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Abstract: Deep learning in the last decade has been very successful in computer vision and machine
learning applications. Deep learning networks provide state-of-the-art performance in almost all of
the applications where they have been employed. In this review, we aim to summarize the essential
deep learning techniques and then apply them to COVID-19, a highly contagious viral infection that
wreaks havoc on everyone’s lives in various ways. According to the World Health Organization and
scientists, more testing potentially helps contain the virus’s spread. The use of chest radiographs is
one of the early screening tests for determining disease, as the infection affects the lungs severely.
To detect the COVID-19 infection, this experimental survey investigates and automates the process
of testing by employing state-of-the-art deep learning classifiers. Moreover, the viruses are of many
types, such as influenza, hepatitis, and COVID. Here, our focus is on COVID-19. Therefore, we
employ binary classification, where one class is COVID-19 while the other viral infection types are
treated as non-COVID-19 in the radiographs. The classification task is challenging due to the limited
number of scans available for COVID-19 and the minute variations in the viral infections. We aim to
employ current state-of-the-art CNN architectures, compare their results, and determine whether
deep learning algorithms can handle the crisis appropriately and accurately. We train and evaluate
34 models. We also provide the limitations and future direction.

Keywords: COVID-19; classification; detection; experimental survey; deep learning; convolutional
neural network; computed tomography; X-rays

1. Introduction

In recent years, the most talked about topics are coronavirus (in the medical com-
munity) and deep learning (in the computer vision and machine learning community).
The novel Coronavirus (also known as SARS-CoV-2), belonging to the Corona family and
abbreviated as COVID-19, is a virus known to cause lung infections. The virus is highly
contagious, as evidenced by the exponential growth of positive cases worldwide in a short
period with limited testing. The infection causes severe damage to the lungs, causing pneu-
monia with accompanying symptoms of a sore throat, dry coughing, sneezing, and high
temperature. Moreover, some patients do not show signs, so acting as a carrier is a worrying
concern for health organizations. The World Health Organization (WHO) recommended
conducting more tests for screening out COVID-19 patients to contain the virus’s spread.
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This testing would help in identifying and isolating potential COVID-19 patients from
patients of other kinds of infections.

Generally, X-ray imaging is used for the majority of chest infections, such as pneumo-
nia, bronchitis, and bronchiolitis. Although the use of X-rays is considered non-specific in
radiological findings, it will help in further management of a disease. Reverse Transcription
Polymerase Chain Reaction (RT-PCR) kits are utilized primarily to test COVD-19 patients.
The test kits are expensive and also limited in supply. Moreover, the turnaround time for
the test is, on average, 24 h, which considerably slows the testing process. Since the test
kits are limited in supply, the use of X-rays can be a viable option, especially in far-flung
and rural areas. This pandemic is causing health systems to be overwhelmed with many
patients. Chest X-rays could be used in conjunction with related tests to quickly rule out
non-COVID patients, ultimately easing the burden on health systems. Like any other
pneumonia infection, COVID-19 has shown distinct markers on chest X-rays. Sample
images for CT scans from the COVIDCT dataset [1] for both COVID and non-COVID cases
are illustrated in Figure 1. Representative images for X-rays from the COVIDx dataset [2]
for both COVID and non-COVID cases are shown in Figure 2.

C
O

V
ID

N
O

N
-C

O
V

ID

Figure 1. Representative images of the COVIDCT [1] dataset employed for training and evaluation
of algorithms.

We aim to summarize the most important deep learning networks and then train
them on different COVID datasets to predict whether the current classifiers can handle
an infection and diagnose it accurately. To this end, we present an experimental survey
that reviews and investigates how state-of-the-art deep learning networks can capture
fine-grained details from the images and classify them.

Our Contributions: We claim the following contributions in this article:

1. We present a review of the deep learning networks and summarize the most prominent
components of each with focused block diagrams;

2. We employ the deep learning algorithms for COVID-19 datasets to detect infection in
the CT and X-ray images;

3. Finally, we provide limitations, challenges, and future directions for the research
community.
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Figure 2. Samples from the COVIDx [2] dataset. The upper row shows examples with COVID-19,
while the lower row presents images without COVID-19’s presence.

2. Related Work

This section of the article presents the information about the datasets and the methods
developed to deal with COVID. However, it should be noted that we are not interested in
listing the networks that are specifically designed to detect, localize, or classify COVID cases
or produce comparisons between them. Instead, we aim to review and employ traditional
deep learning networks to observe their capability in handling the disease. Moreover,
we provide these specifically designed methods as a literature review for our proposed
algorithm and a starting point for future research. A considerable amount of research has
been published on COVID-19 detection [3–6], but none covered comprehensively applying
different deep learning architectures.

