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Abstract: Brain-Computer Interfaces (BCIs) have been regarded as potential tools for individuals
with severe motor disabilities, such as those with amyotrophic lateral sclerosis, that render interfaces
that rely on movement unusable. This study aims to develop a dependent BCI system for manual
end-point control of a robotic arm. A proof-of-concept system was devised using parieto-occipital
alpha wave modulation and a cyclic menu with auditory cues. Users choose a movement to be
executed and asynchronously stop said action when necessary. Tolerance intervals allowed users to
cancel or confirm actions. Eight able-bodied subjects used the system to perform a pick-and-place
task. To investigate the potential learning effects, the experiment was conducted twice over the
course of two consecutive days. Subjects obtained satisfactory completion rates (84.0 + 15.0% and
74.4 + 34.5% for the first and second day, respectively) and high path efficiency (88.9 + 11.7% and
92.2 £ 9.6%). Subjects took on average 439.7 + 203.3 s to complete each task, but the robot was only in
motion 10% of the time. There was no significant difference in performance between both days. The
developed control scheme provided users with intuitive control, but a considerable amount of time
is spent waiting for the right target (auditory cue). Implementing other brain signals may increase
its speed.

Keywords: alpha rhythms; assistive robotic manipulator; BCI; EEG

1. Introduction

Individuals with tetraplegia from, e.g., amyotrophic lateral sclerosis (ALS) experience
progressive muscle weakness and loss of motor function. As a result, individuals with ALS
may suffer extensive physical [1,2] and emotional distress [3,4] and must rely on caregivers
for simple daily tasks. Thus, assistive technologies (ATs) seek to enhance the quality of
life for individuals with severe physical disabilities by improving or substituting motor
functions, consequently boosting their autonomy [5-7]. However, as ALS progresses to the
late stages, most commercially available interfaces, such as joystick controllers [8,9], tongue-
based systems [10,11], and eye-gaze-operated devices [12,13], become unusable. Brain—
Computer Interfaces (BCIs) bypass the lack of motor function, as they translate brain activity
directly into control commands for the assistive device [14]. Electroencephalography (EEG)
is a non-invasive method for recording brain activity, commonly used in BCI development
given its high time resolution and relatively low cost compared with other techniques.

Within the scope of AT, BCI systems have been employed in devices for assisted
communication, computer cursor control and web browsing, mobility, and environmental
control [15-19]. State-of-the-art BCI-based directional control systems, such as those used
to obtain control of robotic devices, often require the user to split their attention between
the task and the BCI feedback, on, e.g., a computer screen. This is critical in instances of
environmental control, such as operating a robotic arm to pick up an object, as distractions
from both the task and surrounding environment should be minimal for safety reasons.
Dual tasking also increases the user’s mental workload [20]. Systems that rely on visual
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stimulation (steady-state visually evoked potentials, SSVEP, and P300) often exhibit this
problem since they make the user avert their eyes from the task and require extended
periods of sustained high mental workload. Visual displays can encumber the user by
blocking their field of view, and continuous strong visual stimuli may lead to fatigue
and discomfort [21-23], reducing signal quality and impacting system performance [24].
While Motor Imagery (MI)-based systems do not share these bottlenecks, they still require
extensive training and suffer from target amount limitations since their accuracy decreases
when the number of classes increases [25,26]. For that reason, many MI-based systems use
a few classes [27-29] or implement MI as a fast brain switch to select commands from a
cyclic menu [30,31].

Albeit to a lesser extent, parieto-occipital alpha waves (or the alpha rhythm) have been
considered for asynchronous BCI system applications [32], given their high signal-to-noise
ratio and unresponsiveness to environmental conditions. The alpha rhythm is a rhythmic
pattern in EEG observed at frequencies between 8 and 12 Hz and is typically found over
the occipital cortex [17]. Previous findings have demonstrated that the alpha rhythm can
be suppressed by visual attention; conversely, periods of mental inactivity with closed
eyes trigger an increase in alpha power [33]. Alpha band activity has been studied both in
hybrid systems [34,35] and on its own for simple switch controls and directional controls,
such as in Korovesis et al. [36].

