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Abstract: The control of decentralized velocity feedback on curved aircraft plates under turbulent
boundary layer excitations is numerically investigated in this paper. Sixteen active control units are
set on the plate to reduce the vibration and sound radiation of the plate. The computational results
from the two methods are compared to verify the accuracy of the numerical model. The plate kinetic
energy and the radiated sound power under turbulent boundary layer and control unit excitations
are analyzed. The influences of control unit distribution, plate thickness and curvature on radiated
sound are discussed. Unlike a flat plate, the control of the lower-order high radiation modes of a
curved plate under TBL excitations is critical since these modes predominate the sound radiations.
The control of these modes, however, is sensitive to the ratio of the stiffness associated with the
membrane tensions to the stiffness associated with the bending forces. This ratio implies that the
plate curvature and the thickness play an important role in the control effect. When the plate is
thinner and the radius is smaller, the control is less effective.
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1. Introduction

The noise problem caused by the interaction between the turbulent boundary layer
(TBL) pulsating pressure and aircraft side plates is one of the most representative problems
in vibro-acoustics [1,2]. Many efforts carried out on the problem of TBL-induced structural
noise can be summarized in three aspects. One is wavenumber frequency spectrum
models quantifying the TBL excitations. Some famous semi-empirical formulations, such as
Corcos [3], Efimtsov [4], Williams [5] and Chase [6,7], have been obtained by fitting a large
amount of experimental data and statistical turbulence theory. The other one is about how to
predict the vibration and radiated noise of a plate caused by TBL excitations. Graham [8,9]
proposed a model to predict the TBL-induced noise for aircraft side and trim plates, in
which the modal excitation terms are expressed analytically, and the advantages of different
wavenumber frequency spectrum models induced by TBL are discussed. Liu et al. [10]
predicted the TBL-induced noise of a stiffened plate using the receptance method. It
was found that the stiffeners perpendicular to the direction of incoming flow have an
obvious effect on the radiated noise. Rocha and Palumbo [11] investigated the sensitivity
of sound power radiated by aircraft plates to TBL parameters, and discussed the findings
by Liu [12] that ring stiffeners may increase TBL induced noise radiation significantly.
Liu [13] further compared TBL-induced vibrations with the in-flight measured data of
P180, where a simplified double integral for the calculation of the modal excitation term
is provided. The third aspect is the passive methods for the control of the radiated noise.
It has been reported that passive damping is always effective in controlling the vibration
and noise caused by TBL. However, the reduction in vibration level is more significant in
comparison with the radiated noise level, which implies that the radiation efficiency of
the plate increases with increasing damping treatment. Kou et al. [14] described formulas
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to include the influence of structural damping on the radiation efficiency of finite and
infinite plates. Thus, the phenomenon that the radiation efficiency of a plate increases
with the increase in the damping treatment is explained. Kou et al. [15] also concluded
that the modal averaged radiation efficiency increases significantly with the increase in
the convection velocity below the hydrodynamic coincidence frequency, and the damping
effect is more significant with the increase in the flow velocity.

In addition to passive methods, active methods have great potential for the control of
TBL-induced plate noise. Among them, the control strategy based on distributed velocity
feedback has received much attention for acoustically or TBL-induced noise [16,17]. The
simulation results given by Elliott et al. [18] and Jayachandran et al. [19] show that the
distributed velocity feedback is unconditionally stable in a large gain coefficient range,
which is a relatively robust control method. However, the force driver needs some large
mass to generate the reaction force, and when a large force is required in the low frequency
range, the force driver will be relatively large and heavy. In practice, it is more convenient
to use piezoelectric patch actuators integrated with plates. Gardonio et al. [20–22] used
piezoelectric patch actuators and acceleration sensors to analyze in detail the control effect
of distributed velocity feedback control and the existence of optimal gain coefficient from
theoretical and experimental perspectives. These works further show that the distributed
velocity feedback control is easy to implement and the control effect is approximately
optimal. Since it is usually not convenient to obtain the physical information of the structure,
it is difficult to obtain the optimal gain coefficient. To solve this problem, Cao et al. [23,24]
proposed the concept of the virtual absorption energy of piezoelectric sheets, which uses
the maximum virtual absorption energy to obtain the best gain coefficient and is easier
to measure compared to kinetic energy or acoustic radiation power. Distributed velocity
feedback control is not only applicable to diffused sound field excitation but also to random
excitation and TBL excitation. Rohlfing et al. [25] specified the mesh density of finite cells
on the plate and investigated the effectiveness of negative feedback control of uniform and
light sandwich panels under random excitation and TBL excitation. The control effects
of a series of ideal speed negative feedback control circuits on a homogeneous plate and
a lightweight sandwich plate are compared. Alouf et al. [26] developed a new active
control mechanism for aircraft cabin windows using an active structural acoustic control
strategy that provides a significant improvement in acoustic attenuation performance
at low frequencies. The effects of voltage, actuator position and number on the sound
transmission characteristics were analyzed. Yuan et al. [27] investigated the dispersive
velocity feedback control of thin plates under TBL excitation based on the newer TBL
semi-empirical model, and the results showed that the pre-stress effect and hydrodynamic
overlap have a large effect on plate vibration, which has an important influence on the
plate vibration acoustic performance and the selection of the number of control channels.
Ma et al. [28] investigated the dispersive velocity feedback control of a ribbed plate using
inertial actuators and discussed the effect of feedback gain and number of actuators on
control performance, further demonstrating the existence of an optimal gain for dispersive
velocity feedback control.

