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Abstract: Organisms use multi-modal, scale-dependent, sensory information to decipher their sur-
roundings. This can include, for example, recognizing the presence of con- or heterospecifics,
including a predatory threat, the presence and abundance of prey, or navigational cues to travel
between breeding or feeding areas. Here we advocate for the use of the concept of active space to
understand the extent to which an individual might be sending and receiving habitat information,
describing this as the active component of their niche space. We present the use of active space as
a means to understand ecological interactions, giving focus to those species whose active space is
acoustically defined, in particular, cetacean species. We show how the application of estimates of
active space, and changes in extent, can help better understand the potential disturbance effects of
changes in the soundscape, and be a useful metric to estimate possible adverse effects even when
stress responses, or behavioral or calling modifications are not obvious.
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1. Introduction

The application of the concept of active space to the ecological understanding of
animals is presented in this review. Active space describes the area over which sensory
information is received or exchanged by an individual. This may be an active or passive
process. The information may guide navigation, prey detection, social interactions, includ-
ing territory definition or defense and hierarchy, and mate selection. In particular, the
ideas and parameters of active space given here are in reference to highly acoustic species,
focused on cetaceans. Examples of the active space function for cetaceans, and how it
might be incorporated into conservation and management are given, outlining its role in
the ecological study of these species.

The idea of a circumferent acoustic space has been used in bird behavior and com-
munity ecology, (e.g., [1,2] and references therein) and has been applied to the concept of
the niche (sensu [3]). The idea of an acoustic hypervolume describes the reality by which
cetaceans interact with their surroundings and fulfill their life history requirements, by
engaging in information exchange through their principal sense. While whale research
is uncovering more details about ecology, habitat use, behavior, and the spatial behavior
of individuals and populations, it does not have a framework that allows practitioners to
interpret the results that rely on the whale’s sensory perception of its surroundings.

Perhaps more importantly, the management of whales is a relatively crude pursuit
that relies on marking spatiotemporal presence-absence, simple population estimates, and
a reactive patchwork of actions to, most frequently, avoid extirpation and extinction. For
management to succeed in marine environments, which are becoming much more difficult
ecosystems to track and predict, it would benefit from a hierarchical set of boundaries that
is firmly based on the individual and then integrated into the population, and the species
level. Using a framework that incorporates the concept of active space gives a species-
centric approach to understanding the potential disturbance, and efficacy of mitigation
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measures. Even when calculated in a rudimentary way, the application of active space or
range, centered around an individual, demonstrates their place in an ecosystem, and how
things might be impacted by a source of disturbance (see [4]).

Whales, dolphins, and porpoises are highly mobile apex predators that exist in a
dense, visually-opaque, three-dimensional medium. Humanity has interacted with them
extensively and, for the most part, senselessly reduced populations and degraded habitats.
An animal’s senses are the major link between an individual and its environment. The
acoustic sense is the most important for cetaceans and should be the locus of management.
They will not survive without the ability to gain access to prey, find suitable mates, or
avoid danger, all of which rely on sound perception and interpretation. Whales’ acoustic
sense defines the active space and the active con- and heterospecific and individual-habitat
exchanges key to individual and population success and survival.

2. Background

A species’ interaction with its environment can be portrayed by the concept of niche.
Using Hutchinson’s concept [3], niche space, habitat use, and observations of species-
species and species-environment interactions are centered around the individual (Figure 1).
It is not defined by anchors to a geographical location, rather it is continuously redefined
as the individual travels, with the ‘operational’ [5] or ‘realized’ niche [3] defining the area
over which active, reactive, or interactive exchanges are made (Figure 1). The word ‘niche’
comes from the French to ‘make a nest’, and describes the adaptations of an organism
to its habitat in the fullest sense, whereby an organism’s niche both describes the habitat
it inhabits and its role or function within that system. As the idea of niche is refined
(from threshold to realized, Figure 1), it increasingly represents the interrelationships of an
organism or species with other species and the environmental conditions. The broadest
scale of niche space describes an organism’s threshold niche, defined by the biotic and
abiotic conditions that it can withstand. Within this, the fundamental niche represents the
conditions that are favorable for a species’ survival and optimal for reproduction. Biotic
interactions are modified by predation or competition to form the realized niche, which
can also be referred to as the post-competitive niche space (Figure 1). The area over which
information from its surroundings is received by an organism can first be described as its
sensory volume. However, when this surpasses pure signal detection this then describes an
organism’s active space: the area over which they actively and passively send and receive
sensory stimuli that provides cues on the surrounding environment, directs behavior, and
influences affective state and arousal (Figure 1). It is a dynamic attribute of niche, and a
product of selection, learning, and signal processing, that is central to an animal’s survival.

