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Abstract: Rupestrian churches are spaces obtained from excavation of soft rocks that are frequently
found in many Mediterranean countries. In the present paper the church dedicated to Saints Andrew
and Procopius, located close to the city of Monopoli in Apulia (Italy) is studied. On-site acoustical
measures were made, obtaining a detailed description of the acoustics in the current state pointing
out, thanks to a combination of analysis techniques, the presence of significant modal behavior in
the low frequencies, causing reverberation time to be about 2 s, four times longer than in the other
bands, as well as being strongly dependent on source and receiver position (with variations of about
1 s when source is moved outside the chancel). However, as the church is characterized by significant
degradation of surfaces and large amounts of debris cover the floor, the original acoustic conditions
can be expected to somewhat differ. Acoustical modelling can be very helpful in grasping the original
conditions, but given the small dimensions of the space, conventional geometrical acoustic prediction
methods cannot be applied to simulate the low-frequency behavior. Thus, the present paper proposes
an application of finite-difference-time-domain (FDTD) computation to simulate the low-frequency
behavior and analyze a possible reconstruction of the original state. Results showed that a very
good agreement was obtained between predictions and measurements, both in terms of resonance
frequencies and reverberation times that differed by less than 5%. Modal response strongly affected
the acoustical conditions also in the hypothetical reconstruction of the original state, although the
sound field proved to be more uniform than in the current state.
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1. Introduction

Rupestrian churches belong to the largest and most widespread group of artificial
cavities of anthropic origin, often labelled as rocky or troglodytic settlements, which can
be found all over the world [1]. However, in the Mediterranean area, they can be found in
nearly every country, with some of them showing a significantly higher number, as outlined
by a census of rocky sites in the Mediterranean area [2], from which Italy, Spain, and Turkey
appear as the richest in settlements. Apulia (and the neighboring area of Matera), Sicily
and Tuscany in Italy, Andalusia in Spain, and Cappadocia in Turkey showed the highest
number of rocky sites, most frequently located in areas where soft stone in combination
with meteorological agents already created natural caves that were subsequently enlarged
and shaped according to the needs of the occupants. With reference to religious buildings,
the sites in Southern Italy originated from the spreading of Greek monks following the
iconoclastic prosecution in the Eastern regions but also from local communities that often
found a safe place far from the frequent aggressions arriving from the sea. In Spain, many
sites were built by the Mozarabic population during the Moorish occupation of the South.
In Cappadocia the churches can be found in settlements of cenobite monks that developed
from 6th and 7th century after the introduction of the Christian cult [3], but it is not unusual
to also find mosques in some places.
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The shape of the rupestrian churches usually recalled that of ordinary architectures
of the time, with the obvious limitations related to the characteristics of the site and the
nature of the stone, but it is not unusual to find spaces that may well compete in dimension
and complexity with ordinary churches.

Cave acoustics has attracted a considerable interest in the last years, starting with
the seminal studies that tried to demonstrate that acoustic effects might have influenced
the choice of the locations. Infrasonic resonances [4], echoes, and long resonances might
have influenced mural paintings [5,6], as well as the use of sites as burial places [7]. Some
studies [8,9] seem to agree with these hypotheses, also suggesting a deliberate use of such
effects in the underground galleries of Chavin de Huantar in Peru [8]. More recently the
topic has been further investigated by several large interdisciplinary groups [10–13], and
other studies of cave acoustics have been carried out involving natural caves mostly [14–16]
or burial places like catacombs [17].

When dealing with rupestrian churches and sacred spaces, the number of studies is
significantly reduced [18,19], suggesting that many specific features of such spaces still
need to be better disclosed and understood. One key issue in such spaces is represented
by the bad conservation state, often related to locations far from urban areas, lack of
controls, and exposure to any type of weather agents. Thus, current acoustic conditions
may significantly differ from their original state, in most cases. It is important to underline
that rupestrian churches were, first of all, “worship” spaces although their usage was not
simply ascribed to individual celebrations by monks practicing ascetism, but they were
used by whole communities of the settlements. Consequently, as rupestrian churches
were used for ordinary masses, they had to deal with problems of speech intelligibility
and propagation of the typical Byzantine hymns, inducing us to hypothesize correlations
between acoustics and the shape and size of the spaces. For this reason, a reconstruction of
the original acoustics of such spaces is of the utmost importance to understand which were
the conditions in which the church was used and whether such correlations might exist.

