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Abstract: Forward modeling plays a key role in both the creation of predictive models and the study
of the surrounding environment through inversion methods. Due to their competitive computational
cost and modest algorithmic complexity, finite difference methods (FDM) are commonly used to
model the acoustic wave equation. An algorithm has been developed to decrease the computational
cost of acoustic-wave forward modeling that can be applied to most finite difference methods. An
important feature of the algorithm is the calculation, at each time step, of the pressure in only a
moving subdomain which contains the grid points across which waves are passing. The computation
is skipped at grid points at which the waves are negligibly small or non-existent. The novelty in
this work comes from flexibility of the subdomain and its ability to closely follow the developing
wavefield. To demonstrate the efficacy of the algorithm, it is applied to a standard finite difference
scheme and validated against 2-D modeling results. The algorithm herein can play an important role
in the reduction in computation time of seismic data analysis as the volumes of seismic data increase
due to developments in data acquisition technology.
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1. Introduction

The new simulation method presented in this manuscript is largely motivated by the
recent developments in the data acquisition technology. Specifically, it is motivated by
the development of distributed acoustic sensing (DAS), which uses fiber optic cables to
record both low frequency strain and high frequency seismic waves [1]. DAS provides a
new and unique view of the reservoir by sampling cable strain at rapid cadence and at
densely spaced locations. High recording rates at numerous receiver positions increase
the amount of registered microseismic activity. While it was originally developed for
geophysical exploration, DAS has recently seen increasing use in other fields of geophysics.
Distributed acoustic sensing has been coupled to existing submarine cables to monitor
ground motion signals from seismic events and identify fault zones [2]. Because of its
unprecedented spatial and temporal resolutions, DAS is expected to see further use in
earthquake monitoring, imaging of faults and other geologic structures, and natural hazard
assessments [3]. In conclusion, DAS records data at high frequency and over a long range
of densely spaced locations. Furthermore, it can turn fiber-optic cables, which were initially
intended for other purposes, into large collectors of seismic data. While DAS is excellent
for gathering seismic data, it also has the potential to drastically increase the amount of
seismic data recorded in the future.

To prepare for the future increase in the volumes of seismic data, we developed
an algorithm to decrease the computational cost of forward wave modeling, which will
speed up the processing and analysis of these data. The initial application, presented
in this manuscript, is to acoustic waves, modeled by the acoustic wave equation in two
dimensional domains, but the algorithm can be extended to three-dimensional models. The
appropriate method for modeling waves depends on the purpose of modeling, the size and
properties of the modeling domain, and the available computer resources. There does not
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exist an ideal finite difference method that can be used in every situation. For example,
Zhou et al. [4] show improvements in accuracy via optimization that allows a reduction
in the length of the FDM operator. Here, we take an alternate approach for optimizing
scalar wave equation simulations. We develop an algorithm that can be used with any
finite difference method that utilizes pre-defined finite difference operators and any model
discretization regardless of the grid-point distribution. Specifically, the algorithm allows
the user to calculate the pressure in only a subset of grid points in the modeling domain
through which waves are propagating. Therefore, the numbers of grid points and physical
degrees of freedom are reduced, while the grid-point spacing remains the same. Therefore,
the numbers of grid points and physical degrees of freedom are reduced, while the grid-
point spacing remains the same. However, if the physical nature of the problem is such
that active waves are propagating over the entire domain, with no quiet areas, such as in
[5], then the RDM method loses its principal advantage.

This is not the first study that aims to speed up a finite difference scheme by modeling
waves in only a subset of all the grid points, i.e., in a moving subdomain. Initially, Boore [6]
noted that the displacement does not need to be computed in the areas which the first arrival
has not yet reached. This idea was further developed when Vidale [7] used an eikonal
equation to calculate the arrival times of waves at each grid point and then modeled the
evolution of the wave at each grid point for a predetermined amount of time after the
arrival. The drawback of this method is that it is focused on modeling only the head waves.
There have also been studies published that model the propagation of seismic waves in
moving zones (or boxes [8–10]. The path of the box shaped moving zone is pre-defined,
and the box represents a subset of the entire modeling domain that is focused on the
waves of interest (which are often the head waves). By restricting the modeling to the box
enclosing the wave of interest, reflections outside the zone of interest are neglected. In
both methods discussed above, the constraints to the modeling subdomain that provide
the computational speed-up also restrict the applicability of the method.