Chen et al. [7] retrospectively collected 46,096 high-quality CT images from 106 admit-
ted patients anonymously. There were 51 laboratory-confirmed COVID-19 patients, while
the remaining 55 were patients of different diseases. Three expert radiologists with over
5 years of experience annotated the COVID-19 dataset with combined consensus. The prob-
lem was framed as a segmentation task, and UNet++ [8] was trained to segment the valid
areas in the CT images. The trained model was deployed at the Renmin Hospital of Wuhan
University and as a web API to assist in the diagnosis of COVID-19 cases worldwide.

COVNet [9] uses a 3D deep learning framework to extract 2D local and 3D features
for the detection of COVID-19. ResNet [10] is employed as the backbone to extract features
from the input CT slices. The extracted features are passed through the max-pooling
operation. The final feature map is fed through the fully connected layer and eventually
through the softmax function to find the probabilities for each class. Previous studies
have shown the successful application of deep learning methodologies to chest X-rays to
diagnose bacterial and viral infections [11,12].

A deep learning-based CT diagnosis system, termed DeepPneumonia, was proposed
to detect and localize the lesions causing COVID-19 [13]. First, the lung region is extracted
in each CT image and then fed to the Details Relation Extraction Neural Network (DRE-
Net) to produce the top K details in a CT scan using pre-trained ResNet with a Feature
Pyramid Network (FPN) and attention module. The attention module is used to learn the
importance of each detail. The aggregation module aggregates the predictions to predict
the patient-level diagnosis.

Deep learning requires a significant amount of annotated data for training the model.
As the radiologists are busy dealing with the pandemic, the annotation task is difficult
and costly. Therefore, a weakly supervised technique by Zheng et al. [14] utilizes weak
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patient-level labels for the rapid diagnosis of COVID-19 subjects. A 3D deep convolutional
neural network called DeCoVNet [14] is used to take the input of the CT volumes and
3D lung masks to output the probabilities of COVID-19 or no COVID-19. A pre-trained
model is used to generate a 3D lung mask. The first stage of the architecture consists of a
vanilla 3D convolutional base, followed by batch normalization and max-pooling to create
a 3D feature map. In the second stage, a 3D feature map is passed through two 3D residual
blocks with the batch norm. In the last step, a Progressive Classifier (ProClf) progressively
abstracts the information in 3D volumes and classifies it using the softmax function to
output the probability of being COVID-19 or non-COVID-19.

Chest X-ray radiography (CXR) is widely used to diagnose infections due to its
lower cost and broader availability. COVID-19 patients show lung consolidation over the
period and therefore could be used as a diagnostic tool in conjunction with a CT scan
for better radiological analysis [15]. A two-step human–machine collaborative strategy
was proposed to design a network architecture for the detection of COVID-19 cases from
CXR images [2]. In the first step, the initial network design prototype is constructed using
human-driven principles. In the second step, the initial prototype and human-specific
designs are used in machine-driven exploration to find the optimal macroarchitecture and
microarchitecture for the final deep neural network architecture. The final architecture of
COVID-Net is applied for three-class classification into (1) no infection, (2) non-COVID-19,
and (3) having COVID-19. The experimentation is carried out on a COVIDx dataset, curated
from five multiple sources. The authors of [16] proposed a three-stage ResNet architecture
to classify the classes from the COVIDx dataset.

It is essential to estimate uncertainty in deep learning models and avoid COVID-19
misdiagnoses. A dropweights-based Bayesian Convolutional Neural Network (BCNN) [17]
was proposed to deal with the uncertainty in deep learning. The experiments were carried
out on the COVID-19 CXR dataset. The author found a strong relationship between
uncertainty and accuracy, which helped identify false positives and unknown cases.

We aim to employ the available deep learning state-of-the-art algorithms to identify
the COVID-19 and non-COVID-19 features. The purpose for this is twofold: (1) this
research will provide baselines, and (2) it will also establish the performance of current
state-of-the-art deep learning algorithms.

