
Citation: Si, X.; Wang, J.; Dong, H.;

Xi, J. Data-Driven Discovery of

Anomaly-Sensitive Parameters from

Uvula Wake Flows Using Wavelet

Analyses and Poincaré Maps.

Acoustics 2023, 5, 1046–1065. https://

doi.org/10.3390/acoustics5040060

Academic Editor: Yat Sze Choy

Received: 17 September 2023

Revised: 27 October 2023

Accepted: 1 November 2023

Published: 2 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

acoustics

Article

Data-Driven Discovery of Anomaly-Sensitive Parameters
from Uvula Wake Flows Using Wavelet Analyses
and Poincaré Maps
Xiuhua Si 1, Junshi Wang 2,3, Haibo Dong 2 and Jinxiang Xi 4,*

1 Department of Aerospace, Industrial, Mechanical Engineering, California Baptist University,
Riverside, CA 92504, USA; asi@calbaptist.edu

2 Department of Mechanical and Aerospace Engineering, University of Virginia,
Charlottesville, VA 22904, USA; junshi.wang@princeton.edu (J.W.); hd6q@virginia.edu (H.D.)

3 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
4 Department of Biomedical Engineering, University of Massachusetts, Lowell, MA 01854, USA
* Correspondence: jinxiang_xi@uml.edu; Tel.: +1-978-934-3259

Abstract: This study presents a data-driven approach to identifying anomaly-sensitive parameters
through a multiscale, multifaceted analysis of simulated respiratory flows. The anomalies under
consideration include a pharyngeal model with three levels of constriction (M1, M2, M3) and a
flapping uvula with two types of kinematics (K1, K2). Direct numerical simulations (DNS) were
implemented to solve the wake flows induced by a flapping uvula; instantaneous vortex images, as
well as pressures and velocities at seven probes, were recorded for twelve cycles. Principal component
analysis (PCA), wavelet-based multifractal spectrum and scalogram, and Poincaré mapping were
implemented to identify anomaly-sensitive parameters. The PCA results demonstrated a reasonable
periodicity of instantaneous vortex images in the leading vector space and revealed distinct patterns
between models with varying uvula kinematics (K1, K2). At higher PCA ranks, the periodicity gradu-
ally decays, eventually transitioning to a random pattern. The multifractal spectra and scalograms of
pressures in the pharynx (P6, P7) show high sensitivity to uvula kinematics, with the pitching mode
(K2) having a wider spectrum and a left-skewed peak than the heaving mode (K1). Conversely, the
Poincaré maps of velocities and pressures in the pharynx (Vel6, Vel7, P6, P7) exhibit high sensitivity
to pharyngeal constriction levels (M1–M3), but not to uvula kinematics. The parameter sensitivity to
anomaly also differs with the probe site; thus, synergizing measurements from multiple probes with
properly extracted anomaly-sensitive parameters holds the potential to localize the source of snoring
and estimate the collapsibility of the pharynx.

Keywords: uvula kinematics; pharynx collapse; principal component analysis; wavelet analysis;
multifractal spectrum; scalogram; Poincaré map

1. Introduction

Conventional methods for diagnosing breathing-related disorders often rely on acous-
tic recordings or EGG signals. An inherent limitation of such methods is the lack of
detailed understanding regarding how externally measured signals correlate with under-
lying airway abnormalities, which themselves need to be diagnosed or clarified. This
gap in signal–disease correlation renders most signal-based diagnoses inaccurate and, at
best, empirical. It should be noted that not all signals are useful. Acoustic signals are
integrative, embedding a myriad of pressure components originating from both disease site
and surroundings [1–3]. Thus, isolating disease-specific signals from recorded acoustics
can be challenging.

Lumped analytical models have been implemented widely to understand and inter-
vene in respiratory dynamics. Various models of respiratory dynamics have been proposed,

Acoustics 2023, 5, 1046–1065. https://doi.org/10.3390/acoustics5040060 https://www.mdpi.com/journal/acoustics

https://doi.org/10.3390/acoustics5040060
https://doi.org/10.3390/acoustics5040060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/acoustics
https://www.mdpi.com
https://orcid.org/0000-0001-7823-7014
https://orcid.org/0000-0002-2536-2708
https://doi.org/10.3390/acoustics5040060
https://www.mdpi.com/journal/acoustics
https://www.mdpi.com/article/10.3390/acoustics5040060?type=check_update&version=1


Acoustics 2023, 5 1047

offering differing levels of detail, complexity, and rigor. Models comprising single or
multiple compartments with a network of resistors (Ri) and capacitors (Ci) are well received
by clinicians because of their simplicity [4,5]. Most commercial devices for respiration
assistance or diagnosis are based on such models. For instance, most mechanical ventilators
assess a patient’s lung health by estimating the lung’s resistance R and compliance C [6–8].
Electrical analog models do capture major dynamics in a time-/resource-efficient way;
however, they also suffer from setbacks of neglecting nonlinearity and lack of details. In
this vein, nonlinear corrections, such as a sigmoidal equation, have been introduced to more
accurately assess tissue compliance or airway resistance [9,10]. However, flow-induced
sounds, or aeroacoustics, are inherently a highly nonlinear process, not only due to the
nonlinearity of tissue properties but also to the multiple flow regimes and the dynamic
fluid–structure interactions [11–13]. As a result, lumped electrical analog models have
rarely been used to study acoustics in breathing-related disorders.