The area or extent of the active space can be calculated theoretically, establishing
the distance over which a signal from the environment or between conspecifics could be
received and interpreted accurately by an organism (Figure 1). This extent is first defined
by the strength and type of signal, and constrained by the environment and conditions it
is projected into. Active space can also be modified by factors concerning the receiver of
the signal. For example, an individual’s sensory acumen can be defined by morphological
specializations for species or a level of familiarization for that kind of signal.

This theoretical definition of active space focuses on the principle means an individual
is capable of sending and receiving information. However, it is multi-modal sensory
information that fills the volume of the active space. The maximum range is quantified
by the dominant sensory mechanism that operates within the active space envelope, but
this can be augmented by other sensory streams. For terrestrial animals, the active space
may be delineated by visual acuity and ambient light levels, or be based on chemical
signaling of pheromone plumes (e.g., [6–9]), whereas for marine organisms the acoustic
sense dominates, influenced by background soundscape sound levels. The extent of the
active space adapts to changes in sensory inputs over time and space, shaped also by
life history, experience, and the reception and processing of environmental cues. It is the
interplay and confluence of physical and biological inputs. The physics is captured as wave
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energy, whether it be reflected light through air, acoustical energy in water, or chemical
signals emanating from hormonal secretions or digestive by-products. These are the basis of
signals, either actively sought, or passively received, by animals to interpret. The biological
aspect is somewhat captured by the definitions of the functional niche but is smaller than
an animal’s territory. It is more closely aligned to the fight or flight distance [10], or the area
over which they can actively monitor resources, navigational cues, and the presence of con-
and hetero-specifics, including predators. It goes beyond what Hofman et al. [11] described
as the sensorimotor loop of ‘active sensing’, which is the process of an animal producing
and emitting sound energy, which is modulated by its surroundings and then returned
as information to be decoded. Active space encompasses echolocation, electro-sensory,
and electro-location mechanisms (see Figure 1), and defines the area over which animals
process all incoming sensory information to direct their responses.
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Figure 1. A theoretical schematic depicting active space within the realized niche (top), and how
active space differs from sensory volume (bottom). The conditions or resources on the axes could be
environmental conditions, resource/prey abundance, or a condition of the morphology, genotype, or
phenotype of the organism at the center of the concentric circles.

Species most impacted by altered soundscapes are those whose active space is defined
by their acoustic capability. For these species, other sensory streams are limited and
contribute primarily to meso- to macro-scale information [12]. In this case, the sensory
volume describes the furthest extent over which auditory detection and discrimination can
occur. This includes both active and passive acoustic inputs, and either signaling or contact
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calling between conspecifics. Therefore, active space defines the distance between the
signaler and the receiver so that the message may be received, interpreted, understood, and
enacted in the intended way. It equally could be the distance that auto-communications,
such as echolocation in bats or odontocete whales or electro-location in fishes is projected,
and the echo of that signal returns and be interpreted. It also captures the area from which
passive reception of acoustic cues and ‘soundmarks’ [13] occurs. This could be abiotic,
environmental sounds, or acoustic projections from other species, including ‘eavesdropping’
on conspecific calls which may aid in orientation, prey location, navigation, or habitat use
choices [14,15].

Active space is a ‘time-space-organism’ conception of the environment, whereby
the extent responds to both temporal and spatial variables, and it is centered around
an individual. If defined by the acoustic sense, it could be described as the ‘dynamic
spatio-spectral-temporal acoustic habitat’ [16] or as the operational ambisonic niche of
an individual [4]. The active space extent reflects the variability in the transmission of
signals given properties of the air or water the sounds are emitted in and traits of the
signal itself. While active space refers to a three-dimensional area, it can be simplified to a
two-dimensional distance for ease of expression. This two-dimensional representation is
a snapshot or a time-averaged area [7] and designates the zone or extent that an acoustic
signal promotes a behavioral response. In its simplest form, it can be calculated as the
distance or area over which a signal could be detected by a receiver at a signal-to-noise
ratio (SNR) greater than zero. That is the received level of the signal exceeds background
ambient sound levels, or an SNR that reflects the auditory sensitivity of the species if that
is known.