In this work we introduce a new flexible approach for selecting the subset of grid
points on which the wave is modeled. This method allows for the modeling of reflected
waves even if they are far from the first-arriving wavefront. At the neglected, or irrelevant,
grid points, disturbances caused by the waves should be small, or even non-existent,
depending on the application and user-defined parameters. Because the purpose of our
method is to reduce the number of grid points in the domain at which the pressure is
calculated, we refer to it as the “reduced domain method” or RDM. By defining certain
parameters in RDM, the user may adjust the criterion which differentiates between relevant
and irrelevant grid points. Because of this, while the performance may vary, the algorithm
can be useful in a large variety of scenarios of wave propagation.

It should also be noted that the most recent application of a moving subdomain, or a
moving frame to be more accurate, was for modeling acoustic waves propagating through
the earth’s atmosphere using the Navier–Stokes equations. The numerical simulations have
been performed in two dimensions on Cartesian grids [11], in a two dimensional cylindrical
coordinate system with assumed axial symmetry [12,13], and in full three dimensions [14].
While the algorithm developed in our research is implemented for the acoustic wave
equation, with additional programming effort it can also be applied to FDMs used for
modeling the elastic wave equation as well as the Navier–Stokes equations. This is because
the reduced domain method is designed to be applied to any FDM and velocity model,
regardless of the grid-point distribution as long as the FDM has pre-defined operators. For
simplicity, we will refer to such methods as standard FDMs.

With additional programming effort, the RDM may also be adapted to some methods
even if the finite difference operators are not pre-determined. A good example of this is [15],
where acoustic waves are modeled while the coefficients in the finite difference operators
adaptively change. However, there are some methods such as [16], in which the acoustic
waves are modeled by finite difference operators which change length adaptively during
the simulation. For such methods, the implementation of RDM becomes more difficult. To
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summarize, RDM provides a reduction in computational cost by modeling the waves in
only a subset of the entire domain and it can be applied to any velocity model and a variety
of FDM. However, thanks to its flexible and adaptive selections of subdomains during the
simulation time, it also allows the user to accurately observe the majority of the wavefield.
This is an improvement compared to previous methods that modeled waves in moving
subdomains.

2. Methodology

RDM is a method that first determines the “active” portion of the modeling domain,
i.e., the zone within which waves are propagating. The method then uses the selected finite
difference method to simulate wave propagation within the active area. Further details are
given below.

In finite difference schemes, the pressure field is described by a vector p whose number
of elements equals the number of grid points in the modeling domain. We seek to reduce
the length of this vector and refer to the new, smaller vector as the ”reduced” pressure
vector, or simply the reduced vector pr. The elements in the reduced vector at a given
time step comprise only the pressure at those grid points through which a wave is actively
propagating. We refer to these grid points as ”relevant” grid points. As waves propagate
through the modeling domain, the set of relevant grid points changes. To find the reduced
vector at each time step, RDM determines the set of relevant grid points without actually
evaluating the pressure at all the grid points. The following paragraphs and Figure 1 below
explain how RDM achieves this goal.

Figure 1. A flowchart providing a high-level description of RDM.
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The RDM algorithm starts by dividing the time during which the wave propagation
is simulated into subintervals of length Ts. The subinterval length Ts needs to be small
in order to keep the set of relevant grid points within subintervals small. On the other
hand, decreasing the subinterval length Ts will increase the number of subintervals in the
simulation and the time spent finding the set of relevant grid points for all subintervals
could start having a large effect on computation time. The best value for Ts depends on
the velocity model and the source, and there does not exist an ideal Ts value that gives the
best results in every scenario. However, you can still run consistently fast and accurate
simulations while always using the same value of Ts. We set Ts to be equal to the period of
the dominant frequency of the source, and as can be seen in the following section, RDM
drastically reduced computation time and maintained accuracy in all of the tested models.

At the start of each subinterval, prior to advancing the simulation using the reduced
vector, RDM runs a fast simulation on a coarse grid that spans the entire modeling domain.
The grid-point spacing and the time step of the coarse-grid simulation are set to be twice
as large as those in the standard grid, or rather, fine-grid simulation. The FDM that is
used to run the simulation in the coarse grid is the same as the FDM used in the fine-grid
simulation. For future improvement of RDM one could consider using a different FDM
for the coarse-grid simulation, which allows the use of fewer grid points and reduces the
computation time. However, on average only 25–30% of RDM computation time is spent
in the coarse-grid simulation, so the potential for the computation reduction is limited. The
simulation on the coarse grid is not intended to yield a highly accurate displacement field,
but it is detailed enough to avoid excessive numerical dispersion and allow a sufficiently
accurate determination of the relevant grid points.