Numerous studies have proposed EEG-based or hybrid BCI for controlling assis-
tive robotic manipulators (ARMs). Many implement manual end-point control strategies,
in which the user is in direct control of the movement of the robot’s end-effector [23,28,37-40].
These control strategies are flexible and intuitive but are often unable to provide fast and
precise continuous control without fatiguing the user. For that reason, other approaches using
goal selection or shared control strategies have been proposed. For example, Lillo et al. [41]
proposed a P300-based BCI capable of performing drinking and object manipulation tasks
using commands comprised of several automated actions. Indeed, many state-of-the-art
approaches consist of combining BCIs with computer vision-based object recognition to ob-
tain fast autonomous control during target manipulation [29,42—44]. While these automated
strategies are often faster and less fatiguing than manual end-point control, they cannot be
easily implemented in unknown environments. Additionally, autonomous systems have
been shown to be frustrating for the user and reduce agency [45,46].

In this paper, we report a proof-of-concept dependent BCI using parieto-occipital
alpha wave modulation. We propose a direct cartesian robotic arm control system for
performing functional tasks, such as handling objects. This exploratory study seeks to
overcome the distraction and visual fatigue bottlenecks by implementing auditory cues
during target selection. By closing their eyes, the user may select the desired motion and
switch into asynchronous continuous control. The robotic device then performs the motion
continuously while the user keeps their eyes open, allowing them to focus on the movement
and environment without distractions. In Ron-Angevin et al. [31], the authors propose a
similar approach for controlling a wheelchair, which provided users with four navigation
commands that could be selected using two mental tasks. However, very limited evidence
exists about this paradigm when used in combination with continuous control, which,
when used to manually control an assistive robotic device in 3D space, requires a high
degree of responsiveness for fine position adjustments. This proof-of-concept study sought
to investigate whether operating a cyclic auditory interface using a two-class dependent BCI
provides good continuous manual end-point control of an assistive robotic arm and if there
is an effect of learning across days. Moreover, the proposed interface introduces tolerance
intervals, which allow users to cancel incorrect selections. The system’s robustness was
tested with able-bodied volunteers, who used an ARM to pick up and displace an item.
To investigate potential learning effects, experiments were conducted over the course of
two consecutive days.
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2. Materials and Methods
2.1. Subjects

Eight able-bodied volunteers (one woman and seven men, average age: 29.1 + 3.4 years)
participated in this study. Six of them were naive BCI users. In total, 12 subjects were screened
for the experiment. However, one chose to withdraw from the experiment, while three were
deemed unable to participate as they obtained offline classification accuracies under 80%.
All subjects gave their written informed consent. All procedures were accepted by the local
ethical committee (N-20130081).

2.2. Data Acquisition

OpenBCI Cyton Board was used for EEG acquisition. Eight passive Ag/AgCl elec-
trodes were placed at the locations POz, PO3, PO4, PO7, PO8, O1, 02, and Oz according
to the standard international 10-20 system. The reference and ground electrodes were
placed on the mastoid bony surfaces behind the right and left ear, respectively. The signals
were sampled at 250 Hz. The electrode-skin impedance was kept below 10 k() during
all experiments.

2.3. System Implementation

The system was developed using the Robot Operating System (ROS kinetic) and
written in Python 3. An overview of the proposed system is illustrated in Figure 1. Firstly,
the EEG signals are measured and sent to a PC via WiFi. The system processes the acquired
signal, extracting the features used for classification. A controller node operates a cyclic
menu with the available commands. The menu is presented to the user primarily through
audio prompts, but icons are also displayed through a monitor. All other feedback is
provided via audio cues. The controller translates the classification results into the intended
action. Commands are then sent to the ARM, which carries them out. The Kinova JACO
(Gen2), a six-DOF ARM equipped with a three-fingered one-DOF end effector, was used in
this experiment. The manipulator was set to move in the cartesian space at a linear speed
of 50 mm/s.