Erbe et al. [17] described concentric zones of signal exchange (similar to Figure 1),
which aid our understanding of the concept of active space in the reception of biologically
important signals. The range of comfortable communication (‘effective information ex-
change’ in Figure 1) encompasses the area where vocalizations from a signaler can be heard
by a conspecific, but also the clear reception of range finding signals if echolocating. This is
the innermost range and is centered around the individual. Next, the zone of recognition
depicts the area where an individual receives cues from other species, defining a ‘predator
space’, or the extent over which cues to prey and predator presence can be monitored. Cues
from biological and physical features, termed ‘reverberation space’, define the distance
over which an organism is receiving soundscape information [17]. This forms the final, and
most extensive zone of acoustic information transfer (‘detection’ in Figure 1).

Acoustic signals and their emission, transmission, and reception are defined by fre-
quency, amplitude, length, and modulation. The higher the frequency of the signal, the
shorter the signal wavelength and so the more spatially restricted the signal propagation.
Therefore, without obstruction or interference, high-energy, low-frequency tones propagate
furthest. Thus, species that are sensitive to and utilize the low frequencies have a greater
active space than those using higher frequency signals [16,18]. A signal’s propagation
is modified by the transmission properties of the medium and the soundscape that it is
projected into (e.g., [19–21]). Soundscapes are composites of biological, non-biological, and
anthropogenic noise, which together form a complex acoustic environment that modifies
sound pathways (e.g., [22,23]).

Animals that primarily use the acoustic senses devote considerable time and energy
to communication and sonic information processing. The projection of acoustic signals can
be energetically costly and is not done without intention [24–28]. Although taxon-specific,
it can require a high aerobic capacity (as in frogs, e.g., [29]), and may be correlated with the
calling individual’s metabolic rate [24,28,30–33]. Calculations of active space from signal
transmission calculations, adapted to compare the propagation and distance of detection
under differing levels of ambient noise, have been made (e.g., see [19,21,34]). However,
the work to fully describe the active space, even in this rudimentary way, is still in the
formative stages. If refined, this could help with the understanding of the extent to which
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changes in an organism’s surroundings and soundscape could be impactful, and aid with
our understanding of the function and use of these acoustic signals.

Calling may be to signal or communicate, with the latter meaning an acoustic response
is expected (see Figure 1). They are both distinguished from acoustic cues, which lack
intention or evolutionary specialization, such as the noise made as a by-product of pres-
ence. They are also distinguished from indices, which express a property of the signaler,
that is interesting to the receiver, known also as ‘unfakeable’, ‘honest’, or ‘assessment’
signals [35–37]. The use of the acoustic mode by terrestrial animals and birds is particularly
heightened when the perceptual ability of their closest conspecifics by visual or olfactory
cues, are obscured.

The value and function of the exchange of acoustic information relies on the geograph-
ical, behavioral, social, or physiological context in which it is made. Bats, for example,
adjust their echolocation signals to localize, identify and capture prey. The dynamic control
of the direction, timing, and frequency of the biosonar projection forms a cognitive map of
the environment for navigation [38]. Bat sonar calls can also communicate the age, lactation
stage, fitness, and aggressive state of the signaling individual [38–42], by calls distinct from
those used in wayfinding or prey pursuit [43,44]. These calls have been used to signal
conspecifics in excess of 50 m from the caller. Complexity and length are variables that
distinguish birdsong from alarm or contact calls [45]. Mobbing calls to attract conspecifics
contrast with these alarm calls by typically being repetitive, having a sharp onset, and
covering a broad frequency range, whereas the high-pitched alert signals are more difficult
to localize, which may be an anti-predator mechanism [46].

Calling between conspecifics aids in reunion, via pairing or contact calls. This supports
the re-aggregation of animals that are fission-fusion species, or seemingly lone individuals.
Calls shared by a group or herd are typically stable over time and have a supportive
function during movements or re-aggregations after separation, and direct mate selection
and kin care efforts (e.g., [47–51]). Features inherent in the call project the species, group
membership, and even the identity of the caller [52–54], indicating whether it is a friend,
a known conspecific, or a ‘foe’ in immediate proximity. Acoustic niche partitioning and
separation in the call structure such as frequency and modulation is used to distinguish
sympatric species in the same area calling at the same time (e.g., frog species [55]).

Calls also establish a form of ‘social buffering’ in bonding, as seen in mammals
(e.g., [56,57] and nesting birds (e.g., [58,59]). Therefore, maintaining acoustic contact can
reduce the stress that might result from separation, especially noted for mother-young
pairs, or ameliorate any aversive experiences when conspecifics are remote [60]. Mating
choice can also be mediated by acoustic exchanges. Typically, calls promote male signalers’
attractiveness to potential female mates. Must and estrous rumbles of elephants, for
example, are specific reproduction-related long-distance projections that advertise the
physiological state of the caller for up to 4 km [61–65]. Equally, calls may be made to
advertise size, prowess, or social rank, and maintain territory and spacing, in particular by
males (e.g., [29,66–70]).