3. Deep Learning Networks Review

For the sake of completeness, we will discuss the basic building blocks of the current
state-of-the-art deep learning architectures for image classification tasks. Convolutional
Neural Networks (CNNs) are commonly used for image classification and can extract pow-
erful, generic features from the image by applying convolution filters. In CNNs, the filter
parameters are learned using backpropagation, where low-level features such as edges
are determined in the lower layers of the architecture, and high-level features such as
shapes are discovered in the deeper layers of the network. The ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [18] played a considerable role in the modern CNN
architectures’ design choices. The novel architectures should be end-to-end trainable and
learn multiscale features with fewer parameters and smaller model sizes. The other design
choices include dropouts, batch normalizations, optimizations, and loss functions. Modern
CNN architectures can be broadly grouped into the following categories.

3.1. Plain Networks

AlexNet [19] is the first architecture that sparked the research interest in deep learning
when it won the ImageNet challenge by a substantial margin. The architecture consists
of eight layers, including five convolutional layers, an activation function, and three fully
connected layers. AlexNet, for the first time, used multi-GPUs to train bigger models and
reduce the training time. The sample architecture for plain networks is shown in Figure 3.
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Figure 3. Sample architecture of plain networks.

Subsequently, Simonyan and Zisserman [20] proposed the Visual Geometry Group
(VGG) in different variations such as VGG16 and VGG19, which are the most common
architectures with 16 and 19 layers, respectively. The typical pattern among these architec-
tures uses only 3 × 3 filters. The initial layers utilize a few filters but increase their number
as the depth of the network increases, which is the kind of pattern that can also be seen
in other architectures. In earlier layers of the VGG or other plain architectures, they learn
more spatial information for filters, while the later layers use more filters to balance out the
availability of less spatial information. Initially, the VGG architecture was difficult to train
from the random initialization of weights. However, the training became more accessible
with the introduction of intelligent initialization techniques such as Xavier [21,22]. VGG19,
the highly accurate model, has a size of 574 MB.

3.2. GoogleNet Inception Networks

Contrary to the plain networks, the succeeding architectures share a common property
(i.e., using shortcut paths from the earlier layers to the last layers) which addresses the
vanishing gradient problem [23] in training deep neural networks.

GoogleNet, introduced by Szegedy et al. [24], was the winning architecture in the
ImageNet challenge. The performance of GoogleNet was slightly better than the VGG.
However, the GoogleNet model was considerably smaller in size, being only 28.12 MB
compared with 574 MB for the VGG model. The basic building block of the GoogleNet
is termed “the Inception module”, which comes in different variations, making it more
accurate than the original implementation of GoogleNet Inception. The idea of Inception
is to use filters of varying dimensions simultaneously, and then it is left to the network to
decide during optimization which weights are essential. In this way, the network learns
multiscale features efficiently. The 1 × 1 convolution was used to reduce the dimension of
the feature map volume-wise before applying any other filter, thus decreasing the model
size significantly. The Inception module, as shown in Figure 4, uses 1 × 1 convolution in
the first layer and max-pooling followed by any other filter. The output of all the filters is
concatenated volume-wise before passing into the next layer of the network.

Figure 4. Inception: the basic building block of GoogleNet.
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3.3. Residual Networks

The traditional network suffers from a vanishing gradient problem [23] during back-
propagation. The gradient becomes significantly smaller and cannot update the initial
layers’ parameters, causing the network learning to be prolonged. The Residual Network
(ResNet) made it possible to train deeper networks [10]. The basic module of ResNet is
called a residual block, as shown in the Figure 5, which starts at the input of the module
with two branches. One of the branches takes the input through a series of convolutions,
activations, and batch normalization, while the other branch is a shortcut that skips all the
operations and is added to the output of the other branch, known as identity mapping.
The residual layer starts learning at the identity function and learns more sophisticated and
robust features regarding the architecture’s depth. In the recent version of ResNet, the or-
der of operations in the first branch has been changed from convolution, activation, and
batch normalization (Conv-ReLU-BN) to batch normalization, activation, and convolution
(BN-ReLU-Conv). This method is called preactivation.

Figure 5. Basic building block of the Residual Network.

3.4. Dense Networks

In DenseNet [25], each layer concatenates the feature maps from all the previous layers,
using the collective knowledge in the current feature map’s computation. The current layer
passes on its feature map to all the subsequent layers, ensuring maximum information flow
and gradients between the layers of the network. On the contrary, ResNet adds the features
from the module input to the output layer. Figure 6 shows the module of DenseNet. A
composition layer uses preactivation on all the previous layers before concatenating with
the current layer. DenseNet has fewer parameters and can learn more complex features.

Figure 6. The main module of DenseNet showing the concatenation of features from previous layers.

