
Citation: Malik, N.u.R.;

Abu-Bakar, S.A.R.; Sheikh, U.U.;

Channa, A.; Popescu, N. Cascading

Pose Features with CNN-LSTM for

Multiview Human Action

Recognition. Signals 2023, 4, 40–55.

https://doi.org/10.3390/

signals4010002

Academic Editors: Yinsheng Chen,

Aili Wang and Haibin Wu

Received: 21 July 2022

Revised: 12 November 2022

Accepted: 16 November 2022

Published: 4 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

signals

Article

Cascading Pose Features with CNN-LSTM for Multiview
Human Action Recognition
Najeeb ur Rehman Malik 1,‡ , Syed Abdul Rahman Abu-Bakar 1,‡ , Usman Ullah Sheikh 1,‡, Asma Channa 2,†

and Nirvana Popescu 2,*

1 Computer Vision, Video and Image Processing Lab, ECE Department, Universiti Teknologi Malaysia,
Johor Bahru 81310, Malaysia

2 Computer Science Department, University POLITEHNICA of Bucharest, 060042 Bucharest, Romania
* Correspondence: nirvana.popescu@upb.ro
† Current address: DIIES Department, Mediterranea University of Reggio Calabria,

89100 Reggio Calabria, Italy.
‡ These authors contributed equally to this work.

Abstract: Human Action Recognition (HAR) is a branch of computer vision that deals with the
identification of human actions at various levels including low level, action level, and interaction
level. Previously, a number of HAR algorithms have been proposed based on handcrafted methods
for action recognition. However, the handcrafted techniques are inefficient in case of recognizing
interaction level actions as they involve complex scenarios. Meanwhile, the traditional deep learning-
based approaches take the entire image as an input and later extract volumes of features, which
greatly increase the complexity of the systems; hence, resulting in significantly higher computational
time and utilization of resources. Therefore, this research focuses on the development of an efficient
multi-view interaction level action recognition system using 2D skeleton data with higher accuracy
while reducing the computation complexity based on deep learning architecture. The proposed
system extracts 2D skeleton data from the dataset using the OpenPose technique. Later, the
extracted 2D skeleton features are given as an input directly to the Convolutional Neural Networks
and Long Short-Term Memory (CNN-LSTM) architecture for action recognition. To reduce the
complexity, instead of passing the whole image, only extracted features are given to the CNN-LSTM
architecture, thus eliminating the need for feature extraction. The proposed method was compared
with other existing methods, and the outcomes confirm the potential of the proposed technique.
The proposed OpenPose-CNNLSTM achieved an accuracy of 94.4% for MCAD (Multi-camera
action dataset) and 91.67% for IXMAS (INRIA Xmas Motion Acquisition Sequences). Our proposed
method also significantly decreases the computational complexity by reducing the number of
inputs features to 50.

Keywords: human action recognition (HAR); deep learning; CNN-LSTM

1. Introduction

Over the past years, automatic human activity recognition (HAR), using computer
vision has raised much awareness for researchers in the whole world because it provides
accurate and desired outcomes. HAR is a versatile tool in many applications. Among
these the significant applications are: Human Computer Interaction (HCI), intelligent
video surveillance, ambient assisted living, human-robot interaction, entertainment, and
content-based video search. In HCI, when a user performs a task, that task is observed
by the activity recognition systems and through feedback the user is guided to complete
it. Video surveillance utilises the activity recognition system in order to automatically
spot and indicate a suspicious activity to authorities for immediate action. In the same
manner, in entertainment field, all the activities of players in the game are perceived by
these systems.
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Consisting on the complexity and duration, these activities can be arranged into four
categories, i.e., gestures, actions, interactions, and group activities [1]. Basic movement
of the human body parts that provide some meaning is referred as a gesture. Some
good examples of gestures include ‘Head shaking’, ‘hand waving’, and ‘facial expression’.
A type of activity performed by a single person is called action. As a matter of fact,
when multiple gestures are merged together, such as ‘walking’ ‘running’, ‘jogging’, and
‘punching’, these are described as human actions. Interaction is defined as a two-actor
activity. One of these two actors must be a person, and the other can either be a person
(human–human interaction) or an object (human–object interaction). Group activities are
the most sophisticated activities that combine gestures, movements, and interactions. It
requires one or more objects and more than two people.