3. Active Space and Marine Mammals

Many taxa, across terrestrial and aquatic habitats, have specialized auditory systems
that receive and process acoustic information that focuses on their ecological function.
Much of the research effort involves birds and marine mammals [71] to clarify auditory
capacities, the behavioral context of acoustic use, levels of sound exposure, and noise
sources in their surrounding environments. There is an increasing body of evidence that
shows the sensitivity of fishes and aquatic invertebrates to changes in their acoustic habitat,
however, here, we use whales and dolphins as our focal species to discuss the impact
of changes in underwater soundscapes on animals, using the active space concept. By
doing so, we work toward a more animal-centric approach, and an appreciation of the
interaction of an individual with the ecosystem by defining the extent of this organism-
habitat interchange based on its functional use of acoustics (see Figure 1).
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Cetaceans are morphologically adapted to underwater sound processing, as the acous-
tic sense is their primary method to send and receive information. In the marine environ-
ment, the acoustic transmission of information is far superior to visual means, with all
cetaceans believed to be capable of sound production and reception that is critical to navi-
gation and orientation, signaling, foraging, and communication [72–74]. Marine mammals
have an increased number of auditory nerves, with two to three times the number of fibers
than their terrestrial counterparts [75].

The baleen whales more closely resemble their terrestrial ancestors in terms of their
acoustic morphology. Calls are produced by the manipulation of airflow through the
larynx [76]. In contrast, toothed whales have an asymmetrical cranium that houses a
complex system of nasal passages and fatty tissues (the melon) for sound generation and
projection of high-frequency whistles or short, pulsed biosonar calls [77]. This enables
odontocete echolocation where the returning echo of their own signals is interpreted to
create a mental map of the underwater landscape and preyscape (see Figure 1). In a
medium where visual cues are limited, whales use sound for the creation, mediation, and
maintenance of social relationships, navigation, prey location, and successful competition.
Call function may be interpreted from the season, group association and proximity, or
behavioral, emotional, or physiological state concomitant to the vocalization. However,
it is the estimation of the active space which allows us to better understand how an
animal associates with its habitat and makes sense of its surroundings from the whale’s
perspective [4,23,78].

Marine mammals use multi-modal, scale-dependent, sensory information to decipher
their surroundings. The auditory system of cetaceans allows for more complex signal
processing than land mammals [75]. Audio perception and hearing sensitivity studies
have focused on odontocetes. Audiograms have been generated through experimentation
for delphinids. Less work has been possible for baleen whale species, although their
hearing ranges span the infra- to ultrasonic range [65,79]. Sensitivity to the low frequencies
facilitates information exchange over large distances. Baleen whale vocalizations have
been recorded to travel 9–45 km from the source [80,81], yet the maximum detection range
can extend from several hundred to thousands of kilometers from the caller [82,83]. This
compares to the higher frequencies used by toothed whales, that use their acoustic sense
on micro- (<100 m) to fine scales (<5 km [12]). Passive listening and reception of sonic
cues may, however, occur over wider spaces. Whales may use magnetoreception and
somatosensory cue perception of ocean conditions on the broadest scales, but these cues
may not have the resolution needed for immediate navigation or foraging decisions [12]. Yet
simply considering sound perception when considering an individual’s active space fails to
consider the dynamic nature of the response of whales and dolphins to their surroundings,
and the variability they experience in their surroundings and in the information perceived.
The transmission of sound and the detection range of conspecific calls is dependent on
the frequency and amplitude of the signal and the environmental conditions that impact
transmission loss. The soundscape is composed of natural biological and non-biological
components, as well as additions from human actions. In marine settings, sea states, wind,
wind-driven waves, water turbulence, tides, currents, and precipitation form the abiotic
components. The biological additions come from the vocalizations and sonic by-products
of conspecifics and other organisms.

The anthropogenic noise additions result from transportation and resource use of the
oceans. The introduction of propeller-driven vessels, and now the increase in the number
and capacity of commercial vessels, has precipitated large changes in the ambient sound
levels and has shaped soundscapes even in remote regions [84,85]. The propagation of
sound energy of each of these sources changes dynamically alongside ocean conditions over
time and space. Properties such as water depth, topography, substrate, pH, temperature,
and salinity create sound speed profiles that define propagation coefficients and influence
the sonic environment (‘conditions’ on the axes in Figure 1). Ambient noise may also vary
daily and seasonally, as the dominant sound sources change over time and space. Modified
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soundscapes arise from changes in the presence of one or more of the geophonic, biophonic,
or anthrophonic variables. The increase in ocean temperature, for example, could alter a
thermocline [86] and, thus, sound absorption, as could a decrease in pH from acidifying
oceans, by attenuating and absorbing low-frequency sound in particular [86–88].