Interface
Featu['e »| Classification » Controller Command
Extraction
K
EEG Acquisition
A
:

Robotic Arm
Feedback

Figure 1. Schematic of the proposed system. EEG is recorded, followed by feature extraction.
The classifier detects high power alpha waves and sends the selected commands to the robotic arm
while providing feedback primarily through auditory cues.

2.3.1. Signal Preprocessing

EEG data were bandpass filtered from 0.5 to 35 Hz using a 4th-order Butterworth
filter. Common average referencing was applied. Alpha rhythms show high amplitudes at
occipital and parietal areas; thus, only channels PO8 and PO7 are used in the rest of the
pipeline. The training data were divided into non-overlapping 1-second epochs, and 80%
were used for training the classifier, while 20% were used for testing (the collection of
training data is outlined in Section 2.4).
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2.3.2. Feature Extraction

The discrete wavelet transform was used to decompose the EEG signals into multiple
levels. A Daubechies 10 mother wavelet was used to perform a 4-level wavelet decomposi-
tion. Each time window was split into four details (D1-D4) and one approximation (A4).
Wavelet coefficients were extracted from component D4, which encompasses the frequency
range of 7.813-15.625 Hz and includes the alpha rhythm frequency band (8-12 Hz). We then
used the wavelet coefficients to calculate three statistical features: the mean of the absolute
value, the standard deviation, and the average power of the wavelet coefficients. Since
two channels were considered for this study, a total of 6 statistical features were used. This
feature extraction method was introduced by Xu and Song [47] and previously used by
Leon et al. [48] to classify alpha activity. Features were normalized using min—max scaling.

2.3.3. Classification

A linear discriminant analysis classifier was trained using eight-second-long epochs of
both regular/idle brain activity and increased alpha rhythms. The system records the user’s
brain activity continuously in 1-second-long overlapping epochs (with a 24-millisecond
overlap), checking for high alpha activity whenever necessary.

2.3.4. Online Control Loop

The online BCI for controlling the ARM was designed to have a selection mode, relying
on a discrete control command, and a self-paced control mode, offering continuous control
of the robot’s motion, as seen in Figure 2.

During selection, the system cycles through the targets sequentially in 3-second in-
tervals. Targets are highlighted on the monitor and presented through its unique audio
cue. Each target corresponds to the cartesian direction commands for the end effector
(movement along the X, y, and z-axis) and a gripper state control switch (open or closed).
Accordingly, a target’s unique audio cue corresponds to a word that describes the command
it pertains to (“up”, “down”, “left”, etc.). Auditory cues were included so subjects could
focus on the task without needing to check the screen.

To select a command, the user must wait for its cue. Selections are triggered by high
alpha activity, meaning the subject must close their eyes in time with the auditory cue.
Upon selecting a target, a confirmation tone plays, and the system enters a tolerance period,
which lasts 4 s. The user must open their eyes to proceed with the current selection and
can henceforth attend to the robot’s movement. If the system detects the occurrence of
high alpha waves during the last 2-second epoch, it will return to the selection menu.
Consequently, to interrupt selections, the user must keep their eyes closed. A different tone
plays when cancelling the selection. Returning to the menu at this point will not reset the
cycle, leaving the user at the current target.

Entering asynchronous control, the robotic arm performs the chosen motion continu-
ously, as long as the subject exhibits low alpha waves. The only exception is the gripper
command, which will close or open the fingers immediately upon selection and return to
the menu. When high-intensity alpha is detected, a stop command is issued, and the system
enters the tolerance period again. Users can evaluate if they wish to continue performing
that motion or return to the selection menu. High alpha waves will return the system to the
selection menu, while low alpha waves will reissue the command, continuing the current
motion. Returning to the menu after entering continuous control will always reset the
selection menu cycle. The grip command does not include this tolerance phase.

