths of the radial functions. The presented centers are evenly
distributed, fulfilling the role of global mapping of the whole data space.

(a) (b)
Figure 5. Operation of the drive with an increase in the inertia of the load machine (T2 = 2T2n) (a),
with a zoom (b).

Changes in all parameters of the network were also individually inspected. The impact
of the initial values of weights, centers, widths, and also values of learning rates (η and γ) is
shown. The load machine speed transients for different sets of initial weights are presented
in Figure 7. After the start of the drive, for most of the sets tested, significant oscillations
can be observed. Later, they are dampened because of the adaptation process. Nevertheless,
the oscillations of the load speed must be minimized. Therefore, optimization of these
parameters is highly recommended.
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Figure 6. Change in the adaptive parameters of the RBF neural network: weights (a), centers (b),
widths (c).

(a) (b)
Figure 7. Impact of initial weights randomization: complete simulation (a), initial part of the
simulations (b).

The effect of the change in the initial widths of the radial functions is presented in
Figure 8. The widths were selected at random in the range of (0.25, 0.75). No major
changes in the load speed transients can be observed. After a few reversions, the runs are
almost identical.
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(a) (b)
Figure 8. Influence of initial widths randomization (of radial activation functions) (a), close-up of the
beginning of the simulation (b).

The load speeds with different values of center of the radial functions can be seen
in Figure 9. These initial parameters also do not introduce any changes that affect the
operation of the drive for more than a few first reversions. The learning algorithm mitigates
the inadequacy in center selection in the later stages of the simulation.

The impact of learning rates associated with weights (η), center and widths (γ) is pre-
sented in Figures 10 and 11, respectively. The lower value of η results in slower adaptation,
which results in a delayed response to load switching. On the other hand, higher values
cause a larger overshoot and introduce oscillations. It can be stated that this parameter
should be chosen carefully or optimized.

(a) (b)
Figure 9. Effect of initial centers randomization (of radial activation functions) (a), close-up for the
beginning of the simulation (b).

(a) (b)
Figure 10. Different values of weight-related learning rate η (a), zoom of a selected part of simulation (b).
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(a) (b)
Figure 11. Impact of the center-width-related learning rate γ (a), zoom of a selected part of simulation (b).

The learning coefficient responsible for adjusting the adaptation process of center and
widths is not as impactful due to its lower value. However, higher values still cause the
occurrence of oscillations.

The final test was conducted to verify the effect of the input signal filter on drive
behavior. The comparison is presented in Figure 12. Each of the models was tested for two
different sets of values.

(a) (b)
Figure 12. Comparison of the load speed for different reference signal filters (a), zoom of the selected
part of simulation (b).

The first filter is described as a one-degree-of-freedom transfer function:

Gm(s) =
1

Tmods + 1
, (15)

while the other has two degrees of freedom and takes the following form:

Gm(s) =
ω2

0
s2 + 2sξω0 + ω2

0
, (16)

where Tmod—the filter time constant, ξ—the damping coefficient, ω0—the resonant fre-
quency of the system.

For the same initial values of weights and learning rate, the settling time remains
similar. Overshoot can be eliminated by lowering the dynamics of the reference signal
(increasing Tmod). As expected, with more degrees of freedom, the reference signal can be
shaped with higher precision. It is important to note that also the learning coefficient η must
be adjusted to meet the demand for the system’s speed response. Otherwise, overshoots or
oscillations might appear.
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4. Low-Cost Implementation of the Control Algorithm

The main contribution of this research was the implementation of the designed con-
troller on a low-cost microcontroller board. Power electronic devices were obtained through
the application of industrial MENTOR converters. The original software settings of the
industrial machines were reconfigured to allow communication with the external speed
controller. The required feedback signals were acquired by external sensors; the incremental
encoders were attached to the motor and load machine shafts, and the LEM current sensor
was attached to the drive powerline. The output was routed directly to the Discovery
board with the STM32F4 microprocessor, and the 36,000 ppr incremental encoders were
also connected to the MENTOR controllers (Figure 13).

(a)
(b)

Figure 13. Schematic diagram of the drive (a), and the experimental bench (b).