3.5. Efficient Networks

Generally, deeper ConvNets tend to obtain a better top 1% accuracy in challenging
tasks such as ImageNet detection and classification. However, the trained models are over-
parameterized, and challenging to train and deploy on available hardware resources. For
example, Gpip [26] requires a considerable number of parameters (i.e., 577M) to train and
achieve a top 1% accuracy of 84.3%. There always has been a tradeoff between the accuracy
and efficiency of model selection for a specific application. Traditionally, models achieved
better accuracy by increasing the depth of the architecture (using more layers), the width of
architecture (via more channels), or increasing the resolution of an input image. Tan and
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Le [27] proposed compound scaling to size up all three critical parameters (width, depth,
and input image resolution) to improve a model’s performance. The proposed network
is called EfficientNets [27], which is the family of highly scalable and efficient neural
network architectures that uses compound scaling to select models such as EfficientNet-
B0–B7, keeping in view the resource requirements. The building block of EfficientNet uses
mobile inverted bottleneck MBConv [28], as shown in Figure 7, with squeeze-and-excitation
optimization [29].

Figure 7. Mobile network with an MBConvolution block composed of three convolutional layers and
a linear layer.

3.6. Squeeze Networks

Most CNN architectures are resource-hungry to achieve good accuracy for a particular
dataset. The smaller architectures with equivalent accuracy require less bandwidth, are
easily deployable on limited-capacity hardware, and offer benefits in distributed train-
ing. The model weights for most of the CNN architectures range from 100 MB (e.g.,
ResNet) to 553 MB (e.g., VGG). The weights for AlexNet sit in the middle at 249 MB. Re-
cently, in SqueezNet [30], the author proposed an architecture with a comparable accuracy
to AlexNet but with fewer parameters and with an incredibly lower weight of 4.9 MB.
The weights were further reduced to 0.5 MB by applying compression techniques such as
weight pruning and sparsifying the model.

The basic Fire Module is employed in the SqueezNet architecture with a clever combi-
nation of 1 × 1 and 3 × 3 filters. The module consists of a two-phase operation of “squeeze”
and “expand”. The squeeze phase applies a smaller number of 1 × 1 filters than the input
volume, thus reducing the dimensions of the output feature map. Before feeding to the
expanding phase, ReLU activation is applied to the output of the squeeze phase. During the
expanding phase, a combination of 1 × 1 and 3 × 3 filters is used to capture the spatial
relationship and extract more complex features, as shown in Figure 8.

3.7. Shuffle Networks

ShuffleNet [31] is another lightweight architecture design belonging to the family
of architectures such as MobileNet [32], CondenseNet [33], MobileNetV2 [28], and Xcep-
tion [34]. These architectures use group- and depth-wise convolution and are suitable for
low-end devices. The authors of ShuffleNet proposed guidelines for effective network
architecture design. Traditionally a widely accepted indirect metric called FLOPS is used
as the only measure of computational complexity (estimation of actual run time). However,
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a direct metric such as speed or latency is more relevant when considering group- and
depth-wise convolutions on low-end devices. These operations’ memory access costs
should be regarded in the neural architecture design for low-end devices. The second
important factor to consider is the degree of parallelism. For example, under the same
FLOPs, a model with a high degree of parallelism could perform better than the low-degree
counterpart. The author used these guidelines to design a network called ShuffleNet,
as shown in Figure 9.

Figure 8. Fire module: the backbone module of the squeeze network.

Figure 9. Shufflenet basic building block. “GConv” stands for group convolution, and “DWConv”
denotes depth-wise convolution.

3.8. Mobile Networks

MobileNetV2 [28] is tailored for use in computer vision applications designed for
resource-constrained devices. The model uses fewer operations and memory access to give
comparable accuracy to AlexNet. Unlike standard convolution, the MobileNetV1 model
proposes the use of depth-wise separable convolutions, which means that a depth-wise
convolution is followed by 1 × 1 convolution. A single filter is applied per input channel
in depth-wise convolution, and pointwise operation is used to combine the depth-wise
convolutions’ output. The models are lightweight due to the decreased multiplications that
reduce computational complexity. In MobileNetV2, the authors introduced an inverted



Signals 2022, 3 304

residual with a linear bottleneck layer. In a residual block with one stride, the first layer
adopts 1 × 1 convolution, followed by depthwise convolution in the second layer. The third
layer uses a 1 × 1 convolution without an activation function, as shown in Figure 7.