Physiology-based modeling and simulations have emerged as a viable alternative to
understanding the correlations between internal anomalies and externally measurable sig-
nals, such as lung sounds and flow–volume curves [14–16]. This approach has become an
ideal tool for examining the mechanisms behind snoring and sleep apnea, especially since
current diagnostics for snoring are predominantly confined to specialized sleep labs where
patients are required to stay overnight [17–20]. Compared to experimental testing, compu-
tational aeroacoustics offers a more detailed temporal and spatial insight into respiratory
flows. Past research has significantly enhanced our understanding of this vortex-driven,
flow-induced phenomenon, providing clarity on sound production [21,22]. However,
contemporary transient numerical simulations can easily generate data in the order of
gigabytes and even terabytes. Vortex images, despite their vivid visual representations, are
complex to interpret. It is still challenging to use these simulation results for diagnostic or
prognostic purposes, e.g., to predict pharynx collapse, identify snoring source, or quantify
tissue property variation [20,23–27]. Further analysis of such data promises to reveal new
information critical to understanding both respiratory physiology and pathology.

Several studies have analyzed simulation data generated by LES or DNS to search for
anomaly-sensitive parameters hidden within the seemingly chaotic flow images/videos to
effectively differentiate health from disease [28–31]. Analytical methods include principal
component analysis (PCA) [32], proper orthogonal decomposition (POD) [33], dynamic
mode decomposition (DMD) [34], balanced modes [35], global eigenmodes [36], etc. These
methods have shed useful light on the underlying dynamics of fluid flows from different
perspectives. Analytical approaches of time-series pointwise flow parameters (pressure,
velocity, vorticity, etc.) have been employed even more widely to study the system’s tempo-
ral and spatial dynamics. These include fast Fourier transform (FFT), continuous wavelet
transformation, semblance, autocorrelation, Shannon entropy, multifractal, Lyapunov ex-
ponent, and Poincaré maps [37–39]. The multifractal spectrum has been demonstrated
to be sensitive to anomaly-induced differences in acoustic signals and exhaled aerosol
distributions [40–42]. Poincaré maps, or recurrent maps, have often been used to study
the stability of dynamic systems under periodic forcing [43,44]. Bramburger and Kutz
used Poincaré maps to study a multiscale dynamical system close to invariant manifolds,
and demonstrated that Poincaré maps could offer forecasting of long-term dynamics [45].
In practice, a Poincaré map can be challenging to implement due to its requirement for
a large number of intersection points to reveal the hidden pattern. The advent of high-
fidelity physiology-based DNS simulations in recent years provides the needed inputs for
data-driven discoveries of reduced-dimensional, anomaly-sensitive features.

In this study, we will simulate the wake flows from a vibrating uvula using direct nu-
merical simulation (DNS), and analyze the wake flows to seek anomaly-sensitive variables
or features. Particularly, instantaneous vortex structures of multiple uvula vibration cycles
will be analyzed using PCA. Additionally, the time series of pressures and velocities at
different probes will be examined using wavelet transform and Poincaré section analysis to
identify the appropriate measurement points for predicting pharynx constrictions or uvula
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vibration modes. The goal is to identify low-dimensional, anomaly-aware parameters from
a large dataset of DNS results that are sensitive to either uvula kinematics or pharyngeal
constriction levels.

2. Methods

Airway models and uvula motions are described in Section 2.1. Numerical methods
using direct numerical simulations (DNS) are explained in Section 2.2. Regarding the
DNS-predicted wake flows, the 2D vortex images analyzed using principal component
analysis (Section 2.3); while the time-series pressure signals were analyzed using wavelet
transform (Section 2.4) and Poincaré section analysis (Section 2.5), respectively.

2.1. Airway Model with a Vibrating Uvula and Constricted Pharynx

The mouth-nose-throat airway model (Figure 1a) was adapted from an airway geome-
try originally reconstructed from MRI scans of an adult male using Mimics (Materialise,
Leuven, Belgium) [46]. To simulate pharynx collapses that lead to apnea, three progressive
models of pharyngeal constriction were developed, namely, M1, M2, and M3 (Figure 1b).
The uvula vibrations were determined from a high-speed recording of uvula motions [28]
exhibiting two distinct kinematics. The heaving mode (K1) had the largest flapping ampli-
tude at the middle uvula, while the pitching mode (K2) had the largest amplitude at the
uvula tip (Figure 1b). The vibration frequency was 100 Hz, and the inhalation flow rate
was set at 20 L/min, following [47,48]. The inhaled air was distributed, with 80% entering
the nose and 20% entering the mouth. Ambient conditions were specified at zero pressure
(Figure 1a). Seven sampling points or probes were utilized to record instantaneous pressure
and velocity, as indicated in Figure 1a. Specifically, probes 1 and 5 were positioned near the
base of the uvula, probes 2 and 4 were located close to the middle of the uvula, probe 3 was
situated directly beneath the uvula, probe 6 was at the site of pharyngeal constriction, and
probe 7 was positioned near the epiglottis.
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Figure 1. Computational models and methods. (a) A mouth-nose-throat model with seven sampling
points; (b) anomalies including two uvula vibration kinematics (upper): K1 (heaving) and K2
(pitching); and three pharyngeal constriction levels (lower): M1 (normal), M2 (mild), M3 (severe);
(c) immersed boundary method with a tetrahedral surface mesh immersed in a Cartesian grid; and
(d) grid independence study.