Given the small dimensions of such spaces, modal behavior is likely to appear, resulting
in non-uniform sound distribution at low frequencies, sound coloration (i.e., amplification
or attenuation of certain frequencies), and strong variations of reverberation time as a
function of narrow band frequencies. Modal behavior originates from standing waves that
appear whenever the distance between the walls is a multiple of half wavelengths [20].
Axial, tangential, or oblique modes may appear depending on the number of surfaces that
are involved in such standing wave paths.

Consequently, it is important to underline that simulating the acoustics of such spaces
may be particularly challenging because of their small dimension which prevents a straight-
forward application of conventional methods based on geometrical acoustics which would
be valid only well above the Schroeder frequency. Therefore, in such cases, it is essential
to take advantage of different wave-based computational tools that may better describe
the low-frequency behavior of the spaces. To this purpose, in this paper an application of
the finite-difference-time-domain (FDTD) method is proposed, by implementing a simple
scheme with frequency-independent boundary conditions limited to the lowest frequen-
cies. Even though this method has been already applied to larger buildings and covering a
much broader spectrum [21,22] using parallel computation on several graphical processing
units, the present implementation aims at providing a useful low-frequency comple-
ment to conventional geometrical acoustic-based simulations, without requiring a high
computational load.

The paper, taking advantage of the results already published in Ref. [19], will be orga-
nized as follows: Section 2 outlines the church that was surveyed, the acoustic measurement
methods, the modelling techniques, and a few notes about FDTD; Section 3 presents the
results of the on-site measurements, the results of the FDTD simulation in the current
conditions, and the reconstruction of the original state; Section 4 provides a brief discussion
of the results in comparison with other existing studies; finally, Section 5 summarizes the
major conclusions.
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2. Materials and Methods
2.1. The Church Surveyed

The church of Saints Andrew and Procopius (Santi Andrea and Procopio) in Monopoli
(Figures 1 and 2) is located in the Contrada L’Assunta, along the Via Traiana and was
likely built after the city of Monopoli was destroyed in 1042 to fight the Normans. The
dedication of the church confirms the strong Byzantine influence as Andrew the Apostle
was the founder of the church of Constantinople, and Procopius, martyr of Caesarea, was
the protector of the Byzantine armies. The church was at the center of a rock village which
also served as a post station along the Via Traiana (later Francigena) made up of a large
number of caves with two or more rooms, oil mills, and mills [23].
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The facade, just like in a masonry temple, has three arched entrances. The church is
divided in two parts, the “naos” occupied by the congregation, having a simple rectangular
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shape (about 5.6 m by 5.2 m) and the chancel, divided by means of a “templum” (i.e., a
stone iconostasis). The chancel was subdivided into four squares, two of them (the farthest
from the entrance) define the “bema” where the altar was located. The ceiling is flat and
its current height varies between 1.90 m and 2.40 m, but the original height is likely to be
greater as a large amount of debris covers the floor. All the walls were originally covered
by frescos but only a few fragments may be admired today.

Among the frescoes on the walls that are still visible, there are the apostles Peter
and Paul, the saints Cosma, Damiano, Eligio (with the symbols of his patronage over
the blacksmiths), Giorgio, Leonardo, a Virgin in throne and a scene of the Annunciation,
datable between the 13th and 14th centuries. The painted scenes are all found in the bema
and transept: Annunciation, Deesis, Trinity, Crucifixion, while the saints instead occupy
the walls of the naos. The wall decoration is not contemporaneous with the excavation
of the crypt but was constructed two centuries later. However, it reflects the continuity
of worship from the Norman age, to which Saints Peter and Paul, Leonardo and Eligius
belong, for example, up to the period of the Crusades (see, for example, the fresco of Saint
George with the emblem of the cross on the saddle and on the shield). Unfortunately lost
is the Byzantine iconography of the eleventh century relating to the eponymous saints of
the sanctuary.

From the point of view of the liturgical functions, the church had the bema closed
by a first iconostasis in stone opened by two doors in correspondence with the two apses.
The transverse arm of the transept separates the presbytery from the naos, a common
quadrangular room, not divided by pillars, with a second iconostasis, also with two doors.
A summary of the main geometrical features is given in Table 1.