The relevant grid points are determined by first defining a ”sum vector” vsum. Each
component of the sum vector is a time summation, over the current subinterval, of the
squared time derivatives of the corresponding component of the pressure field on the
coarse grid:

vsum
i =

N

∑
j=1

(∂pc
i (t

0 + (j− 1)tsnp)

∂t

)2
(1)

where pc is the pressure vector computed in the coarse-grid simulation, N is the number of
snapshots in a subinterval, and tsnp is the time between two subsequent snapshots. The
magnitude of the sum vector for a given subinterval, at a given grid point, is large if the
corresponding pressure on that grid point was large during the subinterval.

The values of N and tsnp depend on the length of the subinterval Ts and the time step
of the finite difference scheme. Although N and tsnp need not have specific values, typically
we set tsnp such that 40 ≥ N ≥ 20. The goal is to use enough snapshots to accurately
describe the wavefield during the interval, while also not using so many snapshots as to
affect the computation time. It should be noted that changing N and tsnp has very little
effect on the performance of the simulation. Thus, we do not think that optimizing those
parameters can lead to noticeable improvements.

Before the values recorded in vsum are used to estimate the map of relevant grid points,
an equal weight averaging filter is applied to vsum. Filtering is performed to smooth the
results stored in the sum vector, which reduces the length of the bounding curve between
the relevant and irrelevant grid points, as can be seen in Figure 2. A big part of the error
caused by using RDM is produced at the boundary between relevant and irrelevant grid
points. Having wavefield drop from near-zero values to zero can create a source of error
in the wavefield. By reducing the length of the boundary between relevant and irrelevant
grid points, we reduce the error. This allows us to reduce the computation time more
aggressively, while still maintaining a small error. The averaging filter is two dimensional
and 32 grid points wide and long. This is because its length is defined as four times the
shortest wavelength in the model, i.e., four times the period of the dominant frequency
multiplied by the velocity from the slowest area in the model. The processing time of the
averaging filter is proportional to the length of the filter and the number of grid points used
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in the simulation. As RDM was tested on multiple models, the computation time of the
averaging filter varied between 3% and 7% of the entire simulation time when using RDM.
To further reduce the computation time of the averaging filter, we could use better picks for
the window size that are based on the velocity average rather than minimum velocity, and
we could also apply the filter to a different vector that has fewer elements than vsum, for
example, a vector containing elements of vsum for grid points with spacing four times as
large as that of the fine grid. Once the sum vector vsum is determined, the set of relevant
grid points is constructed.

Figure 2. (a) The sum vector vsum without the averaging filter and (b) the resulting map of relevant
grid points. (c) The sum vector vsum with the averaging filter and (d) the resulting map of relevant
grid points.

The set of relevant grid points is defined as the smallest subset U of all the grid points
such that the sum of elements in the sum vector vsum representing those grid points is
greater than or equal to some pre-determined threshold fraction (1− e−δ) of the sum of all
elements in the sum vector:

min(n(U)) :
n(U)

∑
j=1

vsum
(Uj)
≥ (1− e−δ)

n(vsum)

∑
j=1

vsum
j (2)

where n(U) is the number of elements in U, n(vsum) is the number of elements in vsum, and
the threshold (1− e−δ) is defined by the parameter δ. The threshold is defined in this way
so that an increase in δ causes the threshold to increase, converging closer to the value of 1.
An increase in the threshold results in more grid points being included in the set of relevant
grid points. Therefore, increasing the parameter δ increases the accuracy of RDM but also
increases the computation time.

While the parameters Ts, tsnp and N should remain the same in all simulations, the
parameter δ can be adjusted to best support the FDM we are applying our method to, which
is the purpose of the simulation. For example, if we are doing reverse time migration (RTM)
for the purpose of locating a seismic event, we can ignore a lot of weak waves that we
know will not contribute to the convergence at the source location. In this case we could
set up δ to a small value that will result in fewer relevant grid points and faster simulation.
Alternatively, if the user is interested in simulating weak reflection, the parameter δ would
be set up to a larger value to make sure the weak reflections are represented.