Typical aircraft plates generally exhibit unidirectional curvature. A typical case is
that when an aircraft plate is excited by TBL, the direction of air velocity is perpendic-
ular to the curved direction of the plate. The sound radiation properties of curved and
flat plates can be significantly different. As pointed out in reference [10], the curvature
results in the convergence of resonance frequencies of the plate led by the interaction of
bending forces and membrane tensions in the shell. The convergence not only increases
the modal density of the curved plate around the ring frequency but also increases the
sound radiation efficiency of these modes by shifting them to a relatively higher frequency.
Although the active control of flat plates can be found in many works in the literature,
there are few studies on the acoustic characteristics of active control of curved plates under
TBL excitations. Graham [8] studied the induced noise of aircraft wall panels under TBL
excitation, elucidating that the presence of panel membrane tension causes a shift in the
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lowest resonant frequency to high frequencies. Nourzad et al. [29] used inertial actuators
to control the vibration and radiation of doubly-curved plates and analyzed the effect of
curvature on the vibration response of doubly curved plates. In this paper, the control effect
of a curved thin plate under TBL excitations is numerically investigated. Sixteen active
control units are scattered on the plate, and each active control unit includes a piezoelectric
actuator, an acceleration sensor, and a feedback actuator. The kinetic energy and radiated
sound power of the plate are discussed in detail for different curved plate thicknesses,
bending curvatures, and active control unit distribution.

2. Mathematical Model and Theoretical Calculation

The decentralized velocity feedback control of a simply supported plate through active
control units is illustrated in Figure 1, where the plate can be flat and curved, with an air
medium on either side of the plate and random TBL excitations on one side of the plate.
Sixteen active control units are uniformly distributed on the rectangular plate. The element-
based model divides the plate into a series of small rectangular elements, the dimensions
of which are lxe = Lx/(4M), lye = Ly/(4N), where Lx and Ly are the length and width
of the plate, respectively, and M and N are the highest number of calculated modes. The
mass density of air is ρ0 = 1.21 kg ·m−3, and the speed of sound is c0 = 340 m · s−1.
The perturbations acting on the plate are assumed to be harmonics. For the sake of
brevity, the time-harmonic term is omitted from the plural form of velocity and force, so
ẇ(t) = Re{ẇ exp(jωt)} and f (t) = Re{ f exp(jωt)} are replaced by ẇ and f , respectively.

Figure 1. Decentralized feedback control of plate vibration under TBL excitation.