Table 1. Summary of geometrical data and surface finishing.

Volume 113 m3

Plan surface 57 m2

Total area 210 m2

Average height 2.15 m
Surface

openings 5 m2

Floor Dry ground with large cracks
Ceiling/vault Extremely rough and peeling tuffaceous stone

Wall
Strongly degraded tuffaceous stone, with evident signs of erosion and, in some

points, covered by frescoed plasters also with evident signs of
superficial deterioration

2.2. Acoustic Measurement Methods

Given the location of the church in an open field, all the measurements were carried
out with portable instruments powered with battery packs. An omni-directional sound
source (Lookline D301) was located in two positions, one in front of the altar (Position
A) and one in the congregation area (Position B), so as to simulate in this way the priest
and the congregation, respectively. The source was fed by an equalized sine sweep played
back by a portable music player and generated using MATLAB (v. 2021b) according to
Müller and Massarani [24] so that the spectrum of the radiated sound was substantially
flat from 50 Hz to 16 kHz. The duration of the sweep was kept short (about 8 s) in order to
limit any potentially adverse effects due to lack of doors, which, determining significant air
circulation, might compromise the linear and time-invariant hypothesis. In addition, given
the conservation state of the surface finishing, longer sine sweeps might have induced excess
mechanical stress, so it was preferred to keep signals short. Given the limited dimensions
of the space, the signal-to-noise (S/N) ratio was sufficiently high to ensure perfectly usable
impulse responses, even if a short sweep was used. Room responses were collected using a
portable B-format microphone (Soundfield ST-350) connected to a multi-channel recorder
(Tascam DR-680) and a pair of binaural microphones (Soundman OKM II) worn by one of
the authors and connected to a second recorder (Tascam DR-07). The measurement chain
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was previously tested in the lab to ensure that the “open loop” settings did not create any
sync problem.

All the measurements were carried out complying with ISO 3382-1 [25] standard
and taking into account the guidelines for measurements in worship spaces [26], and,
despite the small dimensions of the church, eight receiver positions were used to provide a
detailed description of the point-by-point variations. Microphones were placed at 1.6 m
from the floor, assuming that the congregation was standing during the celebration. Source
and receiver locations were chosen to provide a description of acoustical conditions that
could be produced by actual sound sources and heard by listeners distributed in the space.
Given the small dimension of the churches, only one person stayed in the room during
the measurements.

Impulse responses (IR) were calculated by deconvolving the signal used to feed the
sound source and, despite a significant background noise due to birds and other natural
sounds (resulting, on average, in an A-weighted sound pressure level of 45 dB), provided a
minimum S/N ratio of about 55 dB over the whole spectrum of interest. The measured IRs
were then processed in order to calculate the most important acoustic parameters and to
investigate room resonances. In particular, in addition to monaural parameters based on
the omni (W) response of the B-format microphone, lateral energy fraction was calculated
using W and Y Ambisonic components (assuming X axis was aimed at the source), while
inter-aural cross correlation was based on binaural responses.

2.3. Geometrical Modelling of the Space

Given the complex and irregular shape of the space, the only reasonable way to obtain
a reliable geometrical model was to use 3D laser scanning. A point cloud of more than 150k
elements was originally obtained using a Riegl VZ 400 scanner (with an original resolution
of 5 cm), but for the purpose of the simulation, such level of detail was unnecessary and
thus, after cleaning artifacts and imperfections using a specifically designed tool developed
in MATLAB, the point cloud was further simplified using the open source software Meshlab
through subsequent applications of the “Quadric Edge Collapse Decimation” algorithm
(Figure 3).
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2.4. FDTD Simulation

FDTD acoustic modelling has been applied to solve acoustic problems for a long
time [27] but given the computational load it has been mostly applied to low
frequencies [28], while the availability of parallel computation distributed by several GPUs
fostered a gradual extension to a much wider frequency range [21,22,28–30]. FDTD starts
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from the assumption that a generic derivation operator can be replaced by one of its finite
difference forms:

d f
dx

(x0) ≈
f (x0 + ∆x)− f (x0)

