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Abstract: EEG (electroencephalogram) signals could be used reliably to extract critical information
regarding ADHD (attention deficit hyperactivity disorder), a childhood neurodevelopmental disorder.
The early detection of ADHD is important to lessen the development of this disorder and reduce its
long-term impact. This study aimed to develop a computer algorithm to identify children with ADHD
automatically from the characteristic brain waves. An EEG machine learning pipeline is presented
here, including signal preprocessing and data preparation steps, with thorough explanations and
rationale. A large public dataset of 120 children was selected, containing large variability and minimal
measurement bias in data collection and reproducible child-friendly visual attentional tasks. Unlike
other studies, EEG linear features were extracted to train a Gaussian SVM-based model from only the
first four sub-bands of EEG. This eliminates signals more than 30 Hz, thus reducing the computational
load for model training while keeping mean accuracy of ~94%. We also performed rigorous validation
(obtained 93.2% and 94.2% accuracy, respectively, for holdout and 10-fold cross-validation) to ensure
that the developed model is minimally impacted by bias and overfitting that commonly appear in
the ML pipeline. These performance metrics indicate the ability to automatically identify children
with ADHD from a local clinical setting and provide a baseline for further clinical evaluation and
timely therapeutic attempts.
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1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a behavior disorder characterized
by inattention, impulsivity, and in some cases hyperactivity, typically diagnosed in child-
hood [1]. It is a common childhood developmental disorder. The symptoms of ADHD start
before age 12, and in some children, they are noticeable as early as three years of age [2].
The prevalence of ADHD has been estimated at approximately 12.1% among boys and
3.9% among girls [3]. About 6.4 million American children aged 4–17 have been diagnosed
with ADHD [4]. ADHD makes it difficult for children to develop the skills to control
their attention, behavior, emotions, and activities. As a result, they often act in ways that
are hard for parents to manage [5]. Persistent adult ADHD may cause serious long-term
consequences, such as poor academic achievement and job performance, increased risk of
antisocial behavior, and drug and alcohol abuse [3]. Hence, early detection of this disorder
is of great value [6,7].

EEG is a reliable method that provides information about the background activity
of the brain and indexes the substrate of cognition and behavior, shown in Table 1 [8].
Therefore, it can be a useful tool for investigating and diagnosing the abnormal behavior of
ADHD children. J. Lubar conducted the first abnormalities study by EEG signals in ADHD
in 1973. He found that theta (Table 1) activity increased and also beta (Table 1) power
dramatically reduced in ADHD [9]. Most patients with ADHD have a common brain-wave
pattern that consists of an abundance of slow (delta or theta) brain waves and a shortage of
fast (beta) brain waves. This means that they have a high theta-to-beta ratio [10] that could
be employed for automatic recognition from the characteristic brain wave.
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Table 1. EEG sub-bands are associated with different brain functions [11,12].

Sub-Band Frequency Range Associated Brain Function

Delta 0.5–4 Hz Deep sleep or unconsciousness
Theta 4–8 Hz Sleep or drowsiness and recall
Alpha 8–13 Hz Eye closed and visual stimuli are limited
Beta 13–30 Hz Attentive to stimuli or problem-solving

Gamma 30 Hz and above Movement, emotional processing,
and high-level mental activity

Recently, researchers have been working with fMRI (functional magnetic resonance
imaging) and MRI to identify ADHD. This is a fast-developing and complex research
domain [13]. Rubia et al. [14,15] reported decreased activation in the ADHD group in
mesial and lateral prefrontal areas in the right hemisphere and the cingulate gyrus by using
fMRI. On the other hand, EEG is quicker, affordable, portable, and gives accessible insights
into brain function. Therefore, EEG can be a useful gadget for investigating and diagnosing
the abnormal behavior of ADHD children.