2.2. Numerical Methods

Direct numerical simulations (DNS) were implemented to resolve the inspiratory
flows with high-frequency uvula oscillations. The immersed boundary method (IBM)
was used to control the uvula kinematics based on a Cartesian-grid finite-difference ap-
proach (Figure 1d) [49], which has undergone extensive testing in simulations of flapping
propulsion for insects [50,51], birds [52,53], fish [54,55], and breathing [56]. In summary,
the airway surface with tetrahedral meshes was immersed in a structured hexahedral
grid (Figure 1c), with the boundary conditions specified on the immersed surfaces via
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the ghost-cell approach [57]. Constant flows were inhaled into the mouth and nose, and
the tracheal outlet had a zero-gradient condition, ensuring vortices could move through
freely. Second-order central differencing was used for discretizing the flow variables p and
ui. The time step size was 0.02 ms; a second-order accurate fractional-step method was
used for time marching. Each case simulated twelve cycles of uvula vibrations, spanning
0–0.12 s. One-way coupling was assumed, i.e., from dynamic structures to fluid only.
Convergence was assumed until the first three energetic modes changed less than 1 × 10−5

in two successive time steps. The pressure p was normalized as p/(0.5ρU0
2), with U0 being

the inlet velocity into the mouth (U0 = 0.5 m/s). A grid independence study was conducted
on the CP variation with meshes from 0.8, 2.8, 5.3 to 9.0 million (i.e., from extra-coarse,
coarse, fine, to ultrafine), as shown in Figure 1d. Less than 1.5% in CP was obtained at the
sampling point 3 between the fine and ultrafine meshes, and thus the 5.3-million mesh was
utilized for all following predictions.

2.3. Principal Component Analysis (PCA) of 2D Time Series Vortex Images

Principal component analysis (PCA) is a linear dimensionality reduction technique
that identifies a series of orthogonal spatial features derived from the singular value
decomposition (SVD) of a data matrix. PCA was selected to analyze uvula wake flows
in this study because of its computational efficiency and its successful usages in previous
studies. PCA offers computational simplicity and efficiency, especially when dealing with
large datasets, as in this study. PCA has been widely implemented to glean insights
from vortex flows, even with its inherent linearity [58,59]. To prepare for PCA, each 2D
vortex image was represented with 427 × 960 data points, translating to a vector with
409,920 values that served as a single column in the data matrix. For a category containing
288 images, the matrix X had dimensions of 409,920× 288. The mathematical representation
of the SVD method can be expressed as X = UΣV*, where ‘U’ denotes the matrix of principal
components (PCs) or vectors. To project a sample image, x, into a 3D vector space spanned
by the PCs (i, j, k), the formula φ(i, j, k) = <x, U(i, j, k)> is used, where < > denote a dot
product [60]. It should be noted that when performing PCA on the 2D vortex images,
each image was treated as a high-dimensional vector. At each pixel location there was
one dimension for grey images and three dimensions for color images, while the pixel
location (x, y) was preserved in its relative location in the vector column. In this way, the
spatial information of a 2D image was preserved even though it was written as a vector for
mathematical purposes, i.e., to perform SVD.

2.4. Wavelet Transform Analyses of Time-Series Pressures

To analyze pressure signals from a periodically oscillating uvula, we chose the wavelet
transform over standard time-frequency transform for its variable resolution and transient
detection. The oscillating uvula could produce pressure signals with both low-frequency
components (representing the primary oscillation) and high-frequency components (po-
tentially arising from rapid transient events or perturbations). The wavelet transform’s
ability to provide high frequency resolution at low frequencies and high time resolution at
high frequencies makes it particularly suitable to capture and analyze both these aspects
of the signal. Moreover, the wavelet transform is adept at detecting transient events or
anomalies in signals. Considering the uvula wake flows, there could be irregularities or
sudden changes in the pressure signal, which wavelets can capture effectively due to their
localized nature.

Wavelet transform analyses were performed in MATLAB. We employed the continu-
ous wavelet transform (CWT) to break down the instantaneous pressure coefficients CP
across multiple scales, aiming to uncover correlations less evident in the original CP profiles.
Various wavelets were utilized to adjust and modulate the signal f(t):

wt(a, b) =
1√
a

∫ ∞

−∞
f (t)ψ(

t− b
a

)dt, a > 0 (1)
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Here, a is the scaling factor, b is the time lag, and ψ(t) is the Morlet wavelet [61]. The wavelet
coefficient wt represents the degree of similarity between the signal and the wavelet at
a particular a and b. By adjusting a and b, spatial and temporal anomalies (i.e., abrupt
change in patterns) can be isolated [61]. A smaller a denoted a condensed wavelet and
higher frequency, highlighting swift and sharp fluctuations. Adjusting the time lag b either
forwarded or pushed back the wavelet’s starting point. The scalogram visualized the
time-frequency energy distribution and was derived through the CWT.

The discrete wavelet transform was employed to derive the multifractal spectrum of
signals, establishing a normalized measure µi(q, ε) with a series of scaling exponents q, to
investigate various segments of the singularities (i.e., rapid or infinite changes of a specific
measure) [62].

µi(q, ε) = [Pi(ε)]
q/∑[Pi(ε)]

q (2)

When q < 1, µi(q, ε) highlighted the regions with weaker singularities, whereas when q < 1,
it emphasized areas with stronger singularities. The multifractal spectrum function f (α), as
well as the strength of the singularity α(q), were determined as a function of µi(q, ε):

α(q) = lim
ε→0

∑ µi(q, ε) ln Pi(ε)

ln ε
; f (αq) = lim

ε→0
∑ µi(q,ε) ln µi(q,ε)

ln ε (3)

2.5. Poincaré Section Analysis of Time-Series Pressures/Velocities

The Poincaré section, also known as Poincaré map or first return map, is a technique
to study dynamical systems, particularly in analyzing periodic or quasi-periodic system
behaviors [63,64]. It is a lower dimensional slice of the phase space, and can be visualized
as the intersection points where a trajectory (or flow) cuts through the section. There are
different ways to define these slices in the phase space, i.e., mean/plane Poincaré map,
maxima/minima maps, and period map. The mean Poincaré section is defined by a specific
plane in phase space. Every time a trajectory crosses this plane in a specified direction
(for example, from below to above), an intersection point is plotted [65]. Likewise, for
a maxima/minima map, the plane is defined by its local maxima/minima, with a point
plotted each time the variable reaches the extrema. The period Poincaré section (or period
map) is defined by a fixed time interval. A point is plotted at every fixed time period
and describes how the system’s state evolves over regular time intervals. Different types
of sections can reveal different characteristics or attributes of the system, such as chaotic
behaviors, stable orbits, and other invariant measures. In this study, we used a sampling
period of 10 ms, based on the observed dominant frequency of vortex flows and to capture
sufficient detail without oversampling. MATLAB was used to conduct the Poincaré section
analysis of time-series pressure and velocity signals.