The use of the active space concept allows us to consider the impacts of changes in
the soundscape in a way that is meaningful to individuals and populations and how the
presence of noise alters auditory detection, rather than just a simple description of the
variation of sound levels. It focuses on the study of impact on the individual, and the
species, and is a dynamic means to consider the changes in pattern and process across
seascapes and time periods as they are experienced by an individual animal. Active space
encompasses the relationship of the individual to changes in its surroundings or in the
ecosystem structure, or in the mechanisms it is a part of. It may also help predict how the
animal might respond to change. By extension, this bears on the population, especially so
if it is small or sparsely distributed. An understanding of active space and signal masking
could be incorporated as a metric of impact to estimate the effectiveness of management
measures designed to reduce disturbance. A masking metric, calculated by expressing the
active space or range that an individual can maintain communication or use echolocation
under different noise scenarios as a proportion of the extent of the same signals under ideal
soundscape conditions, has been suggested as such a tool (see [4,21,89]). Other metrics,
such as the level of noise exposure that results in either temporary or permanent changes in
hearing sensitivity or physiological stress of an organism can be a means to assess impact
also but only speak to the potential changes in signal reception and processing that occur
at the receiver. The use of a metric that incorporates the concept of active space takes this
and the changes in the conditions surrounding the individual into account.

The active space defines a meaningful scale on which we consider these relationships
and responses, giving rise to a dynamic individual-based view of ecological networks and
ecosystem function. Using active space to define the extent of an individual’s conspecific
network also orients us to the spatial extent of the ‘range herd’ [18]. Despite individual
cetaceans appearing to be solitary, we need to adjust our sense of spatial extent through
active space to allow us to recalibrate the nature of the animal’s group. This helps rede-
fine the idea of herds or groups for cetaceans, where individuals maintain contact with
conspecifics over large areas, but are still afforded space, for example, to find prey with-
out competition [18]. It may be that whales are in constant contact [18], and are able to
re-aggregate via vocally mediated communication networks. It also credits the complexity
of the acoustic sensory mode for cetaceans whereby, for example, conspecific vocalizations
are distinguished from other sounds in the environment, and the use of both enables an
individual to locate prey patches or a mate.

The study of cetacean bioacoustics is pivotal for understanding the ways in which
whales and dolphins interact with each other and their environment. Within this, estimates
of active space suggest the function of the calls and their behavioral outcomes. Generally,
the larger the animal, the lower the frequency of the vocalizations [90]. Baleen whales
produce powerful, low-frequency sounds used for environmental imaging, signaling,
or communication. Blue whales (Balaenoptera musculus), the largest whale species, are
able to employ infrasonic calls below 10 Hz lasting in excess of 10 s to communicate
over long ranges [82]. Similarly, 20 Hz pulsed fin whale (Balaenoptera physalus) calls
may be audible over hundreds of kilometers, and theoretically across ocean basins if
projected at high amplitude with little absorption or external impedance from ambient
noise sources [18,80,82,91–95]. This contrasts with toothed whales, which use higher
frequencies for tonal calls and ‘clicks’ to determine closer-range targets, usually limited
to hundreds of meters [95–97]. The sperm whale (Physeter macrocephalus), the largest
toothed whale, dedicates more than a third of its mass to sound production, and has the
most intense echolocation system ranging into mid-frequencies (100 Hz to 32 kHz, [98]),
transmitting at a maximum source level of 232 dB re 1 µPa that allows its signals to project
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up to 10 km [72,95,99–101]. Generally, however, toothed whales have a smaller active space,
but potentially greater efficiency and acuity in information acquisition [95,102].

The detection range of a call is defined by its type and its parameters (frequency,
modulation, amplitude, length, inter-pulse, or call interval); the active space requires some
knowledge of the hearing threshold and critical signal-to-noise ratio (SNR) of the call.
Here we consider the extent of the active space of a call to be the distance over which
the information encoded in these parameters is transferred effectively. This differs from a
detection range estimation (or ‘sensory volume’ in Figure 1) centered around an individual
whale that might be referred to as its communication [16] or echolocation space [19]. The
calculations to define these spaces are concerned with the extent of the propagation of
the signal and attenuation only, and not the process of information exchange. We would
estimate these communication and echolocation extents using SNR > 0, and not determine
whether the received level of the signal allowed for accurate decoding. The calculation
of active space extent starts with these detection range calculations. However, in this
review, we use active space as a means of acoustic information exchange, rather than pure
detection of the signal (the ‘sensory volume’; Figure 1) through either a directed signal or
eavesdropping [103–106]. This definition requires the ability to decrypt the information that
the call contains as well as background communication noise from conspecifics [106,107].