2.4. Experimental Procedure

The experimental procedure was divided into training and testing phases and lasted
approximately 2 h 30 min, including rest periods. Experiments were conducted over the
course of two consecutive days to investigate potential learning effects. During training,
the subject’s alpha activity was first recorded to calibrate the classifier. Afterwards, the sub-
ject performed the task successfully thrice, using a keyboard controller during the first two
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trials and the BCI system during the last trial. As a result, they became acquainted with
the control loop and ARM’s range of movement. Using the keyboard control, users could
simulate high alpha detection by keeping the spacebar pressed. During the experiment,
subjects were seated in a comfortable chair, facing the table where the task was to be
performed. A monitor displaying the selection menu was set up to the left of the subject; to
their right, the robotic arm was mounted on top of a stand at the same level as the table
(see Figure 3).

Start ) Execute selected <
AT ; command
v v :éz® 2

Cycle through
menu

Increased
alpha wave
detected?

Increased ) .
alpha wave ‘ Tolera?;:z)penod < Stop command
detected?
) Increased
alpha wave

YES detected? NO

Figure 2. Control Loop Schematic. The user selects a target command from the cyclic menu. Com-
mands are presented in the following sequence: up, down, left, right, front, back, and grip. The robot
executes said command (except for “grip”) until a stop order is issued by the user.

Figure 3. Experimental Setup. (a) Illustration of ARM performing the pick-and-drop task. The end-
effector moves from the starting position, Py, to grasp the cup at Py, to drop it at P,. (b) Illustration of
the experimental setup’s layout.
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2.4.1. Training Session

The training session’s purpose was to record both increased alpha activity (eyes
closed) and idle brain activity (eyes open). Throughout it, the subject faces the monitor and
remains still. After a 5-second preparation phase, an audio cue signals the beginning of the
recording, instructing the user to fix their sight on the middle of the screen. In each trial,
10 s of brain activity is recorded for each condition. After 25 repetitions, a different audio
cue plays, signaling the end of the recording. Data are extracted two seconds after each
acoustic stimulus to avoid ambiguous signals derived from the subject’s reaction period
(see Figure 4). The eight-second-long epochs were separated into regular brain activity and
high alpha rhythms.

PO7
25

0

Amplitude (uV)

Amplitude (uV)

Time (s)

Figure 4. Alpha activity recorded during training by electrodes in positions PO7 and PO8. The shaded
epoch corresponds to the timespan the subject had their eyes open; the clear epoch relates to the
moment the subject closed their eyes after the auditory cue at the 10 s mark. An increase in amplitude
can be seen approximately two seconds after the cue.

2.4.2. Testing Sessions

To test the system, subjects commanded the robotic arm to pick up an empty cup from
a fixed location, moved it across the table and placed it at a designated spot. They could
choose the path they deemed more efficient but were instructed to try to always take the
same path during testing.

Two testing sessions were conducted each day. During a session, subjects had to
perform the task as many times as possible within 30 min. Every time the arm was homed
and the cup repositioned, the countdown would be paused. Subjects could start a new
attempt if there was still time left, even if that attempt was expected to take longer than
the remaining time. A trial was successful if the subject managed to pick up the cup at the
pickup point without tipping it over and place it at the drop-off marking. Failing to grasp
the cup or pushing it away from the pickup point constituted a Type 1 failure while failing
to place it a Type 2.

The table’s surface was marked at the cup’s pickup and drop-off placements, as seen
in Figure 3. The cup’s pickup point was positioned approximately 40 cm away from
the ARM'’s base. The drop-off point was placed approximately 40 cm to the left of the
pickup point.

2.5. Performance Metrics

The system’s performance during target selection was evaluated for each subject using
the Youden Index [49]. The following variables were also tallied: number of voluntary
selections confirmed during tolerance, i.e., a true positive followed by a true negative;
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number of involuntary selections canceled during tolerance, i.e., a false positive followed
by a true positive; number of involuntary selections not canceled, i.e., a false positive
followed by a false negative; number of voluntary selections canceled involuntarily, i.e., a
true positive followed by a false positive.