For human action recognition, the bottom-up strategy is generally followed by the
handcrafted representation-based technique. There are three major phases in general i.e.,
foreground detection, handcrafted feature extraction and representation, and classifica-
tion [2]. Handcrafted action representation is the traditional approach for action recognition.
This method is widely used in the HAR community, and it has shown impressive results on
a variety of public datasets [3]. Traditional methods receive input data, extract the features
from the data, and use them to train the classifier for classification purposes. Input of the
system can be RGB, RGB-D, skeleton data and multi-modal [2]. Feature extraction is used
for extracting the useful information from the input data which can form suitable set of
data for classification of actions.

HAR system’s effectiveness is determined by its capacity for extracting, modelling,
and expressing significant features [4]. It appears that problems with the extraction and
representation of features are still being extensively researched in the fields of machine
learning and computer vision [5]. The technique of extracting features, which describes
patterns that are significant in the recognition process, from arbitrary input information,
such as photos, videos, and text, is known as feature extraction [6]. Numerous feature-
extraction techniques make use of both the low and high levels approaches to provide
the required results. The recognition algorithm further fuses the cues acquired at these
levels to provide qualitative results [7]. The consequences of model complexity must be
taken into account because HAR is a real-time system. If the user must wait a long time to
receive the result, even though the model is flawless, it will not be advantageous for the
application [8].

The number of features determines the complexity of the model; for example, the
computational complexity would increase as the number of features increases [6]. Currently,
the HAR system using skeleton data is extracting the skeleton using OpenPose, for each
detected body, a 2D skeleton with 25 joints is extracted. The 2D skeletal characteristics
are then converted to RGB images. The two-dimensional skeleton features are encoded in
the three R, G, and B channels, and an action sequence produces an RGB image. Finally,
collected RGB images are used to train a classifier based on deep learning for the HAR
system [9]. The disadvantage of converting skeleton data to RGB image is an increase in
computational complexity; if we have skeleton features that we can use directly for HAR
system training, why convert to RGB image and extract features again at the model’s input
layer? To overcome the process of converting skeleton data into RGB images which are
further given to deep learning, this paper proposes deep learning based HAR system which
can be trained directly using skeleton features instead of converting it to RGB image and
again extract features for training or testing of the system.
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2. Related Work

Handcrafted action representation is the traditional approach for action recognition.
Handcrafted methods are further divided into two major groups i.e., space-time-based
approach and appearance-based approach. The space time interest point (STIP) detector,
feature descriptor, vocabulary builder, and classifier are the four major components of space-
time-based technique [10]. STIP detectors are divided into two types: dense and sparse
detectors, whereas feature descriptor is further divided into local and global descriptors.
Local descriptors work on colour, posture, and texture while global descriptors use speed
variations, illumination changes, and phase changes of video [1]. Space-time volumes
(STVs) are the features in the space-time domain which are represented as a 3D spatio-
temporal cuboids. For action recognition, STVs measure similarity between volumes.
Traditional methods, which involve the computation of optical flow, have some limitations
that can be avoided by doing action recognition directly in the space-time volume [11–13].
For the purpose of human action recognition, the space-time features-based techniques
extract unique features from space-time volumes or space-time trajectories. These aspects
are generally local in their nature and contain distinguishing properties of an action. The
characteristics of space-time volumes and trajectories can be categorised as either sparse or
dense, depending on the nature of the space-time volumes and trajectories [3]. The feature
detectors that are considered to be sparse are those that are based on interest point detectors
such as Harris3D [14] and Dollar [15]. On the other hand, the feature detectors that are based
on optical flow are considered to be dense. These interest point detectors have served as
the foundation for the majority of the newly presented algorithms [3]. Based on the interest
points that were found with Harris3D [14], the authors of [16] constructed the feature
descriptor and classified the data with PCA (principal component analysis)-SVM. A novel
local polynomial space-time descriptor based on optical flow was proposed by the authors
in [17] for the purpose of action representation. The spatio-temporal volume of a video
sequence is modelled as a three-dimensional object using shape-based approaches. The
various events that occur in a video each generate their own unique shapes, and the purpose
of these kinds of algorithms is to recognise an event by identifying its shape [18]. The shape
of an event can be characterised using a variety of ways, such as shape invariants [11,19],
which are employed by shape-based methods. Weinland et al. [20] expand this method to
motion-history volumes. When the action of interest is carried out in an environment that
allows for reliable segmentation, these strategies function in the most optimal manner. In
particular, for static scenes, methods such as background reduction can be used to build
high-quality spatio-temporal volumes that are suitable to this analysis.