The framework between the drives and the microcontroller board was obtained using
STMStudio software. The controller structure was designed in Simulink and the C code was
generated. The Discovery board was flashed with the obtained firmware, and the variable
list file was developed. Based of the file, a human–machine interface (HMI) application
was created. The HMI allows the user to observe drive state variables and plot speed
transients. The application also provides basic control over the plant. The fully functional
low-cost Hardware-in-the-Loop (HIL) system was obtained (Figure 14). The connection
between the PC and the Discovery board was obtained with the USB cable and the ST-link
embedded in-circuit programmer. Not only did the established connection provide the
possibility to flash the new firmware to the board, but also allowed real-time monitoring
of the system variables.

Figure 14. Data flow between the components of the plant.
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The Discovery board with the STM32F407 microprocessor was chosen because of the
necessity to use two digital-to-analog converters (DAC). Moreover, the performance and
variety of the available connectivity modules on the chosen board were compared to the
laboratory dSpace DS1103 hardware. Although the dSpace incorporates an FPGA module,
its price exceeds the cost of a Discovery board multiple times. Several chosen parameters
are compared in Table 1.

Table 1. Comparison of the chosen parameters of the laboratory hardware and the low-cost board.

Parameter Discovery Board dSpace DS1103

Microprocessor Single-core CortexM4F @ 168 MHz Single-core PowerPC 750GX @ 1 GHz
RAM size 192 kB 32 MB
Analog-to-Digital converter 3 × 12bit 16 × 16 bit
Digital-to-Analog converter 2 × 12bit 8 × 16 bit
Serial port 4 × UART 1 × UART
GPIO ports 75 32
Timers 12 × 16 bit + 2 × 32 bit 2 × 32 bit + 1 × 64 bit

The low-cost board can be considered less powerful with the synthetic performance of
only 210 DMIPS (compared to about 2300 DMIPS obtained by dSpace processor); however,
it offers a greater number of general-purpose input/output ports and communication
modules. Compared with the dSpace module, the Discovery board incorporates more
timers that are multipurpose elements. In the designed structure, the timers were used for
encoder data acquisition. The pulses were counted and after the determined period, they
were used to calculate the speed of the drive and the load machine. Both devices include
processors, which can perform simple data operations in real-time. The FPGA module is
not included in the Discovery board, making parallel computation of the RBFNN structure
impossible. However, the proposed model was simple enough that the response of the
microprocessor was sufficient for the controlled plant. As the speed controllers can be
applied in mobile machinery, energy efficiency was also considered. The suggested STM
microcontroller average current consumption is declared at the level of 40 mA [55], while
dSpace requires up to 750 mA [56].

The software part of the designed HIL was based on the simulation model. The output
of the RBFNN speed controller was sent to the torque controller. The signal was then
normalized and converted to an analog signal with a corresponding voltage output level.
The digital output of the microcontroller was used to switch the relays of the MENTOR
power electronics. They were used to define the direction of drive rotation, global enable,
and start of operation.

To configure the MENTOR drives, the CTSoft application was used (Figure 15). It com-
prises a wide range of graphical interfaces to change the parameters of the drive. In order
to allow operation in the torque mode, some changes in the default configuration were
essential. Then, the signal from Discovery’s analog output can be sent to the MENTOR
drive. Safety features are built-in; tripping occurs when overspeed/overcurrent, overheat-
ing of the motor, or incorrect configuration (for instance, a wrong number of pulses per
revolution of the installed encoder) is detected. The final configuration can be sent to the
drive and saved in its memory for later use.

The STMStudio software was used for data acquisition. Variables from the generated
code can be imported to the project as read-only to show the desired variables (e.g., speed
of the load) or as a read/write—to change the value of the reference speed or to drive the
corresponding relay. Data are then plotted in real-time. In the end, a *.txt file is generated.
The file can later be imported to Matlab to plot the acquired transient.

Figure 16 presents the transient of the rotational speed of the load machine obtained
from the experimental verification of the proposed control structure. The speed follows the
reference trajectory with high precision. The response is dynamic and there is no overshoot.
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Figure 15. CTSoft application for Apator MENTOR.

Figure 16. Rotational speed of the load machine achieved with the proposed control structure—
experimental results.
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The trapezoidal reference signal is often used in industrial applications to ensure
the safety of operation. Because of that, it is the default setting for the MENTOR power
electronics controller. Therefore, it was decided that the test would be conducted under
these conditions. The verification of the control structure with a more demanding reference
signal, such as a square wave, will be considered to be a relevant point for future research.

The adaptation process can be observed through the transients of weights of the
neural network. The changes are presented in Figure 17. The weights started with values
randomly selected from a range of (0, 0.1] and managed to significantly increase their value
over the period of the experiment. Greater growth (compared to the numerical tests) is
expected because of the speed being expressed in rpms (unlike the numerical tests, where
the angular speed is expressed in per-unit notation).