The modal summation method is used to solve the acoustic and vibration response
of a simply supported rectangular thin plate under turbulent boundary layer excitation.
The cross-power spectral density function of the velocity response of the plate at any two
points r1 and r2 is defined by [13]

Svv(r1, r2, ω) = ω2
∫

A

∫
A

ds1ds2Spp(s1 − s2, ω)H∗(r1, s1, ω)H(r2, s2, ω), (1)

where ω is the angular frequency, Spp(s1 − s2, ω) is the mutual power spectral density
function of the TBL excitation at two points s1 and s2, H(r, s, ω) is the frequency response
function, s is the excitation point, and r is the response point, which can give by the form
of modal summation as given below:

H(r, s, ω) =
M

∑
m=1

N

∑
n=1

Wmn(ω)φmn(r)φmn(s), (2)
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where (m, n) is the number of modes in the horizontal and vertical directions. The character-
istic function φmn(r) is orthogonal and satisfies the same boundary conditions as the plate.
For the rectangular simply supported plate, the characteristic function is expressed as

φmn(r) = sin
mπx

Lx
sin

nπy
Ly

, (3)

the modal displacement Wmn(ω) is given by Equation (4)

Wmn(ω) =
4

ρtA(ω2
mn(1 + jη)−ω2)

, (4)

where ms is the surface density of the plate, A is the area of the plate and η is the loss factor.
For the plate, the (m, n) th mode resonance frequency is

ω2
mn =

Db
ms

[(
mπ

Lx

)2
+

(
nπ

Ly

)2
]2

, (5)

for a curved plate, and the (m, n) th mode resonance frequency is [30]

ω2
mn =

Db
ms

[(
mπ

Lx

)2
+

(
nπ

Ly

)2
]2

+
E

ρR2
y

[
1 +

(
nLx

mLy

)2
]−2

. (6)

where Db is the stiffness of the plate, E is the Young’s modulus, ρ is the density of the plate,
and Ry is the bending curvature of the plate in the y-axis direction.

For calculating the response and radiation of decentralized velocity feedback control
plates, element-based models are more commonly used [25]. It can be considered that
each small rectangular unit on the plate has the same transverse vibration velocity, which
is equal to the transverse vibration velocity of its center point ve(ω), and the transverse
vibration velocity picked up by the velocity sensor is vc(ω). The above two variables can
be written in vector form

ve(ω) =


ẇe1(ω)
ẇe2(ω)

...
ẇeR(ω)

, vc(ω) =


ẇc1(ω)
ẇc2(ω)

...
ẇcS(ω)

, (7)

where R is the total number of small units divided on the plate, and S is the number of
active control units. The force of the TBL at the center point of each small element on the
plate as well as the force of each control point can be expressed as a vector

Fe(ω) =


fe1(ω)
fe2(ω)

...
feR(ω)

, Fc(ω) =


mc1(ω)
mc2(ω)

...
mcS(ω)

. (8)

The closed-loop velocity feedback block diagram is shown in Figure 2. Assuming
that the system is linear, the response of the TBL excitation plate can be linearly super-
imposed with that of the active control unit excitation plate. Therefore, the transverse
vibration velocity of the center point and control point of each small unit on the plate can
be expressed as

ve(ω) = Yee(ω)Fe(ω) + Yec(ω)Fc(ω), (9)

vc(ω) = Yce(ω)Fe(ω) + Ycc(ω)Fc(ω), (10)
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where Yee is the velocity/force mobility matrix of the center point of the small element
excited by TBL; Yec is the velocity mobility matrix of TBL excitation to the control point.
Both have the same form

Yr,k(ω) = jω
M

∑
m=1

N

∑
n=1

φmn(xr, yr)φmn(xk, yk)(
ρhlxly/4

)
(ω2

mn(1 + jη)−ω2)
, (11)

where Yce is the velocity/moment mobility matrix of the center point of the small element
excited by the piezoelectric plate; Ycc is the velocity mobility matrix of the piezoelectric
sheet excited to the control point. Both have the same form

Yr,s(ω) = jω
M

∑
m=1

N

∑
n=1

4 k2
m+k2

n
kmkn

sin km lsx
2 sin kn lsy

2 φmn(xs, ys)φmn(xr, yr)(
ρtlxly/4

)
(ω2

mn(1 + jη)−ω2)
, (12)

where (xs, ys) is the position of the piezoelectric chip. lxe and lye are the length and width of
each small element respectively, and the size of the piezoelectric sheet is
lsx × lsy = 25 mm× 25 mm.

Figure 2. Feedback control block diagram.