Deep learning has developed as a prominent machine learning direction, outperform-
ing older approaches in many computer vision applications. Deep learning algorithms
have the unique capacity to learn features from raw data, eliminating the requirement for
constructed feature detectors and descriptors. Deep learning models are classified into two
types: unsupervised/generative models and supervised/discriminative models. Convolu-
tion neural network (CNN) is one of the most common supervised learning deep learning
methods. The majority of existing learning-based representations either directly apply
CNN to video frames or use CNN variations for spatio-temporal characteristics. These
models have also performed well on challenging human activity recognition datasets [1].
A convolutional neural network is most typically used in deep learning to analyse visual
imagery. CNN research is still ongoing and has great room for advancement. The main
enhancements in CNN performance are thought to have occurred between 2015 and now.
A CNN’s representational capability is typically determined by its depth, and an enhanced
feature set ranging from simple to complex abstractions can aid in the learning of com-
plicated issues. The falling gradient is the main problem that deep architectures have to
deal with. At first, researchers tried to solve this problem by connecting intermediate
layers to auxiliary learners [21]. In 2015, making new connections to speed up the con-
vergence rate of deep CNN architectures was the most promising area of study. In this
area, different ideas have been put forward, such as information gating mechanisms across
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multiple layers, skip connections, and cross-layer channel connectivity [22,23]. Modern
deep architectures, such as VGG, ResNet, etc., performed well in several experiments, not
only for classification issues but also for challenging recognition and localization issues
such as semantic and instance-based object segmentation, scene parsing, scene placement,
etc. In the same way, many interesting detection algorithms, such as Feature Pyramid
Networks, Cascade R-CNN, Libra R-CNN, etc., changed the architectures mentioned above
to make them work better [24]. Combining these networks with a recurrent neural network
(RNN) made it possible for deep CNN to be used for image captioning. However, the
high cost of computation and the need for a lot of memory are two main problems with
deep learning architectures. Because of this, it is very hard to use deep CNN models in
environments with few resources. Conventional convolution operations require a very
large number of multiplications. This makes the inference time longer and limits CNN
to applications with limited memory and time. Many real-world applications, such as
self-driving cars, robots, healthcare, and mobile apps, do tasks that need to be done on
platforms with limited computing power in a timely way. A number of studies have used
deep learning architecture for HAR as illustrated in Table 1.

Table 1. Review on Deep learning-based techniques for Human Action Recognition.

Authors Methods Datasets Performance

Baccouche et al. [21] CNN and RNN KTH 94.39

Ji et al. [22] 3DCNN KTH 90.02

Grushin et al. [23] LSTM KTH 90.7

Sun et al. [24] Factorised
spatio-temporal CNN HMDB-51 59.1

Simonyan et al. [25] two stream CNN HMDB-51 59.4

Wang et al. [26] CNN HMDB-51 65.9

Ullah et al. [27] DB-LSTM HMDB-51 87.64

Mahasseni et al. [28] LSTM-CNN HMDB-51 55.3

Zhang et al. [29] MV-CNN UCF101 86.4

Ng et al. [30] LSTM with 30
frame unroll UCF101 88.6

Yu et al. [31] SP-CNN UCF101 91.6

Fernando et al. [32] Rank Pooling +CNN Hollywood2 75.2

Wang et al. [33] Features (Pose-based) MSR-action3D 90

Ch et al. [34] Pose-based CNN MPII Cooking 71.4

W. Li et al. [35] Cuboids MCAD 56.8

M. Faraki et al. [36] Covariance
matrices MCAD 64.3

W. Li et al. [35] STIP MCAD 81.7

H. Wang et al. [37] IDT MCAD 84.2

A. Ullah et al. [27] Conflux LSTM
network MCAD 86.9

Malik et al. [38] OpenPose +
FineKNN MCAD 86.9
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In view of the limited performance of the methods discussed above, this work proposes
a simpler strategy on a 2D dataset that can be used to cope with existing real-time systems.
To avoid the time-consuming process of converting skeletal joints data to image sequences
and then training them using an image-based classifier that extracts the features again, we
suggest that the skeletal joints data be used directly for training and testing of the HAR
system. Specifically, we propose that a feature vector be used as an input to the CNN-LSTM
architecture, which represents a simplification of the work that has been given.