Even with the current progress, using EEG tests for ADHD detection needs a more
precise approach in this area to get more accurate results. The amount of information in EEG
signals is vast. It is also complicated for a human to detect abnormalities manually. This is
where machine learning (ML) can be useful. Generally, ML is programming computers to
optimize a performance criterion using example data or experience [16], which could be
employed for the current task.

This study thus aims to automatically identify ADHD children employing machine
learning techniques. Previously, most studies used nonlinear features of the EEG signal
and used KNN or neural networks for classification (discussed in Section 2). In this study,
we have extracted statistical, time-domain, and frequency-domain EEG features; used PCA
to select the best features; trained a Gaussian SVM classifier on the selected features; and
employed two cross-validation methods: holdout and k-fold cross-validation to validate
classifier performance. Since ADHD’s behavior can be caused by differences in brain
function, we worked with only four sub-bands: delta, theta, alpha, and beta frequency. The
overall contributions of this work can be summarized as follows.

1. An EEG ML pipeline is presented for ADHD detection, explaining each stage of
the pipeline (including signal preprocessing and data preparation) with thorough
explanations and rationale.

2. Unlike other studies, we employed only the first four sub-bands of EEG, eliminating
signals more than 30 Hz and thus reducing the computational load for ML model
training while keeping mean accuracy of 93.2%.

3. Simple EEG linear features are emphasized in our proposed model development,
whereas other works were only based on complex nonlinear features.

4. The model was trained on a large dataset of 120 children (the highest of other models
was 49) collected from two different sessions at two different places, eliminating the
measurement bias in data collection. Also, the experimental setup was child-friendly,
easy to reproduce in local settings, and could be employed for future ADHD detection.

5. We also performed rigorous validation (unlike other works) to ensure that our model
is not impacted by bias and overfitting, which commonly appear in the ML pipeline.

The rest of the paper is organized as follows. First, recent and related works are
presented in Section 2. Materials and method information is given in Section 3, along
with the dataset description. Section 4 describes the preprocessing methods. Section 5
describes the feature extraction and feature selection. Section 6 represents the results. Lastly,
Sections 7 and 8 give the discussion and conclusion of this study.
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2. Related Works

ADHD was originally known as childhood hyperkinetic reaction [17]. The American
Psychiatric Association (APA) did not officially recognize it as a mental disorder until
the 1960s, and in the 1980s, the diagnosis was “attention deficit disorder with or without
hyperactivity” [17]. Since then, many studies have been done to identify ADHD using
fMRI and EEG. Yin et al. [18] found that neural flexibility altered in children with ADHD
and demonstrated the potential clinical utility of neural flexibility to identify children with
ADHD, as well as to monitor treatment responses and disease severity using fMRI data.
They obtained moderate accuracy of 77% for 10-fold cross-validation and 74.46% for the
independent test. Pulini et al. [19] mentioned that the accuracy of ADHD classification
ranged from 60% to 80% using neuroimaging features. According to Pulini, circular analysis
and a small sample can exaggerate high classification accuracies in neuroimaging studies
of ADHD. The use fMRI shows moderate accuracy. It is also expensive, whereas EEG has
more portability and freedom in data acquisition. Kiiski et al. [20] calculated the weighted
phase lag index (WPLI) for each frequency band of EEG to describe the functional EEG
connectivity as a neuromarker for adult ADHD symptoms. Alchalabi et al. [21] applied a
machine learning classifier on an EEG-controlled serious game to detect ADHD patients,
where EEG data was monitored during the game. In this study, the participants had to play
a “FOCUS” game and their attention levels were observed. In the game, the player had to
move an avatar by focusing and using mental commands. It achieved 96% in classifying
the EEG data to detect the correct attention state during gameplay and 98% in classifying
the patients’ EEG data. Ghassemi et al. [22] used nonlinear EEG features to classify adult
normal and ADHD participants. Fifty participants underwent a continuous performance
test (CPT), where they had to click the left mouse button with their index finger when
any letter except for the target “X” was shown on the screen. Three nonlinear features—
wavelet entropy, correlation dimension, and Lyapunov exponent—were extracted, and
the KNN algorithm was used as a classifier. This study achieved an accuracy of around
96%. Mohammadi et al. [23] performed EEG classification on the data acquired from
30 healthy (9.85 ± 1.77 years) and 30 ADHD (9.62 ± 1.75 years) children during a visual
attention task. Higuchi, Katz, and Petrosian fractal dimension exponents and approximate
entropy nonlinear features were extracted from the signal. Overall, 92.28% and 93.65%
accuracy was achieved, respectively, using the mRMR method and the DISR method using
a multilayer perceptron (MLP) neural network. Allahverdy et al. [24] also used visual
attention tasks to detect ADHD in 20 healthy and 29 children with ADHD aged 7–12 years
using EEG nonlinear features. Lyapunov exponent, Higuchi fractal dimension, Katz fractal
dimension, and Sevcik fractal dimension nonlinear features were extracted from the EEG
data and showed an accuracy of 96.7% using frontal lobe electrodes with an MLP neural
network. Most of the work discussed above mostly used EEG nonlinear features and neural
networks for classification. For our model development, we selected this SVM classifier for
its simplicity and effectiveness in high-dimension spaces. The number of participants in
these reported studies did not exceed 49, while our focus was to find a sample with more
variability in the dataset, with a balance between ADHD and healthy subjects. In addition,
the experimental setting and the data collection procedure are important for reproducing
these studies and establishing a standard for child ADHD detection. The selection of the
dataset for this study (described in Section 3) was made considering these factors.