∆x
(1)

and hence the second-order derivative becomes:

d2 f
dx2 (x0) ≈

f (x0 + ∆x)− 2 f (x0) + f (x0 − ∆x)
∆x2 (2)

In acoustics, any propagation phenomenon is described by the wave equation ex-
pressed by:

∇2 p =
1
c2

∂2 p
∂t2 (3)

The equation is only expressed as a function of sound pressure p, but its finite-
difference form would require three different time steps to be numerically solved, so in a
2D case in which T is the time step and X is the grid spacing, pressure at step n + 1 and
node (x,y) will be given by:

pn+1
x,y = λ2

(
pn

x+1,y + pn
x−1,y + pn

x,y+1 + pn
x,y−1

)
+ 2

(
1− 2λ2

)
pn

x,y − pn−1
x,y (4)

where λ = c T/X, c being the speed of sound in air. However, considering that the wave
equation is derived by two other fundamental equations, involving only first-order deriva-
tives, but also including particle velocity, it is possible to find a perfectly equivalent [29,30]
alternative formulation. This formulation is known as staggered Yee’s grid, in which the
grid of the pressure values is complemented by the grid of the particle velocity values (u).
Thus, it is possible to first update particle velocity components (remembering that particle
velocity is a vector quantity and, in 2D, it will have ux and uy components) and when this
matrix is available, we can update the pressure at the next time step. Pressure at step n + 1
and node (x,y) will consequently be given by:

pn+1
x,y = pn

x,y −
ρc2T

X

(
uxn+0.5

x+0.5,y − uxn+0.5
x−0.5,y

)
− ρc2T

X

(
uyn+0.5

x,y+0.5 − uyn+0.5
x,y−0.5

)
(5)

The above equations apply when non-boundary conditions are found, while at grid
points close to walls, assuming a wall impedance Z, it is possible to find an update formula
that, in case Z may be considered a real number independent of frequency, yields (in the
2D case) [31]:

uxn
x,y =

Rx − Z
Rx + Z

uxn−1
x,y +

2
Rx + Z

pn−0.5
x−0.5,y (6)

where Rx = ρ T/X, ρ being air density, and Z= ρ · c {[1 + (1 − α)0.5]/[1 − (1 − α)0.5]}, with α

being the absorption coefficient of the given surface. A number of alternative approaches
have been proposed to account for frequency dependence [27,32], but in the present case,
being the analysis limited to the low-frequency case, the proposed assumption was not
considered a major limitation.

In order to obtain a reliable calculation using FDTD, it is essential to properly set
grid spacing X and time step T. In fact, they are both related to the maximum frequency
that can be analyzed, as a minimum of five points per wavelength is usually required to
prevent errors. Therefore, this means that given the minimum wavelength of interest (λ),
the grid spacing should be at least λ/5 or, better, λ/10. Thus, for a grid spacing of 0.1 m,
the FDTD results will be accurate up to a maximum frequency of 340 Hz. The time step is
not independent of the grid spacing if the stability condition given by:

T ≤ X
c
√

D
, (7)
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(where D is the number of dimensions of the problem) is satisfied. Thus, once the grid
spacing and the problem dimension are defined, time step results consequently (in the
present case corresponding to a sampling frequency of 5768 Hz). Proper limitation of the
highest frequency of analysis is also useful to minimize dispersion errors that result in
phase velocity being different from the actual value of the medium. In the present case,
limiting to frequencies below 340 Hz ensures that dispersion errors will be below 2% [29].

The previously described FDTD framework was implemented in MATLAB (Figure 4),
where the geometrical model was first voxelized using a 10 cm grid spacing, and then
surface properties could be assigned together with source and receiver locations. Sound
sources were modeled as simple point sources and emitted signals could vary between sine
waves (for modal analysis) and short pulses.
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Figure 4. Graphical User Interface developed in MATLAB to perform FDTD simulations.

As per usual, surface properties were adjusted in order to have a suitable match
between measured and predicted values of the reverberation time in the present condition
at frequencies of 63 Hz and 125 Hz.

It is important to point out that for a space of such dimensions (113 m3), it is essential
to model sound propagation by means of wave-based models because geometrical acoustics
can only be effective well above Schroeder’s frequency that, being equal to 2000

√
T/V, in

this case was around 250 Hz. For this reason, modal response was also carefully compared
to ensure that the model could realistically reproduce low-frequency propagation.