3. Methodology

The proposed method as shown in Figure 1 starts with reading frames, extracting
skeleton features, preprocessing and finally training CNN-LSTM network. In start the
proposed system reads each frame from the input video and extract skeleton features using
OpenPose [9]. The OpenPose outputs 25 joints location in the form of X, Y coordinates and
confidence map but for the proposed system only X, Y coordinates are used. When we
trained our proposed model including confidence maps results were similar, so instead
of using X,Y coordinates and confidence map, the proposed research selects only X,Y
coordinates for HAR system. Input layer parameters of proposed model are set as 1 × 25 ×
2, where 1 shows that data for each frame will come and 25 × 2 represents 25 joint-location
(X,Y) coordinates. Finally, the X, Y coordinates of extracted skeleton features are fed into
the CNN-LSTM system for the classification process. CNN-LSTM architecture as shown
in Figure 2 is designed in a way that it can work on skeleton features directly instead of
generating heatmaps from skeleton features for the training of deep learning architecture.
The proposed CNN-LSTM architecture consists of 12 layers starting with input layer for
taking skeleton features as an input. The dimensions of an input layer are 1 × 25 × 2,
where 1 shows that data are of a single frame and 25 × 2 are the X, Y coordinates of
25 joints locations. A time-distributed CNN layer with 16 filters of size 3 × 3 is used, and
for feature extraction, ReLU activation is used on key points of each frame. CNNs are very
good at pulling out spatial features that are not affected by scale or rotation. The CNN
layer can extract spatial features and angles between the key points in a frame [39]. Batch
normalization is used to speed up convergence on the CNN output. The next layer is a
dropout layer, which randomly drops some of the weights to avoid overfitting. The CNN
output is then flattened and sent to the LSTM layer, which has 20 units and a unit forget
bias of 0.5. LSTM is used to see how the features extracted by the CNN layer change over
time. This takes advantage of the fact that video input comes in a certain order.

Figure 1. Methodology of the proposed skeleton based CNN-LSTM HAR system.

Each frame’s output from the LSTM layer is sent to a time-distributed fully connected
layer with number of outputs depending on the number of classes and Softmax activation.
Each of these eighteen outputs tells you, in terms of cross-entropy, how likely it is that the
corresponding action is being performed.
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Figure 2. CNN-LSTM Architecture.
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4. Experimental Setup

For evaluation purposes, two multiview human action recognition datasets are used
MCAD and IXMAS. The MCAD dataset, which is known for its uncontrolled and multi-
view motions, was used in this study to show that the proposed technique worked better.
MCAD has 18 action categories and 14,298 action examples. Twenty people perform these
actions and five cameras record them [19]. The dataset was split into two parts. Dataset
was divided into two parts, 80% for training and remaining 20% for testing purpose.
There are 18 actions involved in this experiment as mentioned in Table 2. Class one to
nine belongs to single person action category, whereas class ten to eighteen belongs to
interaction level actions.

Table 2. List of actions from MCAD Dataset.

Class Action

1 Point

2 Wave

3 Jump

4 Crouch

5 Sneeze

6 SitDown

7 StandUp

8 Walk

9 PersonRun

10 CellToEar

11 UseCellPhone

12 DrinkingWater

13 TakePicture

14 ObjectGet

15 ObjectPut

16 ObjectLeft

17 ObjectCarry

18 ObjectThrow

For further evaluation of the proposed system all experiments are performed on
IXMAS dataset also. IXMAS has 12 action categories and 1800 action sample performed by
12 actors and five cameras recorded them. There are 12 actions involved in this experiment
as mentioned in Table 3. The IXMAS dataset is also divided into 80% for training and 20%
for testing.
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Table 3. List of actions from IXMAS Dataset.