3. Results
3.1. DNS-Predicted Inspiratory Vortex Dynamics

Figure 2 showcases the vortex structures across the six models at t/T = 3/4, a moment
when the uvula tip is at its furthest left position. Vortex shedding, originating from the
oscillating uvula, is observed for all models. However, the vortex intensity is notably higher
in the two M3 models compared to the M1 and M2 models, especially in the proximity of
the uvula and within the pharynx. Considering the uvula kinematic effects (K1 vs. K2),
differences in vortex structures are noted on the rear side of the uvula, with K2 models
exhibiting weaker vortices near the middle uvula and more left-skewed vortices at the
uvula tip than the counterpart K1 models (i.e., Figure 3a vs. Figure 3d at t/T = 3/4. The
temporal evolution of the vortex structures is also shown in Figure 2a. The uvula undergoes
a vibration cycle, flapping from the middle position (t/T = 0) to the dorsal oropharynx (1/4),
reverting back to the middle (2/4), then continuing to the ventral oropharynx (3/4), before
returning to its initial middle position. The vortices generated from the uvula demonstrate
variations throughout the vibration cycle, imposing a constantly changing influence on the
downstream flows.
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(a) K1M1, (b) K1M2, (c) K1M3, (d) K2M1, (e) K2M2, and (f) K2M3.

Figure 3 shows the 2D vorticity images at t/T = 3/4, where the red and blue colors
denote the positive and negative vorticity, respectively. For each uvula vibration cycle,
a series of 48 images were captured for subsequent principal component analysis (PCA).
Images were recorded for six cycles, leading to 288 images in total for each model. The
lower panels of Figure 3 show the averaged vortex image from the 288 images. The PCA
results shown in the next section are based on the difference between each image and
the average.

3.2. PCA Analysis

Figure 4 shows the projections of 2D vortex images onto the vector spaces spanned
by the principal components (PCs) at different scales. The first panel in Figure 4a repre-
sents the temporospatial evolution of 48 images (i.e., one uvula vibration cycle) projected
onto the PC1–3-spanned vector space. The projected points approximately form a closed
loop/orbit, with blue denoting the starting point and red indicating the end of one cycle.
The second panel shows six cycles of the PC1–3 projections, demonstrating good peri-
odicity/repeatability among cycles. Smooth, periodic curves were also observed in the
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PC3–5 and PC5–7 vector spaces; however, deteriorations in periodicity became perceivable
starting from PC7–9 and continued growing to be highly random in PC39–41.
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Figure 4. PC projections of DNS-simulated vortex images at different ranks for (a) K1M3 and
(b) K2M3. The first panel displays one cycle of uvula vibration, represented by 48 images, within
the vector space spanned by the three dominant PC vectors (i.e., PC1–3). The second panel shows
six consecutive uvula vibration cycles with 288 2D vortex images being projected onto the PC1–3
vector space, while the remaining panels show the projection of 288 images on vector spaces spanned
by PC3–5, PC5–7, PC7–9, and PC39–41, respectively.

Interestingly, from 48 images of one uvular cycle, the projected curves exhibited one
orbit in the vector space spanned by PC1–3, two orbits by PC3–5, and three orbits by PC5–7,
which could correlate with the fundamental frequency and the two harmonics. It should be
noted that this observation held true for both models presented in Figure 4. The number
of orbits became less countable starting from PC7–9, and became entirely unrecognizable
in PC39–41. This decaying regularity in PC projections is a good example that respiratory
flows are a combination of deterministic chaos and random components, which can be
separated according to their scales.

For a given scale, the projected curves differ notably between K1M3 and K2M3 in the
PC1–3 and PC3–5 vector spaces (Figure 4a vs. Figure 4b). Thus, the PC-projected curves
can be a highly sensitive index, individually or as a combination, to study uvula vibration
kinematics. Because the uvular kinematics is dictated by both the external excitation
forces and material physical properties, this method holds the potential to estimate tissue
properties when excited at known specifications. Conversely, flow controls to augment or
attenuate flow-induced sounds or structural motions are possible, for instance, by exerting
promoting/stimulating or counteractive/opposing flow/acoustic components (i.e., scale-
or frequency-specific) onto the current flow.

From PC5–7, the curves started to converge in appearance between K1M3 and K2M3,
with the orbits in both models exhibiting a butterfly shape, indicating a gradual decrease in
signature flow feature at higher scales (Figure 4a,b, three lower panels). No distinctive fea-
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tures are noted in PC39–41, where low-energy, high-frequency flow fluctuations dominate,
regardless of uvula vibration modes.