2.5. Material Characterization

In order to characterize sound absorption of the tuffaceous surface of the church,
samples taken from quarries of geologically similar limestone were analyzed. Measure-
ments of normal incidence sound absorption coefficient were carried out according to ISO
10534-2:1998 [33], using the transfer function method. As the objective of the study was
to understand the low-frequency behavior of the materials, only the tube with an internal
diameter of 10 cm was used, resulting in a maximum measurable frequency of 2 kHz and a
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low-frequency limit of 50 Hz. The emitting end consisted of an 11 cm loudspeaker sealed
into a wooden case and suitably isolated from the tube structure by an elastic and protective
layer. All the processing was performed by a MATLAB graphic user interface generating a
linear sweep to feed the loudspeaker.

As shown in Table 2, the major difference between different types of tuffaceous stones
appears above 80 Hz, where higher porosity may contribute to nearly double absorption
compared to harder samples. At very low frequencies, no significant differences were
observed in the measured values.

Table 2. Summary of measured normal incidence absorption coefficients of different limestone
samples 5 cm thick.

Material 63 Hz 80 Hz 100 Hz 125 Hz 160 Hz

Soft limestone (Carparo) 0.010 0.020 0.030 0.050 0.080
Hard limestone 0.010 0.020 0.020 0.024 0.037

3. Results
3.1. On-Site Acoustic Measurements

The analysis of the reverberation times shows very interesting differences between the
medium-high frequencies, where the values settle below 0.5 s, with negligible point-by-
point variations, and the low frequencies, where the values are considerably longer and
show some variability depending on the location of both source and receivers (Figure 5). In
particular, when the source was close to the altar (Source A), T30 at 63 Hz and at 125 Hz
assumed the longest values (particularly at receivers 1, 2, 4, and 7), smoothly decreasing
when moving closer to the entrance. When the source was in position B, T30 dropped
by about 0.5 s in the same position. This fact, combined with EDT values shorter than
T30 whatever the source position, suggested that no evident reverberant coupling effects
between the sub-volumes may explain the observed variations. Conversely, the analysis
of the time decays at 63 Hz and 125 Hz shows (Figure 6) that decays are characterized by
a staircased or “pulsating” trend, clearly evident at 63 Hz, but also appearing at 125 Hz,
in particular for combinations A 01 and A 02. Such behavior is typically associated with
repeated reflections (flutter echoes) or modal effects which could be better investigated by
analyzing the narrow band spectra of the responses.
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Before delving into the analysis of the spectra, it is worth noticing that the short
reverberation time at medium-high frequencies was likely due to the presence of openings
(about 4 m2) and to the particular state of deterioration of the stone which appeared very
pronounced, with frescoes occupying only a small part of the surfaces and the underlying
layer characterized by greater porosity and tenderness. As shown in Table 2, a soft limestone
is capable of absorbing a significantly higher amount of acoustic energy, which may easily
explain the observed values. In addition, the floor was completely covered by waste soil
overflowed during floods, characterized, at the time of measurement, by numerous cracks
and having a thickness which could be estimated to vary between 10 cm and 50 cm in
some points.

In order to better understand the observed low-frequency behavior, narrow band
spectra were determined for all the source–receiver combinations (Figure 7). As expected,
when source was in position A, receivers 1, 2, and 4 clearly showed a marked peak at 79 Hz,
surrounded by many others appearing at 65 Hz, 73 Hz, and 87 Hz. In the other receivers,
the same modes appeared but their energy content was significantly reduced. In fact, if the
mid-frequency spectrum density is taken as a reference, the level variation around 79 Hz is
about 30 dB between receivers 1 and 2 and the others.

When the source was moved into the “naos”, the acoustic energy redistributed among
modes. In fact, the new absolute peak appeared around 65 Hz and 73 Hz at receivers 1, 2,
and 4, while in the others the mode energy was more evenly distributed but remained at
least 10 dB higher than in the frequencies above 100 Hz.