The overall system performance was also evaluated using the following criteria: the
number of trials completed in two 30-min sessions, the success rate and completion time,
path efficiency and average number of selections per trial. The success rate was determined
by calculating the percentage of successful trials, while completion time was defined as the
amount of time subjects took to complete a trial. The path efficiency was defined as the
ratio between the length of the ideal path taken by the subject, and the length of the path
the subject took in the trials. Furthermore, the best path obtained by the subject during
the second day training session using the possible direction commands implemented by a
manual controller was deemed the optimal path. The average number of selections per trial
can be interpreted as the average number of commands sent intentionally to the robotic
arm, i.e., the number of actions performed voluntarily, per trial. Only successful trials were
considered for evaluation.

3. Results

As shown in Table 1, subjects took on average 7 min to complete each trial, but there
was a standard deviation of more than 3 min. Subject 2 was the fastest, taking 4 min and 36 s
per trial, while subject 8 took the longest with an average completion time of approximately
14 min. A Mann-Whitney test indicated that there was no statistically significant difference,
U(CT1 = 70, CT2 = 67) = 2479 , p = 0.57, between both days’ trial completion times.
On average, the robot was only in motion 10% of the time spent completing each trial. Path
efficiency remained above 80% for all subjects. Subject 7’s path efficiency score (which
exceeds 100%) shows that the subject performed shorter paths during BCI control. This
was most likely due to cutting corners by grasping the top of the cup or dragging it across
the table to minimize the number of selections, for example. No significant difference
between path efficiency during the first (88.9% = 11.7%) and second (92.2% + 9.6%) day
was observed, t(135) = —1.8, p = 0.08. Subject performance for the first day is compared to
subject performance for the second day in Figure 5. Note that subject 4 was excluded from
both previous statistical analysis since the subject was not able to complete any trial on the
second day successfully.

Table 1. Overall performance for successful trials.

SUB TD (s) RMT (s) PE (%) AST
1 3125+ 769 40.6 + 8.3 842 +13.5 10+2
2 278.8 + 38.8 36.6 +24 96.1 +4.9 8+0
3 324.4+119.8 354+74 86.9 +11.2 10+3
4 677.0 + 289.1 33.7+31 93.0+8.6 12+4
5 309.1 = 42.7 36.8+29 87.0+6.7 9+2
6 415.1 £ 120.6 374+24 86.2+5.6 10+2
7 367.7 +118.8 345+31 101.6 £ 8.1 8+1
8 833.0 + 214.2 36.8 +4.6 86.2 +8.3 12+3
Mean + SD 439.7 £ 203.3 36.5+21 90.2 £ 6.1 9412

TD = Total Duration; RMT = Robot Motion Time; PE = Path Efficiency; AST = Average Selections per Trial;
SD = standard deviation.

Table 2 shows the number of trials completed, along with failures, and the completion
rate for each subject for both days. Ideally, subjects would be able to perform 14 trials in
two 30-minute sessions considering the time taken with manual control. There was no
statistically significant difference, t(7) = 0.43 , p = 0.68, between the average number of
successful trials for the first (8.8 = 3.6) and second day (8.4 + 4.9). Subject 4 and 7 had
a performance dip on the second day. Type 2 failures occurred with more frequency on
the first day, caused by the subject’s inexperience with the robotic arm. Subjects obtained



Signals 2022, 3

403

an overall completion rate of 83.5%. No statistically significant difference was found
for the average completion rates obtained for the first (84.0% + 15.0%) and second day
(74.4% + 34.5%), t(7) = 1.29, p = 0.24.

The system’s performance during target selection is presented in Table 3. Only sub-
jects 4 and 8 obtained Youden Indexes lower than 0.50. Both subjects also obtained the
lowest percentages of voluntary selections. Five out of eight subjects were able to obtain a
voluntary selection percentage above 70%. For subjects 4, 6, and 8, the results suggest a
high false-positive rate, triggering a cascade of involuntary target selections followed by
cancellations. During continuous control, erroneous stop commands were also sent often,
increasing trial duration times.