If the signal strength of calls diminished purely through transmission loss, as outlined
by Urick [108], then the ability to discern the content of the signal from source to receiver
will diminish with increased distance only [17]. In this case, active space is defined by the
distance between the signaler and receiver with no other interfering variables. However,
other factors, including but not limited to, attenuation, ambient sound levels, directionality
of signal, orientation of signaler and receiver, and attentiveness and processing ability of
receiver also regulate the extent of an organism’s active space [22].

Functionally, call use, structure, and timing play a role in social behavior, foraging,
and reproduction [109–111]. Quantifying the attenuation of calls at a particular time and
specific location adds to what is known about the use of the acoustic sensor to support
critical life functions. For example, estimates of active space for coda echolocation signals
of sperm whales by Jacobs [34] altered the perceived use of calls. The estimated maximum
radial distance suggested that codas should not be considered long-distance signals as they
were traditionally described [112], but rather as a more spatially restricted signal to mediate
within-group relationships [34]. Coda calls have been described to display membership of
a cultural group, but knowledge of the signals’ structure suggests that their use is better
suited to communicating to closer conspecifics. This work hints at the complexity and use
of communication in structuring social systems.

Call type and structure reflect the behavioral context and motivation of the signaler,
and so transmission extent must be tied to the intended influence of the call on the receivers,
and be optimized for that function. Mate advertisement by bowhead whales, for example, is
through calls of a higher frequency than might be expected for its body size and comparison
to other baleen whales [90]. However, the distance over which these reproductive calls
are utilized is limited to well-established annual breeding areas, so propagation over a
large distance is not needed. Moreover, the use of the higher frequencies allows for greater
variation in the calls’ frequency modulation, and so likely includes a greater transfer of
information on relevant traits of the caller [90]. Changes in the extent of active space can
result from modification of the call or an altered soundscape in which the call is projected.
Indeed, call modification and compensatory mechanisms such as changes in frequency,
amplitude, and calling rate have been noted as a response to elevated background sound
levels [113–118].

The foreshortening of the cetacean active space equates to a spatially restricted ex-
change of sonic information. This may limit the extent of the cognitive maps they form
to aid in wayfinding, due to reduced acoustic cues for navigation and orientation [118], a
smaller search range for prey, and a reduced ability to use acoustic signals for prey cap-
ture, as well as changes in social group dynamics. The contact and coordination between
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individuals may be reduced [118], or indeed, the distance between individuals is reduced
to be able to maintain contact. Changes in soundscape degrade auditory cues critical for
predator or threat detection [119]. Novel or unpredictable sounds have elicited responses
similar to antipredator startle or flight behaviors (e.g., see [120–122]).

4. Anthropogenic Noise Effects on a Cetacean

Anthropogenic noise additions to underwater soundscapes have been likened to
the effect of a persistent pollutant causing habitat degradation and changes in species
distribution [123]. The most pervasive instigator of change in the marine environment
is the addition of vessel noise. However, a variety of sound sources contribute to the
underwater ambient sound field, for example, seismic air guns, sonar, and telemetry
devices [122]. The low-frequency components of these sounds can contribute to ambient
levels over millions of square kilometers in some cases [123]. For example, seismic surveys
can raise the background noise levels by 20 dB over 300,000 square kilometers continuously
for several days [124]. Seismic air gun arrays are increasingly being used for oil and gas
explorations in deep water, although currently, work focuses on the continental shelf.
Coastal waters may experience acoustic inputs from sonar, attributed to naval, fisheries, or
research use, as well as acoustic deterrents or harassment devices.

The introduction of motorized commercial shipping over the last century precipitated
the largest change in ambient noise particularly in low frequencies. Both local and global
scales are impacted by the expansion of the global marketplace [85]. The sound is generated
primarily from propeller cavitation and propulsion noise from the engine, gears, and
machinery, and is predominantly in the 20–200 Hz range from larger vessels, however, it can
radiate up to 100,000 Hz [84,116,125–127]. Studies monitoring the trends in ambient noise
have found that there has been an overall 10–12 dB increase in noise less than 80 Hz since the
1960s, which is coincident with the doubling of the global shipping fleet [123,125,127,128].