3.9. Neural Architecture Search NASNet

Neural architecture search belongs to the family of deep learning methods called meta-
learning. These algorithms use auxiliary search methods such as random, evolutionary,
and recurrent neural networks and deep reinforcement learning to design various network
architectures’ characteristics. These characteristics include the learning rate, number of
filters, and filter maps. In neural architecture search, these characteristics are learned
by another neural network for searching in a discrete search space. Neural architecture
searches use two kinds of convolutional layers called the normal cell and the reduction cell.
The typical cell returns the feature map of the same dimensions as those of the input, while
the reduction cell reduces the dimension by two.

The fundamental idea is to design a single cell instead of a whole network. The search
algorithm will search for the optimal parameters from a set of parameters and then create a
complete architecture by stacking normal and reduction cells. Typically, exploring architec-
ture is carried out on smaller datasets, and the learned layers are transferred to the search
architecture for large datasets. However, these approaches do not permit the layer diversity
required for high accuracy and lower latency in mobile applications. In MNASNets [35],
a multi-objective search using deep reinforcement is proposed to find CNN models with
increased accuracy and low inference latency that are suitable for mobile devices.

3.10. Wide ResNets

When ResNet is scaled up to a thousand layers, a fractional improvement in accuracy
requires doubling the layers and exponentially increasing the training time. In Wide-
ResNet [36], the authors suggested an architecture with decreased depth and increased
width compared with the ResNets to obtain good accuracy over its thin and deep counter-
part.

In a typical ResNet architecture, there are two blocks: basic (residual) and bottleneck.
The bottleneck block was used to make the network thinner, computationally less expensive,
and suitable for the design of deeper networks. Nevertheless, the authors used only the
residual block with increasing convolutional layers, feature maps, and filter sizes for
better performance. The authors considered two factors: (i) deepening fact l and (ii)
widening factor k, where l represents the number of the convolutions in a block, and k is
the number of feature maps in convolutional layers. The number of parameters increases
linearly with l and quadratically with k. Keeping in mind that GPUs are more efficient
in parallel computations, and consequently, widening the architecture is more effective.
The performance can be further improved if dropout is used in the residual block. In
Figure 10, the building block of Wide-ResNet [36] with and without the dropout is shown.

Figure 10. The basic schematic of a Wide ResNet block with and without a dropout layer.
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3.11. ResNeXt

ResNeXt [37] takes its inspiration from ResNet’s skip connections, VGG’s stacking of
layers, and Inception’s split-transform-merge strategy [37]. The ResNeXt module is very
similar to Inception’s split-transform strategy, except that the output paths are merged
by addition instead of depthwise concatenation, as shown in Figure 11. Another key
difference from Inception is that all split paths share the same topology. ResNeXt proposed
a hyperparameter called cardinality, which refers to independent paths to adjust the model’s
capacity. The model achieved better results with increasing cardinality rather than going
deeper and wider. The model is also easier to adapt to new datasets, as there is only one
parameter for adjustment.

Figure 11. ResNeXt backbone module showing different paths for feature learning.

4. Results
4.1. Experimental Set-Up

We used the default settings for each of the networks. The input size of the image was
the same, as specified by the authors of the networks. The input batch size was set to 32
with an initial learning rate of 10−4. The models were finetuned for 500 epochs from the
weights of ImageNet [18] due to the limited number of images available in the datasets.
The last layer for classification in all networks was changed to binary to differentiate
between COVID-19 and non-COVID-19 radiographs or CT scans. PyTorch was used as a
framework for training and testing the algorithms.

4.2. Datasets

Since there is no single sizeable dataset available for CXR images of COVID-19 pa-
tients, the dataset was curated from multiple sources to have sufficient training, testing,
and validation data.

COVIDx: The first dataset of COVIDx [2] was made public to the research community,
being a collection of four classes of CXR, namely (1) normal, (2) bacterial, (3) pneumonia
(non-COVID), and (4) COVID-19. A total of 5941 posteroanterior (PA) CXR were col-
lected from 2839 patients. Currently, the dataset contains only 68 X-rays for COVID-19
patients. There are 1203, 931, and 660 samples available for negative pneumonia, bacterial
pneumonia, and non-COVID viral pneumonia, respectively.
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COVIDCT: The University of San Diego collected a CT dataset of 349 CT images called
COVID-CT [1]. The COVID-CT dataset contains clinical information on 216 COVID-19
patients. The CT images were extracted using PyMuPDF4 from 760 preprints such as
medRxiv2, bioRxiv3, NEJM, and JAMA between 19 January 2020 and 25 March 2020.