3. Materials and Methods

The public dataset employed in this study is available in the IEEE data port [25]. All the
participants were school-aged and right-handed. The participants were 60 healthy children
and 60 children with ADHD diagnosed by an experienced psychiatrist of children and
adolescents according to DSM-IV criteria [26]. The ADHD children had taken Ritalin for up
to 6 months [25]. Ritalin is used in ADHD treatment. It works by altering the concentration
of certain natural substances in the brain [27]. There is no conclusive evidence that Ritalin
medication will influence the distinction of the brain waves of ADHD children. The healthy
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group was selected from two primary schools. Table 2 summarizes the information about
the participants.

Table 2. Information about the participants [25].

Boys Girls Age Mean Age Dominant Hand

Healthy Children 50 10 7–12 9.85 ± 1.77 Right-Handed
ADHD 48 12 7–12 9.62 ± 1.75 Right-Handed

The EEG signals were recorded by a digital device (SD-C24, Sholeh Danesh Co.,
Tehran, Iran) in the Psychology and Psychiatry Research Center at Roozbeh Hospital
(Tehran, Iran) [28]. The recording was performed based on the 10–20 standard [29] by
19 electrodes (Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, O2)
with A1 and A2 electrodes as references on earlobes. Figure 1 shows the electrode locations
of the international 10–20 system for EEG.
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Figure 1. The 10–20 system for electrode position with A1 and A2 reference electrodes [29].

The recording protocol was designed based on a visual attention task. In the task, the
children were shown 20 images with several age-suitable characters, such as images of
different animals, and they were asked to enumerate them. The number of characters in
each image was chosen between 5 and 16 randomly. To have a continuous stimulus during
the EEG recording, each image was displayed immediately after the child’s response. Thus,
the child’s performance defines the duration of the EEG recording. The correctness of the
answers was not considered [28].
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All procedures performed to obtain this dataset were approved by the Institutional
Review Board (IRB) and the Ethical Committee of Tehran University of Medical Sciences
(TUMS) [28]. Since one of the deficits in ADHD children is visual attention [13,30], in this
dataset, the data were obtained by a visual attention task where the children were shown
some images that were appropriate and friendly for 7- to 12-year-olds. The balanced dataset
was collected from two different places and sessions, so it was free from measurement bias.
Considering all these factors and the flexibility in acquiring datasets from children, we
chose this dataset.