Class Action

1 check-watch

2 Cross-arms

3 Get-up

4 kick

5 Pick-up

6 Point

7 Punch

8 Scratch-head

9 Sit-Down

10 Turn-Around

11 Walk

12 Wave

5. Result and Discussion

This section describes the results achieved by the proposed system. Skeleton detection
from 2D image is shown in Figure 3. There are 25 skeleton joints location that are detected
by OpenPose [35] and form a 25 × 3 matrix, contains X,Y coordinates and confidence
map. As the proposed system only utilises the X,Y coordinates for the action recognition
purpose, the input to the proposed system becomes a 25 × 2 matrix. As mentioned in
methodology, this input matrix is given to proposed CNN-LSTM architecture, so that CNN
can analyse the skeletal joints location and pass it to LSTM network which classify the
performed action.

Figure 3. Skeleton Detection.
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Figure 4 shows the training and validation accuracy of the proposed system. Training
accuracy started from 93.3% on first epoch where as the validation accuracy started from
93.2%. As the model training process continues, after 10 epochs training and validation
accuracy becomes same around 94.4%. The model was trained on 20 number of epochs,
but after 10 epochs training and validation accuracy was constant. Figure 5 shows the
loss during training and validation, as the number of epochs increases model loss was
decreasing and after 10 number of epochs model loss becomes constant around 0.025.

Figure 4. Accuracy of the proposed model during training and testing using MCAD Dataset.

Figure 5. Loss of the proposed model during training and testing using MCAD Dataset.

Figure 6 shows the confusion chart of the proposed system. More statistical results
such as Precision, Recall and F1-Score are also added to show the efficacy of the proposed
in Table 4. Statistical results also show the performance of model in term of precision, recall
and F1-Score, and the proposed model is working well for each class. The proposed model
takes 434 s in total during training and approximately 22 s for each epoch.

Table 5 shows the comparative analysis of proposed method with the state of the art
work using MCAD dataset. Comparatively our model improved 37.6% accuracy from
that achieved previously by Cuboid features [36], 30.1% from the Covariance matrices [37],
12.7% from the STIP features [36], 10.2% from the IDT [40] and 7.5% from the Conflux
LSTM network [38]. These results confirmed the superior performance of our method as
shown in Table 5.
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Figure 6. Confusion Matrix using MCAD Dataset.

Table 4. Classification report of proposed deep learning model (Precision, Recall and F1-Score) using
MCAD Dataset.

Class Action Precision Recall F1-Score

1 Point 0.92 0.94 0.93

2 Wave 0.94 0.94 0.94

3 Jump 0.89 0.93 0.91

4 Crouch 0.94 0.95 0.94

5 Sneeze 0.9 0.94 0.92

6 SitDown 0.91 0.94 0.92

7 StandUp 0.9 0.94 0.92

8 Walk 0.97 0.94 0.96

9 PersonRun 0.95 0.94 0.94

10 CellToEar 0.95 0.95 0.95

11 UseCellPhone 0.96 0.95 0.96

12 DrinkingWater 0.95 0.94 0.94

13 TakePicture 0.96 0.93 0.95

14 ObjectGet 0.88 0.94 0.91

15 ObjectPut 0.91 0.94 0.93

16 ObjectLeft 0.94 0.94 0.94

17 ObjectCarry 0.98 0.94 0.96

18 ObjectThrow 0.9 0.94 0.92

For further validation with the state-of-the-art we executed our proposed method
on IXMAS dataset using overall accuracy. Figure 7 shows the accuracy during training
and testing, whereas Figure 8 shows loss during training and testing. Figure 9 shows
the confusion chart of the proposed system using IXMAS dataset. Statistical results such
as Precision, Recall and F1-Score are also added to show the efficacy of the proposed in
Table 6. Comparatively as shown in Table 7 our model improved 1.92% accuracy from
that achieved previously by Shape Features [41], 11.12% from the LBP [42], 8.64% from
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the Motion Features [43], 5.87% from the Shape features [44] and 0.76% from the Shape
Features (3D) [45]. These results confirmed the proposed method is suitable for performing
multi-view human action recognition.