4.3. Metrics

We took into account the following five metrics to evaluate each algorithm:

Precision is the ratio of correctly predicted positive COVID-19 patients to the total positive
predictions (i.e., true positives and false positives). This metric gives an algorithm the
ability to determine the rate of false positives. The higher rate is for precision, and the
lower rate is for false positives.

Recall is also known as the sensitivity of the algorithm, and it is the ratio of correctly
predicted positive outcomes (i.e., true positives) to the actual class observations (i.e., true
positives and false negatives).

F1 Score assesses the false positives and false negatives by taking the weighted average
of the earlier-mentioned metrics. The F1 score is helpful in cases where class distribution
is uneven.

Accuracy is the most used and intuitive measure in classification. Accuracy is defined as
the ratio of correct predictions to the total number of samples. Although high accuracy may
be a good measure, it may not be the best in certain situations where the class distribution is
not symmetric. Hence, we used other metrics to evaluate the performance of the algorithms.

AUC stands for area under the curve and is the second-most-used metric for classification.
It represents the degree of separability. The aim here is to model the network’s capability
while distinguishing between classes. A higher value for the AUC means the model is
better at predicting correct values; in other words, it can predict positive as positives and
negatives as negatives.

4.4. Evaluations

The quantitative results are reported in Tables 1 and 2 for the COVIDCT and COVIDx
datasets, respectively. The accuracy of the COVIDCT dataset varied from 70% to 81%.
Moreover, GoogleNet achieved the highest average recall of 94.29%, and DenseNet169 had
the highest precision of 100%. The highest performance for the area under the curve was
88.80%, achieved via ResNet101. The accuracy of the deep learning models on the COVIDx
dataset was higher than that for the COVIDCT dataset, ranging from 78.23% to 87.1%.
On average, the accuracy was more than 82%. On the other hand, the deep models yielded
lower recall results while having similar results for precision on the COVIDx dataset.
The highest recall achieved was 47.62% by MNASNet1.0. Similarly, the best precision
was from GoogleNet and EfficientNet-b3, which was 83.33%. In addition, the models
struggled to produce comparable results for the AUC metric, where DenseNet201 gave the
top performance, achieving 78.59%.

Table 1. Five quantitative measures for state-of-the-art deep learning networks on COVIDCT. The vari-
ants of the same algorithm are differentiated via the number at the end of the method’s name.

Methods Average Recall Average Precision Average F1 Average Accuracy Average AUC
AlexNet 0.7810 0.7321 0.7558 0.7389 0.8007
VGG11 0.8952 0.7344 0.8069 0.7783 0.8785
VGG13 0.7524 0.8144 0.7822 0.7833 0.8610
VGG16 0.8381 0.7333 0.7822 0.7586 0.8395
VGG19 0.8476 0.7876 0.8165 0.8030 0.8796
ResNet18 0.7524 0.7670 0.7596 0.7537 0.8397
ResNet34 0.8667 0.7982 0.8311 0.8177 0.8851
ResNet50 0.7905 0.8300 0.8098 0.8079 0.8769
ResNet101 0.8571 0.7826 0.8182 0.8030 0.8880
ResNet152 0.7333 0.8191 0.7739 0.7783 0.8670
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Table 1. Cont.

Methods Average Recall Average Precision Average F1 Average Accuracy Average AUC
DenseNet121 0.7238 0.8444 0.7795 0.7882 0.8700
DenseNet161 0.7905 0.8218 0.8058 0.8030 0.8729
DenseNet169 0.7524 0.8495 0.7980 0.8030 0.8586
DenseNet201 0.8476 0.7739 0.8091 0.7931 0.8698
GoogleNet 0.9429 0.6306 0.7557 0.6847 0.7815
Efficient-b0 0.7333 0.7700 0.7512 0.7488 0.8518
Efficient-b1 0.8095 0.7589 0.7834 0.7685 0.8588
Efficient-b2 0.7143 0.7895 0.7500 0.7537 0.8325
Efficient-b3 0.8190 0.8037 0.8113 0.8030 0.8862
Efficient-b4 0.8190 0.8037 0.8113 0.8030 0.8862
Efficient-b5 0.6952 0.7300 0.7122 0.7094 0.7903
Efficient-b6 0.7524 0.7900 0.7707 0.7685 0.8552
Efficient-b7 0.7905 0.7905 0.7905 0.7833 0.8566
SqueezeNet1.0 0.9048 0.7090 0.7950 0.7586 0.8722
SqueezeNet1.1 0.9333 0.7259 0.8167 0.7833 0.8725
MNASNet0.5 0.5238 0.7857 0.6286 0.6798 0.7938
MNASNet1.0 0.8952 0.7833 0.8356 0.8177 0.8845
ResNeXt50-32x4d 0.8000 0.8235 0.8116 0.8079 0.8726
ResNeXt101-32x8d 0.8000 0.7368 0.7671 0.7488 0.8624
Wide-ResNet50.2 0.7905 0.7757 0.7830 0.7734 0.8571
Wide-ResNet101-2 0.8667 0.7712 0.8161 0.7980 0.8863
ShuffleNet-v2-x0.5 0.8190 0.7611 0.7890 0.7734 0.8654
ShuffleNet-v2-x1.0 0.7714 0.7431 0.7570 0.7438 0.8289
MobileNet-v2 0.7810 0.7736 0.7773 0.7685 0.8549