1000
I Day 1 100
[ Day2
800 _
X 80
@ 600 g
Y § 60
()
£ &
= 400 Y 0
©
o
200 20| @MW Day 1
[ Day2
0 - 0 -
1 2 3 5 6 7 8 1 2 3 5 6 7 8
Subject Subject
(a) (b)

Figure 5. Average trial completion time (a) and average path efficiency (b) over two days.
The whiskers correspond to the standard deviation. Subject 4 was excluded as the subject was
unable to complete any trial on the second day.

Table 2. Number of successful and failed trials for two consecutive days.

Day 1 Day 2
SUB Failure Failure
Success ! Success !
Type 1 Type 2 Type 1 Type 2
1 10 (90.9) 0 1 13 (100.0) 0 0
2 12 (85.7) 1 1 13 (92.9) 1 0
3 10 (100.0) 0 0 12 (92.3) 0 1
4 3 (50.0) 1 2 0(0.0) 7 0
5 10 (83.3) 1 1 10 (71.4) 4 0
6 8(88.9) 1 0 8 (88.9) 0 1
7 13 (92.9) 0 1 9 (100.0) 0 0
8 4 (80.0) 0 1 2(50.0) 2 0
1 Values are n (%).
Table 3. System performance during target selection.

SUB YI ACC vs1 vscr! Isc! ISNC!
1 0.95 0.98 247 (94) 0(0) 14 (5) 1(0)
2 0.97 0.98 224 (93) 0(0) 18 (7) 0(0)
3 0.89 0.93 222 (74) 5(2) 71 (24) 0(0)
4 0.45 0.69 112 (26) 57 (13) 242 (55) 28 (6)
5 0.91 0.96 235 (91) 1(0) 23 (9) 0(0)
6 0.77 0.87 175 (57) 28 (9) 99 (32) 3(1)
7 0.89 0.95 192 (82) 2(1) 40 (17) 0(0)
8 0.42 0.58 104 (23) 14 (3) 331 (72) 8(2)

YI = Youden Index; ACC = Accuracy; VS = Voluntary Selections; VSCI = Voluntary Selections Canceled Invol-
untarily; ISC = Involuntary Selections Canceled; ISNC = Involuntary Selections Not Canceled. ! Values are
in n (%).
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4. Discussion

A simple BCI system for direct cartesian control of an ARM was developed using alpha
wave modulation. All users were able to quickly learn to operate the system, and five out
of the eight subjects, besides those excluded, were able to attain reliable control, with very
few mistakes during selection and fast response times during continuous control. The latter
provided users with tight control of the ARM, which avoided excessive overshooting. Users
relied heavily on the audible cues and checked the monitor mainly during idle periods,
focusing entirely on the position of the ARM during motion.

4.1. Task Performance

Five subjects managed to obtain fast, uninterrupted continuous control. However,
for subjects 4, 6, 7 (for the second day), and 8, continuous control was stilted, given frequent
occurrences of false positives that interrupted movement. Subjects 4 and 8 were not able
to obtain reliable control of the robotic arm due to slow continuous control and frequent
erroneous target selections. During the second day, subject 4 was unable to complete a
single trial. This, along with subject 7’s dip in performance during the second day, could be
tied to the subjects’ mental state during the experiment, as multiple studies have linked
mental fatigue, frustration, and prolonged workload to an increase in power in the alpha
band, e.g., [24,50].

Success rates were high for most subjects, except for subjects 4 and 8. Type 2 failures
occurred mostly during the first day because subjects would risk dropping the cup from
too high up, causing it to topple over. The inability to rotate the end-effector when gripping
the cup also contributed to this trend. By the second day, subjects would adapt to these
hurdles by dropping the cup from a lower height or grasping it at a lower point to avoid
tilting it when gripping.

It stands to reason that, with long-term usage, participants will familiarize themselves
with both the robotic arm and the interface. However, we observed no significant statistical
differences between the performance metrics for the first and second days. More sessions
may be needed for some subjects to achieve better performances. Furthermore, it is
important to note that this improvement could either stem from users becoming more
familiar with the robot arm or from an enhanced BCI performance.