Figure 17. Transients of the RBFNN weights—experimental results.

The drive was also tested for different values of the speed set point. The results are
shown in Figure 18. In all the cases, the proposed control scheme manages to follow the
reference signal. A great finding is that the structure operates correctly even for lower
speed values. Usually, because of less frequent rotations, the fan placed on the shaft of the
motor does not manage to cool the machine efficiently enough. The increase in armature
winding temperature causes an increase in its resistance, thus changing the parameters
of the plant. The control structure manages to withstand those changes and continues to
precisely follow the reference signal.
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Figure 18. Load speed for different maximum values of the reference signal—experimental results.

5. Conclusions

In this study, an adaptive RBFNN speed controller was implemented on an STM32F407
microcontroller. The use of the ARM device enables the overall cost of the electrical drive to
be reduced without any significant loss in control quality. The training algorithm calculates
new values for weights, centers, and widths (of the activation functions) of the neural
network. The performance of the drive with increased inertia was also improved—the
adaptation process adjusts the controller to the current state of the drive. The additional
benefit is that no additional information about the load machine is needed to be supplied
to the control structure—the drive operates with just the information about the speed of
the motor and the armature current. Compared to other advanced control schemes (which
usually require the use of multiple signals), it also provides an improvement in costs—no
additional sensors need to be added to the structure. Furthermore, for the same reason,
the reliability of the proposed control structure is greater. This is because there are fewer
devices that could potentially be damaged or cause faulty operation.
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Abbreviations
The following abbreviations and symbols are used in this manuscript:

DAC Digital-to-Analog Converter
DSP Digital Signal Processor
e error signal
FPGA Field Programmable Gate Array
GPIO General-Purpose Input/Output
HMI Human–Machine Interface
HIL Hardware-in-the-Loop
me electromagnetic torque
mL load torque
ms torsional torque
ppr pulses per revolution
p.u. per unit
PWM Pulse Width Modulation
RBF Radial Basis Function
RBFNN Radial Basis Function Neural Network
rpm revolutions per minute
T1 time constant of the motor machine
T2 time constant of the load machine
Tc time constant of the shaft
Tmod reference speed time constant
w weights of a neural network
γ learning rate of center and widths of neurons
ξ damping coefficient
η learning rate of weights of the neural network
µ center of the neuron
σ width of the neuron
ω0 resonant frequency of the system
ω1 speed of the motor
ω2 speed of the load
ωre f m model reference speed
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41. Zawarczyński, Ł.; Stefański, T. Damping of torsional vibrations in electric drive with AC motor. In Proceedings of the 2018
International Interdisciplinary PhD Workshop (IIPhDW), Swinoujscie, Poland, 9–12 May 2018; pp. 74–80. [CrossRef]

42. Qu, C.; Hu, Y.; Guo, Z.; Han, F.; Wang, X. New Sliding Mode Control Based on Tracking Differentiator and RBF Neural Network.
Electronics 2022, 11, 3135. [CrossRef]

43. Nalepa, R.; Najdek, K.; Wróbel, K.; Szabat, K. Application of D-Decomposition Technique to Selection of Controller Parameters
for a Two-Mass Drive System. Energies 2020, 13, 6614. [CrossRef]

44. Chen, X.; Shen, W.; Dai, M.; Cao, Z.; Jin, J.; Kapoor, A. Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for
Lithium-Ion Battery State of Charge Estimation in Electric Vehicles. IEEE Trans. Veh. Technol. 2016, 65, 1936–1947. [CrossRef]

45. Sun, Y.; Wang, X.; Wu, Q.; Sepheri, N. Calculation of Lyapunov exponents using Radial Basis Function networks for stability
analysis of nonlinear control systems. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA,
29 June–1 July 2011; pp. 1978–1983. [CrossRef]

46. Serkies, P.; Szabat, K. Predictive Control of the Two-Mass Drive with an Induction Motor for a Wide Speed Range. In Proceedings
of the 2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, Hungary, 26–30 August
2018; pp. 750–755. [CrossRef]

47. Lukichev, D.V.; Demidova, G.L.; Brock, S. Fuzzy adaptive PID control for two-mass servo-drive system with elasticity and friction.
In Proceedings of the 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 24–26 June 2015;
pp. 443–448. [CrossRef]
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