4. Preprocessing

EEG signals contain different artifacts and noises that should be removed before the
analysis. The sampling frequency of the EEG signal is 128 Hz. For the preprocessing
method, we used a 4th-order FIR Butterworth filter with the cutoff frequencies 0.5 Hz and
63 Hz. To remove the power-line noise, a 50 Hz notch filter was used. We designed the
notch filter using a stop Butterworth filter with the cutoff frequencies 49 Hz and 51 Hz.

After filtering, the time-series data were filtered in EEG frequency bands (delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and lower gamma (30–63 Hz))
using an FIR filter with zero phase distortion. As ADHD patients have a high theta-to-beta
ratio, we worked with only four frequency bands: delta, theta, alpha, and beta.

For each subject, the time-series EEG signal was divided into 2 s segments for each
channel with 50% overlap. This means each EEG window contained 1 s of previous and
1 s of current windows. In the dataset, for the control group, the minimum task duration
was 50 s for one subject, and the maximum task duration was 285 s for one subject with
ADHD. As the task timing differed for each subject, the number of segments varied for
every subject [24]. For the classification of the EEG signal, we followed the pipeline shown
in Figure 2.
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Figure 2. The pipeline for EEG signal classification employed in this study.

5. Feature Extraction and Feature Selection

Feature extraction is a dimensionality reduction process that reduces an initial set
of raw data to more useful and manageable information for processing [31]. This feature
extraction has been proven to be an important step in the process of EEG signal classifi-
cation [32]. To extract significant information from raw data and for efficient training of
classifiers, feature extraction is necessary. We extracted 11 features: standard deviation,
RMS, skewness, kurtosis, Hjorth activity, Hjorth mobility, Hjorth complexity, Shannon’s
entropy, spectral entropy, power spectral entropy (PSD), and band power. Table 3 gives a
brief description of these computed features.
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Table 3. Summary of EEG features employed in this study.

Feature Name Definition Mathematical Description

Standard Deviation It is a statistical feature that is a measure
of how spread out the data is to the mean.

σ =

√
∑N

n=1 (xn−µ)2

N−1

xn = n-th data sample, N = Total
No. of samples, µ = mean [33,34]

RMS RMS is the square root-mean-square
value of a signal

RMS =

√
∑N

n=1 (xn)
2

N
xn = n-th data sample, N = Total

No. of samples [35]

Skewness Skewness is the measure of the lack of
symmetry from the mean of the dataset.

g = ∑N
n=1 (xn−µ)3/N

σ3

xn = n-th data sample, N = Total
No. of samples, µ = mean [33]

Kurtosis
Kurtosis is a measure of whether the data
are heavy-tailed or light-tailed relative to

a normal distribution.

k = ∑N
n=1 (xn−µ)4/N

σ4 − 3
xn = n-th data sample, N = Total
No. of samples, µ = mean [36]

Hjorth Activity
It is the variance of the amplitude of the
signal in a time function. Represent the

signal power.

Ha = var(x(t))
x(t) = amplitude of time-varying signal

[37,38]

Hjorth Mobility

The mobility is the square root of the
activity of the first derivative of the signal

divided by the activity of the signal.
Represents the mean frequency.

Hm =

√
var(x′(t))
var(x(t))

x′(t) = 1st derivation of the amplitude of
the signal [37,38]

Hjorth Complexity

It represents the change in frequency. It is
defined as the ratio between the mobility
of the first derivative of the signal and the

mobility of the signal.

Hc = Hm(x′(t))
Hm(x(t)) [37,38]

Shannon’s Entropy Shannon’s entropy measures the
uncertainty/randomness in a dataset

H = ∑N
n=1−(Pn × logPn)

Pn = probability of occurrence xn [39]

Spectral Entropy (SEN) SEN is the normalized Shannon’s entropy
SEN =

−∑N−1
n=0 Pk log2Pk

logN
P = spectral of normalized frequency,

N = number of frequencies in binary. [28]

Power Spectral Density (PSD)
PSD of the signal describes the power
present in the signal as a function of

frequency [40]

Band Power
It measures both power and power

spectral density in a specified channel
bandwidth [41]

For the 2 s window, we extracted these 11 for every 19 channels for every sub-bands.
After the feature extraction, we got a total of 836 features and 16,474 instances.