Users could on average perform approximately five selections per minute, being able
to perform eight selections at most and two selections at least. Its speed is comparable
to that of P300-based BCI, such as in Lillo et al. [41] and Johnson et al. [51], both capable
of issuing approximately three commands per minute, taking 21 s per choice. However,
while in Lillo et al. [41], users are given only five unique targets, the system proposed
by Johnson et al. [51] provides 16 targets. In contrast, the MI-based BCI proposed by
Xu et al. [30] for continuous 2D control is remarkably faster since its cyclic menu uses
shorter times between cues. Nevertheless, all of them fail to meet the performance of
contemporary SSVEP-based BCI. The SSVEP system described in Chen et al. [39] allows
users to select a command from 15 possible targets in four seconds, while the one developed
in Han et al. [40] provides 11 commands and takes two seconds per selection.

The BCI proposed in this study achieved an average trial completion time of
439.7 + 203.3 s. Several past studies investigating the use of BCI for manual end-point
control of robotic arms have obtained faster trial completion times. Zhu et al. [23] used
a 15-target SSVEP-BCI with an EOG-based switch to control a robotic arm and complete
a pick-and-place task. Subjects performed the task three times; an average completion
time of 387.33 + 112.43 s was obtained, and all subjects were able to complete them. In
Peng et al. [38], subjects were asked to complete two different paths in 3D space, including
several checkpoints using an SSVEP-controlled robotic arm with six targets and obtained
an average completion time of 174 + 11.4 s. However, this type of approach presents a
different set of limitations that our interface does not. For instance, Zhu et al. [23] noted
that the flickering stimuli fatigued the users. Furthermore, both interfaces can only per-
form movements in increments, meaning more commands are needed to perform a task,
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and movement precision depends on the size of the increment used. Shorter increments
allow users to perform fine adjustments but require them to issue more commands. Indeed,
in Zhu et al. [23], subjects issued 68.73 + 19.38 commands on average, which is a much
greater amount compared to the one reported in our study (9.4 + 1.2). Meng et al. [37]
proposed an MI-based BCI system and performed a variety of tasks using a robotic arm,
such as moving fixed targets to a shelf. Subjects who could theoretically grasp a maximum
of six targets per run managed to grasp an average of 4.6 + 0.9 targets. Moving a block to
the shelf took on average 63.8 + 5.1 s, while making direct comparisons between the two
systems is difficult, it is clear that, compared to our BCI, theirs allowed users to complete
the tasks very quickly. However, their interface only allowed for movement in a two-
dimensional plane, meaning the reach-and-grasp tasks were divided into four sequential
steps. The robot also performed some of the movements automatically, such as returning
to the starting position after grasping the object on the table. In Sharma et al. [52], a similar
study with an EOG-controlled robotic arm, subjects obtained slightly faster average trial
completion times (357.5 s). However, the system proposed in Sharma et al. [52] utilized
rapid blinking as a stop command, which could be more fatiguing for individuals with
ALS who have difficulty blinking.

The proposed BCI provides users with flexible manual end-point control of an ARM;
yet, compared to interfaces with shared control [29,43] or goal selection control [39,41,44],
its task throughput is much lower. Depending on the specificity of the actions provided,
goal selection strategies will offer vastly different experiences to the user. Goal selection
strategies that present users with specific actions, such as drinking from a glass of water, are
the least flexible, as they require every operation to be set previously. In contrast, by giving
users control over gross movements, while automation is used for fine adjustments, shared
control interfaces provide users with a more engaging experience.

4.2. System Improvements

Tolerance periods, while allowing users to cancel involuntary selections with ease,
introduced more waiting times into the control loop. When combined with the time spent
waiting for the right target cue, it slowed down mode selection. To overcome this hurdle,
idle times, i.e., the time spent on each target and tolerance periods, can potentially be
reduced according to the user’s performance. Another approach could be to introduce
another control class, e.g., modulated frontal alpha activity from mental arithmetic.