When the feedback control unit acts, the speed of the control point is controlled, so the
feedback control force is

Fc(ω) = −hvc(ω), (13)

where h is the gain coefficient.
Bringing Equation (13) into Equation (10), the velocity at the control point after feed-

back control is obtained as

vc(ω) = (I+hYcc(ω))−1Yce(ω)Fe(ω), (14)

the control force in Equation (13) can be written as

Fc(ω) = −h(I+hYcc(ω))−1Yce(ω)Fe(ω), (15)

substituting it into Equation (9), the transverse vibration velocity of the center point of the
small unit on the rear plate can be obtained as follows:

ve(ω) = Gee(ω)Fe(ω), (16)

where Gee(ω) is the velocity mobility matrix of the center point of the small unit on the
plate after the control is applied, expressed as

Gee(ω) = Yee(ω)− hYec(ω)(I+hYcc(ω))−1Yce(ω). (17)
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The response of the TBL excitation plate based on the model proposed by Corcos [3]
has been widely used to describe TBL excitation. According to the Corcos model, the
cross-power spectral density of the surface pressure excited by TBL along the x-axis is

STBLi,j(ω) = φpp(ω) exp

(
−γ1ω

∣∣rxi,j
∣∣

Uc
+
−γ3ω

∣∣ryi,j
∣∣

Uc
+
−jωrxi,j

Uc

)
, (18)

where Uc is the convective velocity of TBL, where Uc = 0.7 ·U∞, U∞ is the flow velocity of
air. The values of parameters and in the equation are determined from experimental data
and are dimensionless numbers. Here, γ1 = 0.116 and γ3 = 0.7 given by Finnveedn [31]
are used. The rxi,j is the lateral distance between the center point of the ith cell and the
center point of the jth cell, and the ryi,j is the longitudinal distance between the center point
of the ith cell and the center point of the jth cell.

The element-based model solves for the power spectral density of the vibration
velocity as

Svv(ω) = Ae tr
[
GH

eeS f f Gee

]
, (19)

where Ae is the area of each small cell.
The kinetic energy power spectral density of the plate can be expressed as

SEE(ω) =
me

2
tr
[
GH

eeS f f Gee

]
, (20)

where me is the mass of each small element, Gee(ω) is the velocity mobility matrix of the
center point of the small element on the plate after the control is applied as mentioned
above, tr[] represents the trace of the matrix, and S f f is the power spectral density matrix
of each small element under TBL excitation, which is given by Equation (21):

S f f (ω) = A2
e ΦppSpp(ω), (21)

the Ae is the area of each small unit, and the Φpp is the high-power spectral density of the
pulsating pressure in the turbulent boundary layer.

The radiated sound power is given by Equation (22):

SPP(ω) = 2 tr
[(

GH
eeS f f Gee

)
Rrad

]
, (22)

the Rrad is the radiation coefficient matrix [32], and the specific form is as follows:

Rrad =
ω2ρ0 A2

e
4πc0

sin
(
k0ri,j

)
k0ri,j

, (23)

the k0 = ω/c0 is the number of waves in the air, but on the diagonal of the radiation matrix,
because of ri,j = 0, the terms on the diagonal of the radiation matrix are meaningless.
L’Hopital’s rule can be used to solve it, namely lim

x→0
sin x

x = 1.

3. Model Validation and Response and Radiation of Plates

To validate the model, an aluminum plate with the same parameters and excitations as
in reference [22] is considered. The length of the plate is 0.278 m, the width is 0.247 m, the
thickness is 1.6 mm and the flow velocity is 225 m · s−1. The physical property parameters
of aluminum plate are shown in Table 1. The kinetic energy and radiated sound power of
the plate due to TBL excitations are calculated and shown in Figure 3, where a comparison
with the modal summation method is provided. In the frequency range calculated, the
results based on the element model in this paper are only slightly lower than those of
Gardonio [25], and in very good alignment with that of the modal summation method [13].
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This is due to the fact that the self-power spectral density of the TBL pulsation pressure is
ignored in the calculations. These results verify the correctness of the current model.

Table 1. Physical parameters of aluminum plate.

Parameter Symbol Value

Mass density ρ 2720 kg·m−3

Young’s modulus E 70 GPa
Poisson’s ratio ν 0.33

Loss factor η 0.02

Figure 3. Comparisons of the plate kinetic energy and sound radiation under TBL excitation;
(a) kinetic energy, (b) radiated sound power; element-based [25], modal summation [13].