To remove irrelevant features from the classification pipeline, a proper selection of
features is necessary. We applied the ANOVA feature-ranking method to visualize which
features had the highest importance scores (Figure 3). Analysis of variance (ANOVA) is
a statistical method that compares variances across the means (or average) of different
groups [42]. In the current analysis, for each predictor variable, a one-way analysis of
variance was performed and grouped by class, then features ranked using p-values. For
each predictor variable, the algorithm tests the hypothesis that the predictor values grouped
by the response classes are derived from populations with the same mean against the
alternative hypothesis that the population means are not all the same [43]. ANOVA
analyzes the correlation among the features of the data. To enable feature selection for
ANOVA, the F-statistic can be used. Each data feature will be ranked based on the F-statistic,
and the features with the higher scores can be chosen as the optimal set of components from
the data available, so the features with the higher magnitude of scores can be considered
optimal features from the data [44].
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Feature reduction is necessary to remove highly correlated features to avoid over-
fitting. We used PCA, an unsupervised method for dimension reduction, with 80%, 85%,
90%, and 95% explained variance. Explained variance is a statistical measure of how much
variation in a dataset can be attributed to each of the principal components generated by
the PCA method [45].

For the classification, we used a Gaussian support vector machine (SVM) classifier,
a supervised machine learning algorithm. SVM algorithms use a set of mathematical
functions that are defined as the kernel [46]. The function of the kernel is to take data input
and transform it into the required form [47] so that a nonlinear decision surface can be
transformed into a linear equation in a more dimensional space. It returns the dot product
between two points in standard feature dimensions [48]. Gaussian is one of the kernel
functions that is often used when there is no prior knowledge of a given dataset [49]. The

Gaussian kernel can be expressed as k(x, y) = exp
(
− ||x−y||2

2σ2

)
[50]. Here, K is the kernel

function, x and y are n-dimensional inputs.
Before applying the classifier, the dataset was split for holdout and k-fold cross-

validation. Cross-validation is a statistical method used to estimate the true generalization
performance of machine learning models [51]. The holdout method is the simplest cross-
validation and randomly splits the dataset. For this, the dataset was separated into three
sets, “training set,” “validation set,” and “test set.” This method is good to use when the
dataset is very large [52,53]. From the present dataset, we took 70% for the training set, 15%
for the test set, and 15% for the validation set. We trained the classifier for 80%, 85%, 90%,
and 95% variance of the PCA to remove the correlated features at different percentages and
compared the results.

K-fold cross-validation is performed while the dataset is split into a K number of
folds [54]. From the dataset, we took 90% for the training set and 10% for the test set to
evaluate the performance. For the k-fold cross-validation, we used 10-fold, which means
the training set was divided into 10 parts. Nine parts were used for training and one-tenth
was reserved for training. This procedure repeats ten times each time, reserving a different
tenth for testing. Figure 4 shows the k-fold cross-validation process.
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We trained the classifier for 80%, 85%, 90%, and 95% variance of the PCA to remove
the correlated features at different percentages and compared the results.

6. Result

Table 4 shows the accuracy of the classifier for holdout validation. Here, we can
observe that for 90% variance, we got the highest test accuracy—93.2%. The lowest test
accuracy was 85.5.5% for 80% variance using holdout cross-validation.

Table 4. Results of the SVM classifier for different PCA variance after holdout cross-validation.