Table 2. Quantitative results for state-of-the-art deep learning algorithms on COVIDx. The numbers
at the end of the method name indicate variants of the same algorithms.

Methods Average Recall Average Precision Average F1 Average Accuracy Average AUC
AlexNet 0.0952 0.5000 0.1600 0.8306 0.6445
VGG11 0.1429 0.5000 0.2222 0.8306 0.6815
VGG13 0.1905 0.5000 0.2759 0.8306 0.6875
VGG16 0.1905 1.0000 0.3200 0.8629 0.7240
VGG19 0.1905 0.8000 0.3077 0.8548 0.6366
ResNet18 0.2857 0.8571 0.4286 0.8710 0.7406
ResNet34 0.1905 0.6667 0.2963 0.8468 0.7235
ResNet50 0.1429 0.7500 0.2400 0.8468 0.6588
ResNet101 0.0952 0.4000 0.1538 0.8226 0.5825
ResNet152 0.1429 0.4286 0.2143 0.8226 0.6084
DenseNet121 0.3810 0.5333 : 0.4444 0.8387 0.6764
DenseNet161 0.3810 0.6667 : 0.4848 0.8629 0.6320
DenseNet169 0.1429 0.3750 : 0.2069 0.8145 0.5927
DenseNet201 0.0952 0.2857 : 0.1429 0.8065 0.5890
GoogleNet 0.2381 0.8333 0.3704 0.8629 0.6990
EfficientNet-b0 0.1429 1.0000 0.2500 0.8548 0.6893
EfficientNet-b1 0.2381 0.4545 0.3125 0.8226 0.6644
EfficientNet-b2 0.3333 0.7000 0.4516 0.8629 0.7180
EfficientNet-b3 0.2381 0.8333 0.3704 0.8629 0.7263
EfficientNet-b4 0.1429 0.7500 0.2400 0.8468 0.7499
EfficientNet-b5 0.0952 0.5000 0.1600 0.8306 0.6251
EfficientNet-b6 0.1429 0.3750 0.2069 0.8145 0.6671
EfficientNet-b7 0.1429 0.7500 0.2400 0.8468 0.7069
SqueezeNet1.0 0.285 0.4000 0.3333 0.8065 0.6602
SqueezeNet1.1 0.2381 0.7143 0.3571 0.8548 0.6338
MNASNet0.5 0.6667 0.4000 0.5000 0.7742 0.7383
MNASNet1.0 0.5238 0.4400 0.4783 0.8065 0.7560
ResNeXt50-32x4d 0.2381 0.5556 0.3333 0.8387 0.7110
ResNeXt101-32x8d 0.1429 0.7500 0.2400 0.8468 0.6990
Wide-ResNet50.2 0.1905 1.0000 0.3200 0.8629 0.6630
Wide-ResNet101-2 0.2381 0.3125 0.2703 0.7823 0.6144
ShuffleNet-v2-x0.5 0.2381 0.5556 0.3333 0.8387 0.6620
ShuffleNet-v2-x1.0 0.1905 0.4000 0.2581 0.8145 0.6482
MobileNet-v2 0.3333 0.7000 0.4516 0.8629 0.7180
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4.5. Attention