When using Equation (2), RDM determines the set of relevant grid points based on
the amplitudes of the propagating waves. This method allows the user to observe the large
majority of the wavefield while reducing the computation time. In a more specific example,
the user might have a special interest in reflections in a given area of the model, even if the
reflections are weak. In such a case, Equation (2) can be modified so that the summations
include weights for each grid point. This way, we can add extra importance to grid points
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from a specific area. Therefore, depending on the specific purpose of the wave simulations
in the future, the parameter δ and Equation (2) may be adjusted and modified.

Once the set of relevant grid points has been determined, the next step is to create the
reduced model. The set of relevant grid points (U) is applied to the vectors describing the
pressure from the two latest subsequent time steps (p, po) and velocity (c) on the fine grid.
Specifically, the set of relevant grid points tells us which elements in pressure (or velocity)
vectors represent the pressure (or velocity) on the relevant grid points. To generate reduced
pressure and velocity vectors, an algorithm goes through all the elements of the pressure
vectors p, po, and velocity vector c and the values describing the pressure or velocity at
relevant grid points are recorded in reduced pressure and velocity vectors pr, por, and cr.
The set of vectors converted to the reduced model may vary between different models and
different simulation methods. For example, in cases with heterogeneous density, we also
must apply the set of relevant grid points to the density vector (ρ) in order to generate the
reduced density vector ρr.

At the next stage of the algorithm, the fine-grid simulation is executed over the
subinterval on the set of relevant grid points. The computation is executed on pr and por

rather than on p and po, creating a significant reduction in computation time. Once the
fine-grid simulation reaches the end of the subinterval, the values of the pressure on the
standard fine grid p and po are updated using the reduced vectors pr and por and the set of
relevant grid points U. The process is repeated until the simulation reaches the end of the
final subinterval.

In the introduction we stated that RDM is used to reduce the cost of modeling the
acoustic wave equation. The specific FDM that RDM is applied to is the one by Alford
et al. [17], also described in Zakaria et al. [18], which was chosen for its efficiency and

simple implementation. Here, the second time derivative of pressure, ∂2 p
∂t2 , is estimated with

a fourth-order accurate nine-point stencil:

∂2 pi,j

∂t2 =
(
(pi−1,j + pi+1,j + pi,j−1 + pi,j+1)

4
3

− (pi−2,j + pi+2,j + pi,j−2 + pi,j+2)
1

12

− 5pi,j
) c2

i,j

∆x2

(3)

where ∆x is the spacing between grid points. Furthermore, the finite difference scheme can
be adapted to heterogeneous density models by altering the finite difference coefficients:

∂2 pi,j

∂t2 =
((

(2− ρx
i,j)pi−1,j + (2 + ρx

i,j)pi+1,j + (2− ρ
y
i,j)pi,j−1 + (2 + ρ

y
i,j)pi,j+1

)2
3

−
(
(1− ρx

i,j)pi−2,j + (1 + ρx
i,j)pi+2,j + (1− ρ

y
i,j)pi,j−2 + (1 + ρ

y
i,j)pi,j+2

) 1
12

− 5pi,j

) c2
i,j

∆x2

(4)

where:

ρx
i,j = ρi,j

( 1
ρi−2,j

− 8
ρi−1,j

+
8

ρi+1,j
− 1

ρi+2,j

) 1
12

ρ
y
i,j = ρi,j

( 1
ρi,j−2

− 8
ρi,j−1

+
8

ρi,j+1
− 1

ρi,j+2

) 1
12

.
(5)

Equations (4) and (5) above, which are applied to inhomogeneous density mod-
els, can be derived from the first equation from [19]. It is important to point out that
Equations (3)–(5) do not provide a perfectly accurate representation of the processes in
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RDM. Specifically, the pressure, velocity, and density are all recorded as vectors in RDM
whereas in Equations (3)–(5) they are presented as matrices. We made this decision because
we wanted to provide a more clear and easy-to-read representation of the finite difference
operators being used.