% Variance
Accuracy

(Validation)
Accuracy

(Test)

Confusion Matrix (Test)

TP TN FP FN

80% 88.49% 88.06% 967 1263 166 124

85% 92.18% 92.51% 1011 1312 122 75

90% 93.17% 93.24% 994 1354 139 33

95% 88.29% 88.36% 867 1358 266 29

97% 85.0% 85.5% 769 1344 342 16

Beyond 90% variance, as we increased the PCA variance, and the test accuracy de-
creased because the dataset results in overfitting. We performed holdout cross-validation
(with 90% PCA variance) ten times to see the classifier accuracy in different runs, and each
time the training test and validation set were randomly divided into 70:15:15. Table 5 shows
the performance of holdout cross-validation. It shows that for each time running holdout
cross-validation, the test accuracy was around 93% for the SVM classifier. The mean and
the STD for performing holdout 10 times were 93.2% and 0.44, respectively, which shows
that there was no bias in the classifier model.
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Table 5. Results of the SVM classifier for different runs for 90% PCA variance.

Number
Accuracy

(Validation)
Accuracy

(Test)

Confusion Matrix (Test)

TP TN FP FN

1 93.4% 93.9% 990 1331 120 30

2 93.1% 92.7% 969 1322 141 39

3 93.0% 93.8% 992 1326 118 35

4 92.7% 93.0% 959 1339 152 21

5 92.3% 93.6% 982 1330 128 31

6 91.3% 92.5% 953 1332 158 28

7 93.3% 93.6% 987 1325 124 35

8 91.6% 93.0% 976 1321 135 39

9 93.1% 93.2% 981 1321 129 40

10 93.17% 93.24% 994 1354 139 33

Mean 93.2%

STD 0.44

Table 6 shows the accuracy of the classifier for k-fold cross-validation. Here, we also
got the highest test accuracy at 90% variance, which is 94.2%, and the lowest test accuracy at
84.4% for 97% variance for using k-fold cross-validation. The test accuracy also decreased as
we increased the PCA variance because the dataset results in overfitting after 90% variance.

Table 6. Results of the SVM classifier for different PCA variance after 10-fold cross-validation.

% Variance
Accuracy

(Validation)
Accuracy

(Test)

Confusion Matrix (Test)

TP TN FP FN

80% 89.3% 89.7% 650 828 90 79

85% 92.7% 93.9% 681 866 59 41

90% 93.4% 94.2% 665 886 75 21

95% 88.5% 88.3% 560 895 180 12

97% 84.8% 84.4% 493 897 247 10

From Tables 4 and 6, we observe that both cross-validation methods have the highest
accuracy for 90% variance. The 10-fold validation method has a 1% higher accuracy than
the holdout method.

7. Discussion

As ADHD is the most common disorder in children, early diagnosis will help to
prevent future complications [23]. In this paper, we present a machine-learning approach
for identifying children with ADHD using an SVM applied to a publicly available dataset
(120 participants’ 19-channel EEG data). After denoising, we divided the EEG signal into
five sub-bands and took only four frequency bands (delta, theta, alpha, and beta) for
the next process, because it is a slow (delta or theta) brain wave and due to a shortage
of fast (beta) brain waves in ADHD patients. From the four sub-bands, we extracted
statistical, time-domain, and frequency-domain features from each subject’s data. The
STD measures the variability and RMS is calculated to determine the power changes in
the brain wave. Hjorth parameters indicate the complexity of the brain wave. Mobility,
activity, and complexity are the most used Hjorth parameters and also the first derivatives
of the signal [56]. Skewness represents the rate of asymmetric distribution of the EEG data.
Kurtosis measures the distribution of observed data around the mean. It describes how
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often outliers occur [57]. Entropy measures the uncertainty or randomness of the brain
wave [56]. PSD calculates the power distribution of EEG series in the frequency domain,
and it is used to evaluate the abnormalities of the brain [58]. STD, RMS, skewness, and
kurtosis are statistical and simple features. These are the simple features to characterize the
brain wave.