Vessel presence creates stress for whales [128–143]. Behavioral responses have been fre-
quently observed (e.g., [134,137–142], with implications for group size and cohesion [143,144].
A number of studies that have assessed the effect of vessel noise on marine mammals
(e.g., [129,144–148], typically consider the direct and indirect impact of a single noise
source in proximity to individual animals. Research efforts focused on determining distur-
bance effects from increased noise and vessel presence frequently use surface observations
(e.g., [84,124,137,149–160]). Behavioral responses may be subtle or nuanced, and not be
immediately noted as readily as changes in swimming/diving or vocalizing. Whales may
also be negatively impacted by vessels without any obvious changes in behavior [161,162].
Physiological responses to stress have not been fully defined for cetaceans, although altered
vital rates and levels of stress hormones suggest disturbance [129,163,164]. Considered
together, the overt expressions of disturbances and more covert stress responses may change
whale distributions and habitat use, reproductive success, and survival [123,124,161–167].
For species, groups, or individuals that are already vulnerable, this is a particular concern.

Active space calculations are a means to assess the potential acoustic disturbance from
noise additions to the soundscape (e.g., see [4]). They may also support an estimate of
acoustic stress on an individual when changes in behavior are not observable, for example
when whales are willing to withstand disturbance to continue to exploit prey reserves.
Habitat use by whales may continue despite disturbance, representing a trade-off between
aversion and fulfilling an energetic need. Moreover, avoidance behaviors such as altered
swimming patterns, and changes in calling have predominantly been classed as short-
term, sub-injurious [123], and sub-lethal effects. That may or may not be true as we know
little about the accumulation of stress and thresholds that may be breached and create
significant consequences.

Estimating reductions in the extent of an animal’s active space provides some of
the fundamental information needed to understand the consequences of changes in their
sonic environment on a biologically meaningful level. Establishing the effect of short-term,
small-scale, high-intensity, acute exposures to increased noise on marine mammals, with
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regards to injury and masking is the focus of much of the research, although long-term,
larger-scale chronic low-intensity noise exposure may be more detrimental to individuals
and populations [16,18,84]. Acoustic masking is a failure to recognize the occurrence of
a stimulus or to not distinguish a signal of interest, as a result of interference from other
noise. It also describes a reduction of active space. It occurs when elevated ambient noise,
or the presence of a noise source in the sound field, obscures or fully erases the audibility
of signals of interest. Masking as a result of noise from human activities is an increasing
threat to marine life, particularly low-frequency specialists such as baleen whales.

Auditory masking is the most widespread impact on cetaceans as a result of noise
additions [17,84]. Calculations to assess the potential for masking or proportional changes
in active space have been undertaken for several whale species and presented as a metric of
effect or disturbance. Acoustic masking can impact the extent to which audio detection and
discrimination of acoustic cues are received from the soundscape, termed as their ‘reverber-
ation space’ [16], or more specifically a loss of communication and echolocation space.

An assessment of the change in active space and the repercussions of soundscape
changes on individuals and populations occur over a wide range of animal taxa
(e.g., [84,118,123,124]). It considers more than the reduced capacity to communicate
(e.g., [168–173]), but also a whale’s ability to gather acoustic information pertinent to
its success and survival, including orientation when traveling (e.g., [169,170]) or foraging
(e.g., [147,171]). To estimate the effect, researchers have sought to show the change in the
absolute extent of call reception, or as proportional reductions of this distance compar-
ing the whales’ calling ranges under noise conditions to those during ideal or historical
conditions [21,118].

Payne and Webb [18] showed the potential for masking in one of the first descriptions
of reduced call propagation distance. They demonstrated substantial reductions in call
range, and, therefore, communication space, under moderate noise conditions. In doing so,
were unknowingly the first to apply the concept of active space in a simplistic manner to
understand the impact. It was the first study to highlight the importance of sound to whale
species, and the need for regulation and management of noise emissions. Clark et al. [16]
demonstrated the potential of masking for different species of the same sound source,
dependent on the frequency range. This highlighted that when taking a species-centric
approach, the consideration of impact needs to be driven by sounds pertinent to each
species. This species-specific approach was also taken in the analysis by Hatch et al. [118],
who showed that North Atlantic right whale (NARW, Eubalaena glacialis) communication
space could be reduced by nearly 70% on average when compared to a pre-industrial
ocean noise level. These estimates of effect are made more biologically relevant by focusing
on the frequencies that are pertinent to the species that are affected, referencing their
communication and/or echolocation frequencies, and understanding the behavioral and
social consequences of the masking [21]. The zone of masking must then be applied to
the estimates of active space to assess the consequences for behaviors that are mediated
by acoustics. Signal frequency is species-specific. Vocalizations are also likely context-
dependent. The ratio of source level to ambient amplitude, the critical ratio (CR), is
decisive in determining if the signal will be discriminated from background noise by
the intended receiver [22,90,172–174]. Properties of both the signal and the transmitting
medium, including ambient noise levels, define the active space over which a signal will
instill the intended response.