Three subjects were stuck in target selection loops, where the system would perform
a selection erroneously, only for the subject to cancel it right after. When looking at the
number of involuntary selections canceled in Table 3, we can verify that subjects 4, 6, and 8
experienced these loops often. This flaw can be fixed by implementing a maximum loop
limit after a predefined number of cancelations; instead of presenting the same target,
the system would move onto the next.

4.3. Limitations and Future Perspectives

In the present study, we used a single BCI class, the detection of elevated alpha activity,
and implemented a cyclic menu to increase the number of available commands. This
approach, while simple and intuitive, has a few limitations. Adding more items to the
menu greatly increases waiting times, reducing the system'’s responsiveness. A possible
solution would be to introduce another control signal that could, e.g., be used to swap
between different menus or have it cycle through the available items. Doing so would
increase the number of commands without extending the time spent waiting. Another
option is to have said control signal cycle through the available targets instead, reducing
idle times altogether. Future work could involve introducing EEG rhythm modulation,
e.g., frontal theta, frontocentral alpha, and gamma power [53-55], during cognitive tasks,
such as mental arithmetic tasks [56-58], to control the robot. Since this system uses only
two electrodes, its possible to replace the EEG cap with a headband, an inconspicuous
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alternative that is faster and easier to mount for caretakers and relatives. Additionally,
frontal modulated alpha could still be introduced.

As mentioned in Section 2.1, three individuals who were initially screened for the
study were excluded since the BCI was unable to detect adequate alpha. BCl-illiterate
users who fail to achieve efficient BCI control are not uncommon; it is estimated that they
make up about 15-30% of the population [59]. Further, it is well documented that both
the amplitude and peak frequency of alpha rhythms vary greatly between individuals [60].
Future BCIs driven by alpha wave modulation could account for an individual’s neuro-
physiology by, for example, selecting subject-specific frequency bands, a method commonly
used in MI-BCI [61-63] to optimize classification. Ultimately, users may also benefit from
neurofeedback training protocols, such as the one proposed in Zhou et al. [64], which have
been shown to successfully help increase alpha power.

The proposed system is contingent on the subject’s ability to blink. According to the
telephone survey of people with ALS (n = 61) by Huggins et al. [65], 20% of respondents
reported having some difficulty blinking, while 7% reported having no control over eye
blinking movements. For these users, self-regulated slow cortical potentials or sensorimotor
rhythms could be used as an alternative to the alpha waves [66]. However, training of the
user may be needed to achieve adequate BCI control; thus, alpha waves may be better suited
for earlier stages of ALS where blinking is still possible, as it allows users’ familiarization
with the BCI and robot with an expected higher success rate. Nevertheless, tests with
end-users are also needed to assess the robustness of the system.

5. Conclusions

This study entailed the development and implementation of a proof-of-concept BCI-
based end-point control system for robotic arm control using auditory cues. Five out of
the eight subjects that participated in this study were able to obtain reliable control of the
robotic arm across days while relying on auditory cues. The proposed system is intuitive,
requires minimal training, and provides users with reliable continuous movement control
of an ARM in 3D space. The introduction of tolerance periods allowed users to cancel
involuntary selections with ease. However, a lot of time is spent waiting for the menu to
cycle through the commands, which detracts from its overall responsiveness, and not all
subjects could produce adequate alpha rhythm modulation to operate the BCI satisfactorily.
Further work must be carried out to reduce idle times during target selection, including
testing the system using shorter cue and tolerance periods. Moreover, testing should be
conducted with individuals with severe motor impairments—the intended end-users—
and alternative control signals should be tested to serve as alternatives for users who cannot
produce adequate alpha rhythm modulation.
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Abbreviations

The following abbreviations are used in this manuscript:

BCI Brain-computer interface
ALS Amyotrophic lateral sclerosis
AT Assistive technologies

EEG Electroencephalography

SSVEP  Steady-state visual evoked potentials
MI Motor Imagery

ARM  Assistive robotic manipulator

EOG Electrooculography
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