Figure 5a,b compare PC projections among six models in the vector space spanned by
PC1–3 and PC2–4, with each model comprising 288 vortex images from six consecutive
uvular vibration cycles. It should be noted that Figure 5a,b contain both PC2 and PC3. It
is evident that PC1 is more dominant and effectively separates the six curves in terms of
either the vibration mode (K1 vs. K2, or heaving vs. pitching) or pharyngeal constriction
level (M1, M2, M3). Of these two factors, the vibration mode/kinematics appears to have a
more pronounced impact than the pharyngeal constriction level, as indicated by the gross
cluster of the K1 models to the right vs. the K2 models to the left. By comparison, PC4
contains much lower energy or fewer features, as evident by the mingling of curves among
the six models.
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Figure 5. Comparison of PC-projected curves among six models in the vector space spanned by
(a) PC1–3, and (b) PC2–4. Each model comprises 288 vortex images from six consecutive uvular
vibration cycles.

3.3. Wavelet Analyses of DNS-Predicted Pressures (P1–7)

In addition to the 2-D vortex images, wavelet analyses of the time series of pressures
were undertaken at seven sampling points, as depicted in Figure 6. Figure 6a shows the
pressures at sampling point 3 in K1M3 and K2M3 for ten consecutive uvula vibration cycles,
while Figure 6b compares the pressures among the three K1 models (i.e., K1M1, K1M2,
K1M3, upper panel) and K2 models (lower panel) within one vibration cycle. Overall,
the pressures contain complex fluctuations within one cycle, while also exhibiting gross
periodicity/repeatability from cycle to cycle (Figure 6a). All pressures have an approximate
bimodal profile, presumably resulting from the uvula stopping twice within one cycle. This
observation was consistent with the two hiatuses at high frequencies of the scalograms
(Figure 6c), regardless of the model.

However, when considering the average pressures, notable differences exist. In K1
models, the pressure peaks are relatively symmetric in both site and magnitude. In contrast,
the pressure peaks in the K2 models skew to the right. Moreover, the pressure fluctuating
amplitudes in K1 models are smaller than those in K2 models, and increase with the
pharyngeal constriction level. These differences also manifest themselves in the scalogram
(Figure 6c). At the high frequencies, the scalogram intensity in a K1 model is lower than
that in its K2 counterpart. For both categories, the scalogram intensity increases with the
level of pharyngeal constriction.
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Figure 6. DNS-predicted pressures and scalograms at sampling point 3: (a) pressure signals (i.e., P3)
from the model of K1M3 (upper) and K2M3 (lower) for ten consecutive uvular vibration cycles;
(b) comparison of CP among K1 models (upper) and K2 models (lower) within one vibration cycle;
and (c) scalograms of K1 models (upper) and K2 models (lower) within one cycle.

Figure 7 displays the pressures for six models at sampling point 6, where the pha-
ryngeal constriction occurs. As expected, the absolute pressure magnitude increased
nonlinearly with increasing pharyngeal constriction level, regardless of the uvula vibration
mode (Figure 7a, upper and lower panels). The pressure increased slightly from M1 to
M2, but abruptly from M2 to M3 for both vibration modes. This occurred because the
flow velocity increased in the constricted pharynx, and the pressure varied with the square
of velocity.

Significant differences in multifractal spectra were noted between K1 and K2 models
(solid vs. dashed lines, upper row, Figure 7b); in contrast, the differences among the three
models with varying pharyngeal constrictions were insignificant. Differences between K1
and K2 models were also predicted in their τ(q)-spectra, which converged for the three
K1 models but not for K2 models (zoomed insert, lower row, Figure 7b), lending further
support to the fact that multifractals are more sensitive to the dynamic structures than
static geometry variations.

Large differences in high-frequency scalograms existed between K1 and K2 models (left
vs. right, Figure 7c); this was in contrast to the high similarity in high-frequency scalograms
among M1, M2, and M3 for a given vibration mode, despite large variations in the mean
pressure among them. It was thus concluded that the vibration mode (K1, K2) mainly
influenced the pressure fluctuation amplitudes (vortices and turbulence, Figure 7b,c), while
the pharyngeal constriction affected the mean pressure in the pharynx (Figure 7a). Complex
scalogram distributions are observed at low frequencies (100–1000 Hz), with no apparent
patterns among models.

Figure 8 shows the pressures, multifractals, and scalograms at point 7, which is
downstream of the constricted pharynx. As a result, the mean pressure and fluctuation
magnitude are considerably affected by the pharyngeal constriction level, both of which
increased quickly (Figure 8a). A phase shift occurred between K1 and K2 models, leading
to the coincidence of peaks and valleys between these two models. Unlike P6, both the
multifractal and scalogram of P7 are sensitive to pharyngeal variations. Conversely, the
kinematics-induced differences were much smaller than those at P6. This was evident
from the clear separation of multifractal spectra among M1–M3 models, in contrast to
the close proximity between any K1–K2 pairs (solid vs. dashed, Figure 8b). The high-
frequency scalograms look alike for each of the three pairs (Figure 8c), as opposed to the
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distinctive patterns between each pair at P6 (Figure 8c vs. Figure 7c). Location-wise, the
scalograms varied remarkably from P6 to P7 at both low and high frequencies, reflecting
the drastic transition in flow regimes. Moreover, the flow transition was more significant in
the constricted pharynx in a nonlinear manner, a hallmark of turbulent flows.
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Figure 8. DNS-predicted pressures, multifractals, and scalograms at sampling point 7 (downstream of
the pharyngeal constriction): (a) comparison of CP among K1 models (upper) and K2 models (lower)
within one cycle of uvular vibration; (b) comparison of the multifractal spectra among six models;
and (c) scalograms of K1 (right) vs. K2 (left) models within one cycle.
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3.4. Poincaré Analyses of DNS-Predicted Pressures and Velocities
3.4.1. P3: Immediately Downstream of the Uvula

Figure 9 shows the Poincaré analyses of the time series DNS-predicted pressures imme-
diately downstream of the uvula (P3). Figure 9a compares the P3 Poincaré maps between
the K1 and K2 models (pink vs. green), which exhibit both overlapping and separated re-
gions, indicating the potential of Poincaré maps as discriminatory, yet suboptimal, features.
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Figure 9. Poincaré analyses of the time-series pressure signals at sampling point 3 (P3) immediately
downstream of the uvula, with the Poincare maps for all six models (a), K1 models (b), K2 models (c),
the period map for all models (d), and the maxima maps for K1 (e) and K2 (f) models.