Table 5. Multi-view HAR on MCAD dataset.

Algorithm Accuracy

Cuboids [35] 56.8

Covariance matrices [36] 64.3

STIP [35] 81.7

IDT [37] 84.2

Conflux LSTM network [27] 86.9

OpenPose+FineKNN [38] 86.9

Proposed method 94.4

Figure 7. Accuracy of the proposed model during training and testing using IXMAS Dataset.

Figure 8. Loss of the proposed model during training and testing using IXMAS dataset.
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Figure 9. Confusion Matrix using IXMAS Dataset.

Table 6. Classification report of proposed deep learning model(Precision, Recall and F1-Score) using
IXMAS dataset.

Class Action Precision Recall F1-Score

1 Check-watch 0.93 0.92 0.92

2 Cross-arms 0.89 0.92 0.90

3 Get-up 0.90 0.92 0.91

4 Kick 0.91 0.92 0.91

5 Pick-up 0.90 0.94 0.91

6 Point 0.90 0.93 0.91

7 Punch 0.89 0.92 0.91

8 Scratch-head 0.90 0.91 0.91

9 Sit-Down 0.90 0.91 0.91

10 Turn-Around 0.91 0.91 0.91

11 Walk 0.94 0.92 0.93

12 Wave 0.97 0.91 0.94

Table 7. Multi-view HAR on IXMAS dataset.

Algorithm Accuracy

Shape Features [41] 89.75

LBP [42] 80.55

Motion Features [43] 83.03

Shape features [44] 85.8

Shape Features (3D) [45] 90.91

Proposed method 91.67
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We also performed a complexity analysis between our proposed method and other
existing methods by leveraging the size of the feature dimension. Table 8 lists the compari-
son with both the handcrafted and DL methods. The table clearly indicates that by far, the
proposed method outperformed other existing methods in terms of the feature dimensions.
Our approach uses only 50 features in total which is significantly small compared to other
DL approaches.

Table 8. Comparison of feature dimension.

Algorithm Year Short Descriptions Data Used Feature Dimension

HON4D [46] CVPR 2013 Handcrafted (global descriptor) Depth [17,880, 151,200]

HDG [47] WACV 2014 Handcrafted (local + global descriptor) Depth+ Skeleton [1662, 1819]

P-LSTM [48] CVPR 2016 Deep learning (LSTM) Skeleton No. of joints × 3 × 8

HPM+TM [49] CVPR 2016 Deep learning (CNN) Depth 4096

Clips+CNN+ MTLN [50] CVPR 2017 Deep learning (pre-trained VGG19,MTLN) Skeleton 7168

RNN [51] CVPR 2018 Deep learning (RNN) Skeleton 512

ST-GCN [52] AAAI 2018 Deep learning (Graph ConvNet) Skeleton 256

Proposed 2022 OpenPose + CNNLSTM RGB 25 × 2

6. Conclusions

The present research in HAR has been aimed at addressing the issues of complexity
and this can be witnessed through the endeavor of the previous works. In this paper, we
proposed a method that extracts the 2D skeleton data from the 2D RGB data using the
OpenPose technique, and classifies the given action using a proposed deep learning based
CNN-LSTM model. As a result, our proposed method significantly decreases the complex-
ity of computation by reducing the feature dimension. In this context, the proposed method
was compared with state-of-the-art methods, and the outcomes confirm the potential of our
technique. In future, the proposed approach will be used in different applications such as
ambient assisted living, patients with neurocognitive disorder i.e., Parkinson’s Disease to
monitor their daily life activities (DLAs) or predict the falls in elderly. This study is limited
by the fact that it uses multi-modality datasets collected in uncontrolled environments
where limited number of actions are performed. The same approach can be used on large
and challenging datasets for recognizing every person’s actions in crowded environments.
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Abbreviations
The following abbreviations are used in this manuscript:

HAR Human Action Recognition
HCI Human Computer Interaction
STIP Space Time Interest Point
BOW bag-of-words
STVs Space Time Volumes
PCA Principal Component Analysis
CNN Convolution neural network
LSTM Long Short Term Memory
RNN Recurrent Neural Network
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