Each model focuses on specific aspects of the image to detect an object or an artifact.
Here, we present the models for infected and non-infected radiographs. In Figure 12, we
present the CT images with feature attention, where the red color indicates the region where
the models focused. The first three rows contain COVID-19 cases, while the remaining
two rows in Figure 12 are infection-free. Similarly, Figure 13 shows four different COVID-
19 case radiographs from four different orientations. ResNet, DenseNet, and GoogleNet,
presented in the second, third, and fourth columns, respectively, focused on most chest
radiographs, while the remaining models concentrated on particular regions of the chest. It
was challenging for the models to pinpoint the exact artifacts caused by COVID-19, as is
obvious from the feature attention mechanism.

a) b) c) d) e) f) g) h) i)

Figure 12. Representative images from COVID-CT to show the algorithm focus areas. The red color
shows the focus of the network. The first three rows of images are of cases with COVID-19, while
the last two rows of images are COVID-19-free. (a) Input images. (b) Alexnet. (c) VGG. (d) Resnet.
(e) Densenet. (f) Googlenet. (g) Efficientnet-b0. (h) Efficientnet-b7. (i) Squeezenet.
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a) b) c) d) e) f) g) h)

Figure 13. Samples from the COVIDx dataset to show the feature attention. All input images contain
COVID-19 cases. The sequence shown in the figure is (a) input images, (b) ResNet, (c) DenseNet,
(d) GoogleNet, (e) ResNeXt, (f) MNASNet, (g) EfficientNet, and (h) ShuffleNet.

5. Open Problems and Challenges

Lack of Significant Datasets: Data are vital for the progress of any field, and deep learning
is no exception. Similarly, the identification of the specific anomalies requires significant
annotated datasets. Although there are some available datasets for COVID-19, these are not
significant enough for confident detection of an infection underway. Therefore, it is crucial
to have large annotated datasets to accurately and appropriately detect the condition.

Medical Experts Input: The system’s accuracy is dependent on the input of the experts in
the research field. Although deep learning systems provide decent accuracy in identifying
or classifying the infection, medical expert opinions are required on the outcome of the
model to make sure that prediction is correct. The medical expert should also be consulted
to determine the challenging cases and variants of the virus for the model’s robustness.
Overall, the involvement of medical experts and their input should be at the heart of
this research.

Lack of Variants Identification: Since the pandemic’s start, everyone knew only one name:
coronavirus. However, as time passed, more information about the infection came to
light about the virus variants and strains. The infection capability and severity change
depending on the strain; some are infectious, while others are dangerous. The identification
and classification of these strains are vital so that the system can identify the strain type
and warn about the challenges posed by infection.

Models’ Efficiency: The efficiency of the models is another aspect neglected in COVID-19
research, as the focus thus far has been on the effectiveness rather than the efficiency. Real-
time diagnosis is essential, along with accuracy, if the models need to be deployed for
screening on devices. Therefore, it is desired to have research dedicated to training effi-
cient models.

Benchmark Deficiency: Benchmarks play an important role in advancing the field and
identifying the state-of-the-art methods from the crowd, as there is a significant effort in



Signals 2022, 3 310

COVID-19 research. The lack of benchmarks made it hard to isolate the excellent investiga-
tion, analysis, and methods.

Generalization: The proposed models’ generalization for COVID-19 case detection, classi-
fication, and identification is vital due to the variants and strains emerging. The trained
model should have the ability to accurately detect and classify cases without retraining
the whole system in case of a new variant. The best approach would be to apply attention
to the details specific to the virus type. Moreover, it should be noted that the dataset
quality may also influence the models’ generalization and robustness. Hence, a step toward
generalization is to utilize pretrained models with attention mechanisms.

Integrating Input Data Types: COVID-19 has been identified or detected from a single
source such as an X-ray or CT. However, utilizing more information, including the body
temperature, will help improve the performance and reliability of the methods. Further-
more, employing multiple data types helps predict the relationship between COVID-19
and the most robust combination for early detection.

6. Conclusions

In this work, we have tested the current state-of-the-art deep learning algorithms’
capacity and provided baselines for future research comparisons on two publicly available
COVIDCT and COVIDx datasets. We aimed to differentiate between COVID-19 cases
and non-cases in scans and radiographs. We have shown the quantitative results and
attention of the models in the sample images. We employed several metrics to give a
more comprehensive understanding of network performance. Although the results are
promising, the need for a more significant number of images will help further training
and testing.

For future work, we aim to utilize the code and the dataset employed in this article
for an apparent multinomial extension. The dataset investigated in this study has fewer
images and furthermore has a lower number of infections. In the future, we will include an
analysis of the significant datasets containing more images and more infection types. We
will also focus on differentiating between different coronavirus types.
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