Figure 9b,c compare the Poincaré maps among M1 (black), M2 (red), and M3 (blue)
with K1 (heaving) and K2 (pitching) vibration modes, respectively. For both kinematics,
significant overlapping was noted among M1–3 models with negligible separation, sug-
gesting the inability of the Poincaré map to differentiate P3 from different uvula vibration
modes and pharyngeal constrictions.

In Figure 9d, the period map shows highly regular points in the range 0–0.025, and
becomes more dispersed beyond this range to the right. Thus, the fluctuating components
of P3 were mainly the result of the uvula flapping frequency and its harmonics, rather
than the flow instabilities and turbulences. Due to their close proximity, the vibrating
uvula imparted periodic energy onto the airflow on contact, which further affected the
neighboring airflows and pressures. Considering the maxima maps, which exhibited much
less dispersion for any model, both overlapping and separation were observed among the
M1–M3 models, regardless of the K1 or K2 vibration mode (Figure 9e,f).

3.4.2. P6: Site of Pharyngeal Constriction

The Poincaré analyses of P6 are shown in Figure 10 in terms of the Poincaré map, pe-
riod map, and maxima map. In comparison to Figure 9, the overlapping increases between
the K1 and K2 Poincaré maps at P6 compared to P3. This is reasonable, considering that
P6 is situated further downstream from the vibrating uvula than P3. Figure 10b,c consider
the sensitivity of the P3 Poincaré map to the level of pharyngeal constrictions (M1, M2,
M3) with K1 and K2 uvula kinematics. Only the most constricted M3 model is separatable,
while M1 and M2 cannot be differentiated, regardless of the vibration kinematics.
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Figure 10. Poincaré analyses of the time-series pressure signals at sampling point 6 (P6) where
pharyngeal constrictions occurred, with the Poincare maps for all six models (a), K1 models (b), K2
models (c), the period map for all models (d), and the maxima maps for K1 (e) and K2 (f) models.

The period map of P6 is more concentrated in the lower end (0–0.02) than that of P3
(Figure 10d vs. Figure 9d); however, the scatters in the higher end are more random than
those of P3, indicating the attenuation of direct impact from the flapping uvula and the
augmentation of vortices or turbulences. Surprisingly, the maxima maps of P6 signals
display highly concentrated patterns, shifting from M1 in the upper right to M2 in the
middle to M3 in the lower left (black to red to blue), with non-insignificant overlapping
for both kinematics (Figure 10e,f). Notably, the maxima map of K2M3 (Figure 10f) is more
widespread than the other five models, likely due to the long excursions of a pitching uvula
within a wider airspace where more complex vortices are generated. However, the maxima
maps at P6 are not sensitive to the vibration mode (Figure 10e vs. Figure 10f).

3.4.3. P1, P2, and P7: Sampling Points in the Mouth-Throat Tract

The Poincaré and maxima maps of pressure signals at the other three points in the
mouth-throat respiratory tract, 1, 2, and 7, are shown in Figure 11, with expected results.
At P1, the less random Poincaré map can be attributed to its further upstream location
with minimal impacts from downstream disturbances. At P2, the Poincaré map becomes
more dispersed than P1. On the other hand, the K1 (heaving vibration mode) Poincaré
map, even though not separated from the K2 (pitching vibration mode) Poincaré map,
occupies a much smaller region (Figure 11b). At P7, which is located far downstream of the
pharynx, indistinguishable Poincaré maps are observed between K1 and K2, testifying to the
diminishing impacts from the uvula vibration. All maxima maps of the three points display
a diagonal profile with varying levels of scattering, overlapping, and distinguishability
(lower panels, Figure 11a–c). One observation worth noting is the relative positions in the
maxima map vs. pharyngeal constriction. At P1 and P2 (upstream), the clusters of M1, M2,
and M3 are located from the lower left to upper right (Figure 11a,b), while at P7, this order
is reversed (Figure 11c). Moreover, the occupied region of P7 is much smaller in M1, and
grows progressively with increasing pharyngeal constriction levels, leading to adequate
partition of the maxima maps among M1, M2, and M3.
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Figure 12. Comparison of Poincaré maps among different models of time-series flow velocities at 
sampling points 3, 6, and 7: (a) Vel3, (b) Vel6, and (c) Vel7. 

Figure 11. Poincaré and maxima maps of pressure signals of (a) P1, (b) P2, and (c) P7.