In the fine-grid simulations we set the grid-point spacing to be sixteen times smaller
than the period of the dominant frequency of the source multiplied by the velocity in the
slowest area in the model. This way, there is never fewer than sixteen grid points per
wavelength, or eight grid points per wavelength in the coarse-grid simulation. Once the
second derivative of the pressure field p is calculated, a second-order accurate scheme uses
the current pressure p and the pressure from the previous time step po to calculate the
pressure field at next time step pn:

pn = 2p− po + ∆t2 ∂2 pi,j

∂t2
(6)

where ∆t is the time-step size of the simulation. To maintain stability of the simulation,
the size of the time steps is set to be one half of the grid-point spacing divided by the
maximum wave velocity in the model. Therefore, the number of time steps per wave
period is dependent on the ratio between the velocities in the slowest and the fastest
regions in the model. However, if the model were homogeneous, there would be 32 time
steps in the period of the dominant frequency.

3. Results

The RDM algorithm was tested on four synthetic models. The first two models
comprise scenarios in which a steel object is buried partially or completely beneath the
seafloor. They are used to demonstrate the performance of the algorithm and illustrate how
the map of relevant grid points progresses along with the waves during a simulation. All
calculations in this manuscript are fully 2-D, i.e., an infinite line source excites an infinite
structure invariant along strike, the direction parallel to the source. The run time of RDM is
compared to the run time of the standard FDM without RDM. The relative error is defined
as the change to the final pressure vector resulting from RDM application, specifically:

Erel =
||p− pRDM||
||p|| (7)

where p is the pressure vector obtained from standard FDM and pRDM is the pressure
vector obtained by applying RDM to the same FDM.

The code was written in Julia programming language, which is designed for rapid
execution of numerical simulations. We chose Julia because it can conveniently optimize
functions and implement vectorization, thereby reducing computation time. Furthermore,
the simulations are executed on a single core of Intel i7-6820HQ which has a base frequency
of 2.70 GHz and 16 GB of RAM. Adjusting the code to run on multiple cores would require
more programming, but the algorithm is inherently parallelizable.

The first two models are energized by a Ricker source wavelet with peak frequency
2.3 kHz placed 8.4 m above the ocean floor at a midpoint between the two lateral boundaries.
In the first model the steel object is not completely buried in the surrounding limestone
ocean floor. The velocity and density values used for limestone in this model were obtained
from Table 1 of Bayer [20]. In the second model the entire steel object is buried in sediment.
The velocity and density values used for sediment were obtained from Hamilton [21]. If a
grid point is positioned on the interface of the two layers, an arithmetic average is used
to determine the velocity and density at said grid point. These two models are shown in
Figure 3, along with the evolution of the map of the relevant grid points throughout the
simulation and the final wavefield in each of the two models.
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Figure 3. (a) Results for the first limestone model. (b) Results for the second sediment model. From
left to right we see: the map of relevant grid points in the first subinterval, nineteenth subinterval, and
thirty-seventh subinterval, and finally, the wavefield corresponding to the end of the thirty-seventh
subinterval. The figures were acquired during the simulation, with δ set to 12. The relevant grid
points are in the yellow region. The brown line represents the surface of the ocean floor, and the blue
line represents the steel object.

Table 1. Performance indicators for the first two models.

First Model Second Model

Parameter δ
Comp. Time

Reduction (%) Relative Error Comp. Time
Reduction (%) Relative Error

10 56.5 0.017 63.0 0.062
12 54.8 0.016 61.8 0.043
14 48.0 0.014 56.9 0.026
16 40.5 0.015 49.1 0.033
18 40.1 0.005 50.2 0.020
20 40.1 0.001 47.8 0.005

In both models, the wave propagation is simulated over a period of 0.016 s, and it took
about 255 s with standard FDM to run the simulation, which contained 4515 time steps on
a 501 by 501 grid. During the simulations, the waves propagate to the steel object and are
reflected past their point of origin. We stated above that the parameter δ affects the size of
the set of relevant grid points, such that an increase in δ causes an increase in both accuracy
and run time. Table 1 displays the computation time reduction and relative error of RDM
for various value choices of δ for the two models.

In the third test we use the velocity model from [22] but assuming a spatially uniform
density. The purpose of the modeling is to test RDM on a more heterogeneous velocity
model in which many reflections and dispersions are generated. A Ricker source with peak
frequency 7.1 Hz is located at the center of the upper boundary of the model domain. The
wave is propagated in the simulation for 10.1 s, until it reaches the lateral boundaries of the
model domain. The computation time of the standard FDM simulation, which contained
7764 time steps on a 5795 by 1155 grid, was about 9420 s. The velocity model (top), the map
of relevant grid points (middle), and the wavefield (bottom) at the end of the simulation
are shown in Figure 4. The performance of RDM for different choices of δ is presented in
Table 2.
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Figure 4. (a) The velocity model from [22]. (b) The map of relevant grid points in the final subinterval.
(c) The wavefield at the final subinterval of the simulation. The parameter δ was set to 12.