Taking this approach changes the consideration of altered soundscapes from short-
term, acute noise, to chronic additions that degrade the perception of vital acoustic cues.
Few studies have considered the repercussions of animals’ soundscape changes on a
landscape scale and/or over long time periods. This is needed, however, to be able to
consider the cumulative and aggregate effects of exposure on individuals and populations
as well as the wider ecological consequences, in particular habitat use.
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5. Application of Active Space in Ecological Study

Pattern and scale are central themes in ecology. There is no single natural scale that
describes the forces that drives life histories, competition pressure, or species interactions
(e.g., [174]). Influences on the scale of the active space will have impacts on animal behavior,
dispersal, and mechanisms that form a community and dictate success. The observable
aspects of behavior are driven by the biological imperative to find food and mates and
avoid predators. Individuals respond to cues related to these needs on different spatial and
temporal scales, but predominantly within the constraints of their active space extent. As
described before, active space is a means to describe the operational and active component
of an animal’s niche (Figure 1), akin to the spatially and temporally distinct individual-
centered ‘hypervolumes’ described by Hutchinson [3]. Comprehension of active space will
also lead us to realize our underestimation of how seemingly distant influences could have
implications on whale behavior.

Active space is a key component of soundscape ecology, a more holistic means to
understand sound. Most studies of active space and application of it as an ecological tool
are still based on the theoretical (essentially volumes estimated from call detection radii
with adapted SNR), or perhaps empirical manipulation and playback experimentation
(see [34]). Clear responses by animals to sounds of a particular received level, the sensitivity,
tolerance, and perhaps even habituation to the noise source are typically not well defined.
However, as discussed, behavioral responses can be subtle and may be imperceptible
or deemed not significant to a human examiner. Something like the masking metric of
proportional reduction from a minimum ambient [21] or historic sound level (e.g., ‘ancient
ambient’ [118]) is a useful means to compare the impact over time and space.

To understand the effect of changes to soundscapes on wildlife, the fundamental unit
and scale of study should be defined by active space. It provides a means to understand
broad-scale changes on the individual, population, and species levels that are organism
centered, directed, timed, and spaced. It also transforms the presence of a whale from point
data to a radius of energy in a soundscape map; representing the area where information
can be both sent and received. It moves away from the idea that animal behaviors and
responses are arbitrary or random, but shows the acoustic sense to be the mediator for all
key behaviors and social interactions.

Moreover, it highlights the need for a widespread, coordinated international response
in management. Our ability to interpret meaning and information encoded in calls is
very limited, but active space at least allows us to consider the use of the acoustic modal-
ity in an ecologically relevant way. To understand the full impact of chronic noise pol-
lution on marine mammals, we will need to know the level at which behaviors and
predator-prey interactions are disturbed and when this becomes significant to a population
(e.g., [123,148,174]). Until now, noise maps overlaid with maps of important habitats have
supported management action [175], whereby high acoustic energy spaces and areas of high
ecological importance could be identified as ‘hot spots’ for protection or mitigation [123].
Much is still to be learned about the call repertoires and function, and their structural
features before acoustics can be used as an indicator or predictor of change. Exposure
level quantification and thresholds have been suggested, although, so far the adaptation of
their application has been based on a limited criterion, only taking into account whether
the animal is mysticete, odontocete, or pinniped, and if the noise source is impulsive or
continuous [176].

Several nations have committed to controlling underwater noise pollution to limit
disturbance to marine life. These, however, are typically single sources, not an attempt to
regulate cumulative noise or form ecologically relevant ‘noise budgets’ [177]. It is difficult
to translate this and the concept of reduced active space through masking into tangible
quantitative goals and operational targets which can be implemented to inform regulation
or mitigation [178].

The biological impact of disturbances, alone or cumulatively in time and space, can
only be assessed when we are able to determine when acoustic stressors and changes in
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soundscapes become ecologically relevant; the application of the concept of active space in
determining effect may be the first step in being able to do that.
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