3.4.4. Velocity Magnitude at Sampling Points 3, 6, and 7

In Figure 12a, the Poincaré maps of Vel3 exhibit significant overlapping between K1
(pink) and K2 (green) models with moderate separations, suggesting an acceptable but
weak parameter of the Poincaré map to capture the vibration-related differences. The
overlapping of the Vel3 Poincaré maps between K1M1, K1M2, and K1M3 is even more
widespread, and thus will not be able to differentiate the constriction-related differences
in Vel3. By contrast, the Poincaré map sufficiently separates Vel6 signals among K1M1,
K1M2, and K1M3, and perfectly separates Vel6 signals among K2M1, K2M2, and K2M3
models (Figure 12b). The closer proximity between M1 and M2 models, compared to the
much greater distance between M2 and M3, signifies the nonlinear dynamics in Vel6 in
response to pharyngeal constrictions (Figure 12b). Similar observations were made for
the downstream Vel 7 (Figure 12c), except for the weak separation between K1M1 and
K1M2 models.
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It is noted that not all parameters at those selected points correlate well with abnor-
malities in uvula vibration and/or pharyngeal constriction. For comparison purposes,
significantly more overlapping and worse separation were found in the Poincaré maps of
U3, U6, and U7 (i.e., the transverse velocity components at sampling points 3, 6, and 7),
except M3 at points 6 and 7, as illustrated in Figure 13.
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4. Discussion

A data-driven discovery of anomaly-sensitive parameters/features was conducted
using multiscale, multifaceted analyses of simulated respiratory flows. Anomalies include
a collapsible pharynx with three constriction levels (M1–M3), and an oscillating uvula
with two kinematics (K1, K2). The flows were solved using direct numerical simulation
(DNS) and the immersed boundary method (IBM). The instantaneous vortex images were
analyzed using principal component analysis (PCA), while time-series pressures/velocities
were analyzed using wavelet-transform-based multifractals and scalograms, as well as
Poincaré maps. Insights from this study concerning the algorithms, anomaly-sensitive
features, and their implications are discussed below.

4.1. Evaluation of PC Curves, Multifractal Spectra, and Poincaré Maps

Overall, discriminatory features among different models were analytically extracted
from instantaneous vortex images and pointwise pressures/velocities. Different aspects
of the same flows were captured, either temporally or spatially, and at varying scales.
Principal component analysis (PCA) is a statistical method that reduces data dimensionality
while preserving variance. In this study, each 2D image was projected as one point in
the vector spaces spanned by principal components (PCs) (Figure 4). In the PC1–3 vector
space, 48 images in one uvula cycle formed one closed loop (first panel, Figure 4a), and
288 images from six cycles approximately repeated themselves in six orbits, indicating good
periodicity in dominant flow structures (second panel, Figure 4a). This also justified the
Poincaré analysis, which is specifically suited for periodic dynamical systems. The PCA also
captured a gradual decay in periodicity with increasing scales (2nd–6th panels, Figure 4a),
and provided information on energy distributions. In addition, different temporospatial
orbits were predicted by PCA between K1M3 and K2M3 (Figure 4a vs. Figure 4b), thereby
permitting a comparative analysis and anomaly detection. In our previous studies, PCA
features were used to train SVM algorithms, and obtained high classification accuracies.
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A multifractal spectrum reveals multiple scaling behaviors of the flow, including its
complexity, intermittency, and heterogeneity; a wider spectrum implies a flow having
stronger singularities and more localized vortices, and being more heterogeneous. This
is consistent with Figure 7, where K2 models (dashed lines) exhibit more complex flows
and have wider spectra than K1 models (solid lines). All models contain a single peak
in Figures 7 and 8, suggesting the existence of only one dominant flow process, which is
associated with the uvular oscillation. No abrupt changes or discontinuity occur in spectra
in Figures 7 and 8, consistent with the fully turbulent flow regimes in the pharynx with no
flow transitions or bifurcations. In Figure 7b, the K1 spectra are more skewed to the right
than the K2 spectra, hinting that a heaving uvula (K1) induces more positive fluctuations
in the pharynx than a pitching uvula (K2).

Like PC curves, Poincaré maps provide qualitative information on flows’ stability,
periodicity, nonlinearity, state, and chaos/turbulence. There are two clusters in Figure 9c
(P3 in K2 models), mirroring the two vortex streets shedding from a pitching uvula. By
contrast, the separation of clusters in Figure 9b (P3 in K1 models) is less apparent, which
is in line with a shorter tip excursion and closer vortex shedding from a heaving uvula.
Likewise, the separation of M3 model (pharynx with severe constriction) from M1 and M2
models in Figure 10b,c mirrors the nonlinear, abrupt changes in flow structures from mild
to severe pharyngeal constriction. The increased cluster dispersion from P3 to P6 and P7
signifies the increase in turbulence in the pharynx.

As seen from above, each approach provides unique insights into the nature of the
flow. The PC curve extracts the dominant flow with the most energy or variance (i.e., eigen-
vectors); the multifractal spectrum is fitting for understanding the scale-dependent nature
of turbulence or complexity in a signal, while the Poincaré map can identify periodicity,
state, chaos, and stability in a system. It is also noted that fast Fourier transform (FFT) of
the time-series pressure signals was also performed in our previous study, which exhib-
ited distinct patterns in terms of the wave amplitudes at the fundamental and harmonic
frequencies [13]. There are many indices that have been developed and used to assess the
complexity of signals, and all of them come with different specificities. Readers interested
in embedded dimension, mutual information, and other analytical methods are referred
to [66–69]. Future complementary experiments are also needed to validate the simulations
in this study.

4.2. Anomaly-Sensitive Parameters/Features

In Figure 12, we observed a high sensitivity of the Poincaré maps of Vel6 and Vel7 to the
level of pharyngeal constrictions. This is consistent with the fact that the velocity magnitude
increases in a narrowing pharynx. It should be noted that the multifractals/scalograms
of P7 (Figure 8), as well as the maxima maps of P6 and P7 (Figures 10 and 11), are also
sensitive to the pharyngeal constriction level; thus, measuring acoustics at these two points
is recommended to gauge the constriction levels of the pharynx, thus, to estimate pharynx
collapsibility, as explained in Wang et al. [13].