When 16 active control units are uniformly distributed on the plate, the kinetic energy
and radiated sound power of the plate reduce obviously with the increase in gain coefficient,
as shown in Figure 4. In Figure 4, a comparison of different gain coefficients and different
passive damping is also provided to show the equivalent damping mechanism of the
velocity feedback control. In the frequency range of 50−1000 Hz, the control effects at gain
coefficients of 5, 10 and 20 agree very well with the effects at loss factors of 12.5%, 23% and
45%, respectively. This reveals that the velocity feedback control can be regarded as a form
of active damping, and the plate is heavily damped after the control.

Figure 4. Kinetic energy and radiated sound power of a flat plate under TBL excitation due to
different gain coefficients (solid line, element-based model) and different loss factors (dashed line,
and modal summation method); (a) kinetic energy, (b) radiated sound power.

Next, an aluminum plate is considered, in which the length of the plate is 0.55 m, the
width is 0.5 m, the thickness is 1 mm, and the loss factor is assumed as 0.01. To illustrate
the influence of excitation position, the placements of two types of active control units
are considered, as shown in Figure 5. The squares in Figure 5 represent the positions of



Acoustics 2023, 5 421

active control units when the 4 rows and 4 columns are uniformly distributed, and the
corresponding response and sound radiation of the plate are shown in Figure 6(a1,a2). The
circles mark the excitation positions slightly off from the squares to avoid the influence
of the nodal lines of modes, and the results are shown in Figure 6(b1,b2). Below 200 Hz,
the kinetic energy and radiated acoustic power of the plate are well controlled when
the excitation positions are different. As the frequency increases, the control effect of
uniformly distributed active control units becomes less effective. The poorly controlled
resonant frequencies in Figure 6(a1,a2) correspond to the plate modes (5, :), respectively.
The active control unit positions correspond exactly to the nodal lines of these high order
modes, making the control of these modes ineffective. When the excitation positions are
slightly deviated from the modal node line, the control effect in the higher frequencies is
significantly improved, as shown in Figure 6(b1,b2).

Figure 5. Layout position of active control units on the board: � uniform arrangement;© slightly
off the uniform arrangement; The blue star is the origin of the Cartesian coordinate system, and the
arrow points to the x-axis.

Figure 6. Cont.
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Figure 6. Kinetic energy and radiated sound power due to uniform and non-uniformly arranged
actuators; (a1,a2) uniform arrangement, (b1,b2) slightly off the uniform arrangement; (a1,b1) kinetic
energy, (a2,b2) radiated sound power.

4. Response and Sound Radiation of Curved Plates

In comparison with that of a flat plate, it is well known that a curved plate will result
in significant influence on the radiated sound around its ring frequency. Therefore, the
effect of curvature on velocity feedback control results is of interest. In this section, several
curved plates with different curvatures and thicknesses are considered, as shown in Table 2.
The 16 active control units are evenly arranged in 4 rows and 4 columns on the plate. The
control results with different gain coefficients are illustrated in Figures 7–9.

Table 2. Structural parameters of curved plates.

Curved plate Lx (m) Ly (m) t (mm) Ry (m)

C1 0.55 0.5 1 1
C2 0.55 0.5 1 2
C3 0.55 0.5 1 3
C4 0.55 0.5 1.6 2
C5 0.55 0.5 2 2

Compared with the flat plate in Figure 6, the vibration and radiated sound of the
curved plate are significantly different, as shown in Figure 7(a1,a2). When the active control
is not applied, it is evident that the presence of curvature reduces the plate response at low
frequencies, but the radiated sound power near the ring frequency increases significantly.
In particular, due to the curvature, the mode (1,1) moves to the higher frequency and
dominates the sound radiation. Similar to the plate, distributed speed feedback is better for
control below 200 Hz. However, the control is no longer effective when the frequency is
above 200 Hz. Especially for the mode (1,1), the radiated sound power does not decrease
significantly with the increase in the gain coefficient. Even if the active control unit deviates
slightly from the uniform distribution to avoid the influence of the modal nodal line
elements, the control effect in the (1,1) mode is not satisfactory, as shown in Figure 7(b2).

If the radius of curvature is increased, as shown in Figure 8 for the curved plate C2
and C3, the mode (1,1) is shifted toward lower frequencies, while the effect of control
is improved. When the radius of curvature is 1 m, the sound power of the mode (1,1)
can reduce by about 6 dB after control, and when the radius of curvature is 3 m, it can
reach 13 dB. These results imply that the control effect is related to the radius of curvature.
When the radius of curvature is large, then a curved plate is close to a flat plate, while
when the radius of curvature is small, the control is not very effective for lower-order
dominated modes.