We also applied PCA of different percentages of variance to reduce dimensionality
to prevent overfitting. PCA reduces the number of variables or features of a large dataset
while preserving as much information as possible [59]. It makes it convenient and faster
for the machine learning algorithm to analyze the dataset.

We used two different cross-validation methods and split the dataset into the train-test-
validation set. For different percentages of correlated features, we got different accuracy
for both cross-validation methods in the SVM classifier. The highest test accuracy was
93.24% for 90% of the variance in the holdout cross-validation method and 94.2% accuracy
for 90% of the variance in the k-fold cross-validation method. Cross-validation evaluates
the performance of machine learning models, and this helps to compare machine learning
methods and determine which is ideal for solving a specific problem [60]. In our study, we
got similar accuracy in both holdout and k-fold cross-validation, which makes our model
robust against bias and overfitting.

SVM has been widely used to classify EEG signals for neurological disorders [61]. It
works relatively well when there is a clear margin of separation between the classes [62],
and the dataset used in this study has two classes: healthy children labeled as class 1 and
children with ADHD labeled as class 2. We used Gaussian kernel SVM for classification, as
it has excellent learning performance and can give a reliable estimate of uncertainty. The
Gaussian kernel ensures a globally optimal predictor that minimizes the estimation and
approximation errors of a classifier [63].

In this study, we used statistical and time- and frequency-domain features of the
four EEG sub-bands, but most prior work used nonlinear features and also worked with
all the sub-bands. As mentioned in Section 2, they mostly employed KNN and neural
networks. Recently, many studies have been focusing on MRI to identify neurological
disorders, but compared to MRI, EEG is more flexible, affordable, and also suitable for
children. We also compared the results of two cross-validations. From the result of these
two cross-validations, we can say there is no bias in the dataset. In this study, we got
around 93% accuracy in the SVM classifier to identify ADHD in children from 11 features
extracted from each sub-band of the EEG signal. This accuracy is reasonable for classifying
any EEG signals. The main challenges we faced in this study were to understand this
dataset to determine the window segment and select the good features. As it is a large
dataset, we selected a 2 s window segment with 50% overlap for each of the sub-bands to
have as much information as possible. Windowing is used to isolate features into small
segments of overall EEG data to improve feature resolution [64].

In summary, we have presented an EEG machine learning pipeline for ADHD de-
tection, explaining each stage of the pipeline (including signal preprocessing and data
preparation) with thorough explanations and rationale. We utilized only the first four sub-
bands of EEG and eliminated the higher-frequency band, which reduced the computational
load for the model and kept mean accuracy of 93.2%. Simple EEG features were extracted
from a large dataset of 120 children, which was collected from two different sessions at two
different places, eliminating measurement bias in data collection. The experimental setup
was also child-friendly, easy to reproduce in local settings, and could be employed for
future ADHD detection. We also performed rigorous validation to ensure that our model
was not impacted by bias and overfitting, which commonly appear in the machine learning
pipeline. Despite this, we need to address a few limitations of our research.

1. To improve the accuracy, we may need to evaluate more features through the use of
different machine learning models for comparison of results.

2. We will also try different window sizes (0.5 s or 5 s, for example) in future studies.
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3. We will next work with only two EEG frequency bands (theta and beta), as these two
have significant changes in ADHD patients, and investigate more into the sub-band
of the EEG signals.

4. Based on our previous research on BCI interfacing [11,65] and EEG channel reduc-
tion [66], we will develop a portable solution with reduced EEG channels to evaluate
the possibility of real-time ADHD detection.

8. Conclusions

This study provides a machine learning model for EEG classification, which can
identify ADHD children using statistical and time-domain and frequency-domain features
of four sub-bands of EEG signals. We attained accuracy of between 93% and 94% for
holdout and cross-validation, which is acceptable for the large dataset that we were using.
The results show that there was no bias in the features set and no overfitting in the classifier
model. It will be a helpful model to minimize misdiagnosis of ADHD and also beneficial
for the evaluation of treatment efficacy.
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