On the other hand, the P3 scalogram (Figure 6), P6 multifractal/scalogram (Figure 7),
and P2 Poincaré map (Figure 11) are all sensitive to the uvula vibration kinematics, and
thus can be exploited, individually or in combination, to gauge the abnormality in uvula
vibration kinematics. The uvula vibration is a passive process dictated by external excita-
tion, uvula morphology, and uvula tissue properties. Knowing the uvula kinematics via
measuring acoustics at multiple points (2, 3, and 6 herein) can also facilitate the estimation
of the variation in uvula structures and/or tissue properties.

Sensitivity to anomalies also varies with the location of the sampling point. There are
seven sampling points in total, with probes 1, 2, 3, 4, and 5 situated around the uvula, and
probes 6 and 7 in the downstream pharynx. It is not surprising that the extracted features
or parameters close to the anomalies are more intensified, such as probes 2 and 3 for the
uvula, and probes 6 and 7 for the collapsible pharynx. The clear separation among Poincaré
maps for the velocities at probe 6 (Vel6) might be strongly correlated to the velocity increase
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in a narrowing channel (Figure 10). However, a similar clear separation for Vel7, which
is 2 mm downstream from the pharyngeal constriction site, suggests that the Poincaré
maps consider more flow features than merely the velocity magnitude (Figure 11). The
observation that the anomaly sensitivity differs among probe sites provides an opportunity
to use multiple probes in a synergic way to localize the source or quantify the source severity.
A similar concept has also recently been pursued by Khalili et al., who characterized sound
signals through stenosis using spectral decomposition, with the aim to localize the stenosis
with points of measurement [70].

Regarding the uvula kinematics, it is acknowledged that a wider range of uvula
flapping modes may exist in addition to the heaving and pitching modes considered
herein, which warrants future studies of their impacts on pressure signals. Also, it is
still challenging to mathematically define the sensitivity to anomalies for most features
presented in this study, despite their visual distinctions.

4.3. Implications of New Anomaly-Sensitive Features for AI-Based Diagnosis

The reduced-dimensional, etiology-sensitive parameters/features extracted from DNS
results can assist the development of AI-based diagnostic tools in two ways, i.e., (1) improv-
ing the classifier performance, and (2) improving the interpretability of conifers, especially
the AI-extracted features. In the past several years, AI, and deep learning in particular, has
quickly gained popularity in anomaly detection [71]. They have demonstrated great usage
and effectiveness in learning/extracting distinguishing features and facilitating disease
diagnosis (binary classification) or stage gauging (multi-class classification) [72]. Machine
learning algorithms, such as SVM and random forest (RF), need hand-crafted features
as the training dataset [42,73,74]. Thus, identifying anomaly-sensitive features is of the
utmost importance to ensure an accurate classifier; discovering new features, as shown
in Figures 4, 7, 8, 11 and 12, has the potential to further improve the classifier’s accuracy.
Future studies leveraging flow-derived features and machine learning algorithms such as
SVM or RF are needed for respiration anomaly detection.

On the other hand, convolutional neural networks (CNN) train classifiers directly on
images, eliminating the need for pre-extracted features [75]. Moreover, CNN models can
learn label-related features during training in the form of activation layers and/or heat
maps. One drawback of these features is that they become increasingly abstract in deeper
layers, as demonstrated in [76]. This trend mirrors the diminishing consistency observed in
PC curves as scales rise (Figure 4), and the transition from simplicity to complexity with
growing frequencies in scalograms in Figures 6–8. A standout feature of this study is that
we search for anomaly-sensitive features from DNS predictions with known inputs. This
ensures a clear understanding of the underlying reasons for any predicted or extracted
features, creating a direct correlation from external symptoms to internal causes. In this
sense, the sought features at multiscale, particularly at high scales, are likely to shed light
on AI-learned abstract features and thus improve the classifier’s interpretability.

In summary, the utility of the flow-derived, anomaly-sensitive features in AI-based
diagnosis can be twofold. First, the quantitative features can be incorporated with machine
learning techniques like SVM and random forest to create a classification model. Second,
the qualitative features offer insights into the correlation between flow and pathology,
potentially elucidating features that convolutional neural networks autonomously extract.

5. Conclusions

In summary, this study analyzed DNS-predicted respiratory flows to search for
reduced-dimensional parameters/features that are sensitive to the uvula vibration mode
and/or pharyngeal constriction level. The immersed boundary method was used to solve
the flow field at 0.02 ms and specify two uvula vibration kinematics. Principal component
analysis (PCA) was used to study the flow’s periodicity vs. rank (variance), wavelet-
transform-based multifractal spectra (discrete) and scalograms (continuous) were used to
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study multiscale properties, and Poincaré maps were used to study the state and chaos.
Specific findings include the following:

1. The vortex images were projected in the PC1–3 vector space as a closed orbit for those
from one vibration cycle and six closed orbits from six vibration cycles, suggesting
the periodicity and regularity of the dominant flows.

2. The regularity in PC projections decays gradually with increasing ranks, and eventu-
ally becomes random.

3. The PC projections reveal significant differences among models in the leading vector
space (PC1–3).

4. The multifractal spectra of pressures in the pharynx (P6, P7) show high sensitivity to
the uvula vibration modes; the pitching mode (K2) has a wider spectrum, with the
peak more skewed to the left than the heaving mode (K1).

5. Mean Poincaré maps of velocities in the pharynx (Vel6, Vel7) successfully separate
three pharyngeal constriction levels (M1–M3). Maxima Poincaré maps of pressures in
the pharynx (P6, P7) also show distinct clusters among M1–M3.

6. Sensitivity to anomalies differs among probes and analytical algorithms. Synergizing
measurements from multiple probes and their anomaly-sensitive features extracted
with proper algorithms can aid source localization and stage gauging.
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