This can clearly explain what was observed in terms of reverberation time because the
peak appearing around 80 Hz due to its position and magnitude influenced both the octave
bands of 63 Hz and 125 Hz, causing the slower decay as observed in Figure 6 to appear in
receiver 1 and 2 also in the higher octave band. In the other receivers, as the energy in the
modes decreases, the reverberation time becomes gradually shorter, remaining longer in
the 63 Hz band due to persistence in time of modal behavior (Figure 8a). To this purpose,
modal reverberation time [34,35] was calculated for combination A-01 at the frequency of
78.2 Hz, showing (Figure 8b) that the observed value basically coincided with the octave
band value.
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Figure 8. (a) Low-frequency spectrogram for combination A-01, and (b) modal decay curve for
combination A-01, at frequency of 78.2 Hz, calculated according to Ref. [32].

The mathematics of the axial resonance modes [20] state that resonances appear at
frequency f n = (c · n)/(2L), where c is the speed of sound, L is the room dimension in the
direction that is considered, and n is an integer index that defines the mode order. Thus, it
can be easily found that 79 Hz corresponds to the first (n = 1) axial mode along the vertical
direction assuming a height of 2.15 m (which is in good agreement with the average height
of the space, although being far from a simple rectangular box), while 65 Hz corresponds
well to the second (n = 2) axial mode along the two side walls (spaced by about 5.4 m), the
only two large and continuous surfaces besides the floor and the ceiling.

Once the basic acoustical features have been explained by properly combining rever-
beration time and modal analysis, it is now possible to have a look at the other acoustical
parameters (Figure 9). Given the short reverberation, very high speech intelligibility is
obtained (STI = 0.82 on average) and strong frequency imbalance represented by a bass
ratio (BR) equal to 2.1, although in the original conditions, with walls covered by frescos, it
is likely that a more balanced condition was observed.
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Figure 9. Plot of multi-octave band averages (as defined in ISO 3382-1) of other acoustical parameters
as a function of source–receiver combinations. (a) Clarity (C50) and Speech Transmission Index (STI).
(b) Early lateral energy fraction (JLF) and early interaural cross-correlation (1-IACC).
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The perception of sound spatiality and, more generally, the binaural impression
were particularly interesting. JLF and 1-IACC applied to the initial part of the impulse
response showed rather high values (1-IACC = 0.67 on average) which were reduced
only (as expected) in correspondence with the points placed in direct proximity to the
source (receivers 2 and 5). The large amount of surface irregularities distributed almost
everywhere, together with the presence of obstacles (such as the iconostasis) all contribute
to this effect, making the sound perception very “spacious” despite the small size. JLF
showed extremely high values deriving from the strong contribution of lateral reflections
combined with the frequent shielding of reflections coming from frontal directions.

3.2. FDTD Acoustical Simulation of Current State

FDTD simulations were carried out according to the procedures described in
Section 2.4. As the finishing was relatively the same over all the surfaces, with the notable
exception of the floor covered by hardened soil, and given the values measured for similar
materials (Table 2), an initial value of 0.015 was used for the absorption coefficient (obtained
by averaging among the 63 Hz and the 125 Hz values). As this value returned slightly
longer T30 values than expected, while in acoustic modelling [22] a maximum difference of
5% (corresponding to one just noticeable difference [25]), is considered to be acceptable,
step-by-step increases were applied until a value of 0.025 was reached. Under these condi-
tions, the spatial average of T30 in one-third octave bands from 63 Hz to 80 Hz differed by
only 2% from measurements, while at 100 Hz the error was 4%. At higher frequencies, the
error was bigger, suggesting that a further increase in absorption coefficient was needed.
By adopting an α value of 0.04, the mean error was finally reduced to 4% also in the
125 Hz band. Figure 10 shows the comparison between measured and predicted rever-
beration time in one-third octave bands at individual positions. It can be observed that
in the lowest bands clear modal behavior appears at given receiver positions, resulting
from the strong non-uniform distribution of the values. In addition, as discussed in the
previous section, the strength of the first axial mode along the vertical direction clearly
appears also in the simulated results, where T30 in the 80 Hz band is markedly higher
than the corresponding values at 63 Hz despite the same absorption coefficient. At 100 Hz
and 125 Hz the modal behavior is significantly attenuated in the simulations (although the
measured values at combinations A-01 and A-02 still show some effects).
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Figure 10. Plot of measured and simulated values of T30 as a function of source–receiver combination,
at (a) 63 Hz and 80 Hz, and at (b) 100 Hz and 125 Hz.