Acoustics 2023, 5 423

Figure 7. Kinetic energy and radiated sound power of the curved plate C1 for uniform and non-uniform
distribution of actuators; (a1,a2) uniform arrangement, (b1,b2) slightly off the uniform arrangement;
(a1,b1) kinetic energy, (a2,b2) radiated sound power.

Figure 8. Kinetic energy and radiated sound power of the curved plate C2 and C3 for uniform distribution
of actuators; (a1,a2) with a radius of curvature of 2 m, (b1,b2) with a radius of curvature of 3 m; (a1,b1)
kinetic energy, (a2,b2) radiated sound power.

In addition, the results for curved plates with different thicknesses are shown in
Figure 9. When the radius of curvature is 2 m and the thickness is 1 mm, the control effect
for the mode (1,1) can reach about 8 dB, and when the thickness is 1.6 mm and 2 mm, the
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sound power of the mode (1,1) can reduce 9 dB and 14 dB, respectively. These imply that
the control effect is also sensitive to the thickness of the curved plate.

Figure 9. Kinetic energy and radiated sound power of the curved plate C4 and C5 for uniform
distribution of actuators; (a1,a2) with a thickness of 1.6 mm, (b1,b2) with a thickness of 2 mm;
(a1,b1) kinetic energy, (a2,b2) radiated sound power.

To further explain the above control effect on the curved plate, the characteristic
frequency of the curved plate described in Equation (6) can be rewritten as

ω2
mn =

1
ms

[(
mπ

Lx

)2
+

(
nπ

Ly

)2
]2(

Db +
Et
R2

y

k4
m

(k2
m + k2

n)
4

)
, (24)

the first term in the second bracket is the stiffness corresponding to the bending forces, and
the second term is the stiffness corresponding to the membrane tensions, i.e.,

Dm =
Et
R2

y

k4
m

(k2
m + k2

n)
4 . (25)

Therefore, the equivalent total stiffness of the curved plate is

Dtot = Db + Dm = Db +
Et
R2

y

k4
m

(k2
m + k2

n)
4 , (26)

and now, the ratio between the second term and the first term in Equation (26) is defined as
the χ

χ =
Dm

Db
=

Et
DbR2

y

k4
m

(k2
m + k2

n)
4 . (27)
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The ∆Spp,ω(1,1) indicates the control effect of the active control units at mode (1,1) and
is defined as

∆Spp,ω(1,1) = Spp,ω(1,1)(h = 0)− Spp,ω(1,1)(h). (28)

The existence of the membrane tension of a curved plate not only increases the radiated
sound power of mode (1,1) significantly but also weakens the control effect. To describe this
phenomenon, the variation of the control effect with χ and the gain coefficients h for the
mode (1,1) is shown in Figure 10. In Figure 10a, the variation of χ is caused by the change
in thickness, while in Figure 10b, the variation of χ is caused by the change in radius of the
curvature. It can be concluded that the overall trend in control effectiveness decreases as
the ratio χ increases. When χ is less than 70, the control is effective and mostly greater than
10 dB. When χ is larger than 70, the control is less effective, and when it is greater than
100, the control effect can be less than 5 dB. These results indicate that the control effect is
sensitive to the ratio of stiffness related to the membrane tensions to stiffness related to the
bending forces.

Figure 10. Control effect of the radiated sound power varies with χ and the gain coefficient. where χ

in (a) is caused by the thickness change of the curved plate, and χ in (b) is caused by the curvature
change of the curved plate.

Table 3 shows the χ values of the first 12 modes when the thickness is 1 mm, 1.6 mm
and 2 mm, respectively. It can be seen that the χ values at modes (1,1) and (2,1) are
significantly greater than those of the other modes, and this is caused by the stiffness related
to the membrane tensions and expressed in Equation (24). Table 3 also shows that the χ
values decrease as the thickness of the curved plate increases. The value decreases from
105.28 to 26.32 when the thickness increases from 1 mm to 2 mm. According to Figure 9(a2),
the larger the value of χ, the less effective the active control is. When χ is 105.28, the control
of the gain factor from 60 to 120 becomes progressively worse, which explains why the
curved plate in Figure 7(a2) does not control well at higher gain coefficients. It can be seen
that the existence of curvature makes the plate in the bending cross-section of the membrane
stress, the membrane stress along the direction of plate bending uniformly distributed,
increasing the stiffness of the bending plate in the low-frequency region, and the lower the
frequency, the more significant the increase in stiffness caused by the membrane stress at
the resonance frequency.