Given the role played by modal response of the room, it was important to check the
agreement between measured and predicted spectra. Considering that Figure 7 had already
shown the combinations where a strong modal response was measured, the comparison
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was restricted to a subset of all the source–receiver combinations. Figure 11 shows that for
combinations A-01 and A-02, the strong response around 79 Hz clearly appears, although
the magnitude is attenuated compared to measurements assuming higher frequencies
as a reference (which also explains why the 100 Hz T30 is shorter in the simulated re-
sponse). Small shifts in the peak frequencies can be observed, but they rarely exceed 2 Hz.
Combination A-05 is modelled pretty well, with the peak around 65 Hz well visible and
a slightly less defined cluster around 79 Hz but a well comparable distribution of levels.
Finally, combination B-04 is considered, as in the measured spectrum a clear peak appeared
at 65 Hz. The simulated spectrum presents several peaks that are mostly aligned with
measurements, but the stronger peak at 65 Hz seems more attenuated (by about 15 dB),
and another peak below 60 Hz appears. However, considering that measured spectra were
band-limited by the inherent frequency response of the sound source and by the signal
used to feed the loudspeaker, this was considered a minor problem.
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A further element to be considered that might explain some of the small differences
observed in the T30 values and in the responses is the strong point-by-point variations that
appear in consequence of the modal behavior. Taking into account the FDTD model, the
sound pressure level resulting from pure tones at 65 Hz and 79 Hz was calculated for the
two source positions. As shown in Figure 12, dramatic sound pressure level variations take
place by simply moving the receivers a few centimeters apart. Hence, it is not unlikely that
small misplacement of the receivers (both during the measurements and in the simulation
setup) might explain some of the observed differences.
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Figure 12. Sound pressure level distribution resulting FDTD simulation of pure tones emission at
(a) 65 Hz and (b) 79 Hz, with sound source located in position A (top) and B (bottom).

However, Figure 12 is quite instructive because it shows which are the positions in
the church where stronger resonances appear and, consequently, where longer reverber-
ation might be experienced. Predictably, receivers close to the side walls in the “naos”
could experience strong resonances whatever the source position was, particularly at 65
Hz (which was the second axial mode along the transverse direction), but also at the
other frequencies.

3.3. FDTD Acoustical Reconstruction of Original State

Once the model was calibrated, it could be used to apply a few changes that could
realistically correspond to the original state, allowing us to appreciate the implications for
the acoustics. In the specific case, three simple changes were applied. First, the floor area
was rectified assuming that the layers of debris that currently occupy the entrance and the
chancel area, where the ceiling is unusually low (see dashed line in Figure 1b), could be
removed. Surfaces were considered to be covered by plasters and frescos (like the limited
portions still existing clearly suggest, and like it is found in many other rupestrian churches
in the region), resulting in a reduced absorption coefficient of 0.015 at 63 Hz and 80 Hz, and
0.025 at 100 Hz. Finally, in order to simulate acoustics under occupied conditions, a seated
audience was located along the two side walls of the “naos”, according to the common
practice of the time, as demonstrated by the usual presence of “subsellia” (carved benches)
in other churches. This position was chosen in order to locate the absorption in the position
where modal behavior might have more strongly affected the acoustic response in terms of
damping. Absorption coefficients for this area were set to 0.2 [36] assuming the audience to
be tightly distributed among the limited seats. All the openings were left in their actual
state as no evidence of pre-existing doors or windows was found.

As shown in Figure 13, most of the main features observed in the “current” state also
appear in the “reconstructed”, but now reverberation is longer and the modal response at
79 Hz when the source is in A is stronger and extends well beyond the “templum”. When
the source is in B, the most evident variation is a drop appearing at receivers close to the
entrance, possibly as a consequence of the change in room height (that is the part where the
debris were thicker and after removal the ceiling height becomes about 2.7 m) and increase
in the absorbing elements in the volume due to audience and increased opening surfaces
(again as a consequence of debris removal).
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Such results seem to suggest that the resulting acoustic effects might have been ex-
ploited during liturgical celebrations and singing, in particular, considering that the specific
features of many Byzantine hymns include many bass notes sustained for a long time,
which could well excite the resonances of the space.

4. Discussion

After presenting the results of the measurements and of the simulations, a brief
discussion to put the results in the context of the existing literature can be developed.
Among the spaces that have been surveyed by other authors, the highest similarity can be
found with the rock-cut structures in Cappadocia [18]. Although the only space having a
comparable volume was the Avanos dining room (114 m3), and the observed reverberation
times spanned over a much broader range (up to 5 s for the Hallaç Church and main
hall and for Açıksaray Hall), in all of the cases a significant low-frequency imbalance was
observed, with reverberation time being up to 3 times longer than at mid-frequencies. This
was likely caused by the characteristics of the stone that due to its porosity caused increased
absorption as frequency grew. However, no specific low-frequency measures were made,
and the frequency range of analysis was limited to 125 Hz.

Similarly, among the catacombs in Southern Italy [17], it was difficult to find spaces
that are entirely comparable, but the two cubicles in the “San Callisto” catacombs have
several similarities in terms of room dimensions and volumes. Materials are also similar,
the walls being made of tufa stone, resulting in short reverberation times usually well below
1 s. In this case, the frequency range of the measurements extends into the 63 Hz band,
showing only a moderate increase in reverberation time compared to mid-frequencies, with
the notable exception of the so called “double cubicle”, where reverberation is longer (up
to 1.5 s at 63 Hz) and characterized by point-by-point variations. Regardless, even in this
study, although the “resonant” behavior in the low frequencies is supposed, no additional
investigations were made.

Low-frequency resonances and modal behavior were investigated in many stone
chambers and cairns in the British Isles [7]. In this case, experimental measurements were
carried out using sine sweeps to find resonant frequencies and the distribution of nodes
and antinodes in the space. A theoretical justification was consequently found based on the
dimensions of the space, showing that in most of the cases, resonance frequencies varied
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between 95 Hz and 120 Hz, slightly above the resonances observed in the present work,
likely as a consequence of the smaller dimension.

Finally, one interesting example where the modal behavior of a space was investigated
also by means of wave-based acoustic simulation is the �al Saflieni Hypogeum [11]. In this
Neolithic structure, the authors investigated the possibility that the resonance frequencies
observed in different chambers have been “tuned” in some way. Based on the on-site
measurements, a numerical model was developed to test whether different dimensions
of the chambers might have altered this tuning. However, as in the present study, this
reconstruction reflects the “current” conditions which might have been different from the
original conditions which, as the authors clearly state, may be difficult to imagine.

5. Conclusions

In this paper, the case of the rupestrian church of Saints Andrew and Procopius
in Monopoli (Apulia, Italy) was considered. The church has a small volume and is in
a very bad conservation state, but it was acoustically analyzed in its current state by
means of measurements carried out according to ISO 3382-1 standard. A combination of
different analysis methods, including not only simple room acoustical parameters, as in
most previous studies, but also spectrograms, modal reverberation time, and detailed maps
based on FDTD modelling, were used to interpret the results. Measurements pointed out a
singular behavior characterized by short reverberation times (around 0.5 s) at frequencies
above 250 Hz, and much longer values in the lowest bands reaching up to 2 s, also in
combination with strong resonances due to the modal response of the room. The analysis
of the narrow band spectra and of modal reverberation time confirmed such dependance
and resonant frequencies, especially those appearing at 65 Hz and 79 Hz, which were
explained as a function of the room dimensions (although with some approximations due
to the strongly irregular shape). In order to acoustically simulate the space and analyze the
distribution of sound both in the current and in any possible reconstructions of the original
state, given the small dimensions that make it impossible to use geometrical acoustic
models in the low-frequency range, the numerical FDTD method was applied by using a
proprietary code developed in MATLAB. Thanks to a laser scanner survey, the geometry
was simplified and voxelized so that FDTD could be applied. Results showed a very good
agreement both in terms of predicted reverberation time and modal response, implying
that FDTD method, despite its simplified implementation, is the most reliable approach
to simulate such small spaces and obtain time-dependent responses. Consequently, a
simulation of a possible reconstructed condition, characterized by plastered surfaces, debris
removed from the floor, and some occupants in the space, was carried out. Results showed
that the strong modal response still appeared, suggesting that liturgical singing might have
taken advantage of such specific acoustic features.
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