The above study shows that the magnitude of χ has a large effect on the control effect
of the active control unit of the curved plate. The modes corresponding to larger values of χ
are more sensitive to changes in the gain coefficient and an optimal gain exists. To illustrate
the optimal gain for controlling the sound power of the curved plate, Figure 11 shows a
three-dimensional plot of the control effect versus frequency and gain coefficient. The left
figure shows a three-dimensional view of the radiated sound power of the curved plate,
and the right figure is the left view of the three-dimensional view showing the radiated
sound power of the (1,1) mode. The radiated sound power of the curved plates shows
a trend of decreasing and then increasing with the increase in the gain coefficient. For
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the mode (1,1), the curved plate with the 1 mm thickness has the best control effect at a
gain of 58, and the maximum sound reduction is about 9 dB. The thickness of the 1.6 mm
curved plate reaches its best at a gain of 140 and has about 16 dB sound reduction, and the
curved plate with 2 mm thickness at the gain of 315 achieves its biggest sound reduction
about 20 dB. The above results show that as the thickness of the curved plate increases, the
corresponding optimal gain increases, and the control effect of the active control unit at the
optimal gain is significantly improved.

Table 3. χ as a function of thickness and curvature.

Modal Order Number
The Thickness of the Curved Plate

1 mm 1.6 mm 2 mm

(1,1) 105.28 41.12 26.32
(2,1) 54.53 21.30 13.63
(3,1) 18.72 7.31 4.68
(4,1) 7.33 2.86 1.83
(1,2) 2.16 0.84 0.54
(2,2) 6.58 2.57 1.64
(3,2) 5.54 2.17 1.39
(4,2) 3.41 1.33 0.85
(1,3) 0.13 0.05 0.03
(2,3) 0.82 0.32 0.20
(3,3) 1.30 0.51 0.32
(4,3) 1.23 0.48 0.31

Figure 11. Variation of radiated sound power with frequency and gain coefficient, the 3D view on
the left, left of 3D view on the right, sixteen actuators uniformly distributed, (a1,a2) with a thickness
of 1 mm, (b1,b2) with a thickness of 1.6 mm, (c1,c2) with a thickness of 2 mm.
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5. Conclusions

The control effects of distributed velocity feedback on flat and curved plates under
TBL excitation are investigated. For the flat plate, the results show that the mechanism
of distributed velocity feedback is equivalent to passive damping. The effective control
frequency band can be significantly improved when the actuators deviate slightly from the
uniform distribution.

For the curved plate, even if the active control units deviate slightly from the uniform
distribution, the control effect is not significantly improved at higher radiation (1,1) modes.
The curvature and thickness of the curved plate have a large effect on the active control
effect of the (1,1) mode, increasing the radius of curvature from 1 m to 3 m increases the
control effect of the active control units from 6 dB to 13 dB, and increasing the thickness
from 1 mm to 2 mm increases the control effect of the active control units from 7 dB to
14 dB. The changes in curvature and thickness have a significant effect on the ratio χ of
the stiffness associated with membrane tensions to the stiffness associated with bending
forces, and the control effect is sensitive to the magnitude of χ. When χ is less than 70,
the control effect is mostly greater than 10 dB, when χ is greater than 70, the control effect
is poor, and when χ is greater than 100, the control effect may be less than 5 dB. In the
(1,1) mode, the value of χ decays as the thickness of the curved plate increases, while the
optimal gain coefficient increases and the control of the radiated sound power is improved.
The optimal gain coefficient for a 1 mm thick curved plate is 58 with a control effect of
approximately 9 dB; for a 1.6 mm thick curved plate, the optimum gain coefficient is 140
with a control effect of approximately 16 dB; and for a 2 mm thick curved plate, the optimal
gain coefficient is 315 with a control effect of approximately 20 dB.

The element-based model enumerates the effects of different curvatures and thick-
nesses on the decentralized feedback control of curved plates, which is useful to guide the
design of wall plates for a passenger aircraft cruising at high speed.
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