Table 2. Performance indicators for the third model.

Parameter δ Comp. Time Reduction (%) Relative Error

10 71.3 0.026
12 67.9 0.011
14 66.9 0.003
16 66.8 6.0× 10−4

18 65.9 2.7× 10−4

20 65.8 6.5× 10−5

In the fourth test we combine the velocity and density models from [22] with the
same source and simulation time as in the third test. Here, the computation time of the
standard FDM simulation, which contained 7764 time steps on a 5795 by 1155 grid was
about 10,210 s. The density is strongly heterogeneous which produces a great number
of reflections such that every grid point in the model domain is populated with strong
coda after the passage of the first-arriving wave. For as long as the strong coda remains,
all the grid points through which a head wave has passed would be considered relevant
grid points. Thus, we add a new criterion to the selection of grid points that forces RDM
to neglect low-amplitude waves. The objective is to assess the accuracy by which RDM
models the high-amplitude waves while neglecting weaker ones.

The new criterion is set by fixing the parameter δ to 20 and adding an extra condition
that the number of relevant grid points may not be larger than the total number of grid
points multiplied by some fraction θ. This is enforced by adding a new criterion to Equa-
tion (2) that states n(U) ≤ θn(p). This criterion is designed to maintain or ensure a low
computation time, wherein the weaker waves are presumably negligible, e.g., below the
sensitivity of the recording instruments. The relative error will also be calculated in the
zones enclosing the high-amplitude waves, which are presented in Figure 5, along with the
density model (top), the map of relevant grid points (middle), and the wavefield (bottom).
The performance of RDM on the fourth model is presented in Table 3 below.

Table 3. Performance indicators for the fourth model.

Parameter θ
Comp. Time

Reduction (%) Relative Error Relative Error in the
Area of Interest

0.5 72.5 0.310 0.112
0.6 71.7 0.229 0.073
0.7 71.5 0.136 0.025
0.8 71.0 0.066 0.002
0.9 66.7 0.005 5.7× 10−7

1.0 66.7 5.4× 10−5 5.7× 10−7
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Figure 5. (a) The density model from [22]. (b) The map of relevant grid points at the final subinterval
of the simulation with parameter θ set to 0.7. (c) The wavefield at the end of the standard FDM
simulation with the strong waves marked with red squares.

4. Discussion

The data in Tables 1 and 2 show that the reduction in computation time from RDM
ranges between 40 and 70%, depending on the modeling scenario and the value of the
δ parameter. Even though the third model is more heterogeneous than the first two,
the reduction in computation time is greater in the third test. This is because the first
two modeling domains are much smaller, so the waves reach the boundaries earlier, and
therefore the map of relevant grid points expands across the domain more rapidly than in
the third model.

While relative error maintains low values in the first three tests, from several percent to
10−4, in the fourth test it reaches 0.3. The large relative error in the fourth test occurs because
an aggressive criterion is used to select relevant grid points, so that many of the weaker
waves are not modeled. The goal in the fourth test is to efficiently yet accurately model
the high-amplitude waves. This goal is achieved as the relative error in areas enclosing the
strong waves (presented in Figure 5) is much smaller, as shown in Table 3.

As stated in the introduction, RDM can be applied to any FDM with pre-defined
spatial operators. This means that RDM can also be applied to other, higher-order FDM.
Higher-order FDM are generally used to reduce the number of grid points needed in the
model, which reduces the memory requirements and can also lead to lower computation
times. We expect the percent reduction in computation to remain the same as RDM is
applied to various FDM. This is because we do not expect that changing the FDM to which
RDM is applied would have a noticeable effect on the RDM’s estimation of what portion
of the domain contains irrelevant grid points. As long as there are parts of the domain
with weak or non-existent waves, RDM can identify areas with irrelevant grid points in the
simulation, and the computation time can be reduced. However, if the total number of grid
points in the domain decreases as a result of the use of higher-order FDM, the perimeter
of the areas of relevant and irrelevant grid points would become more coarse. This could
cause the error due to RDM application to increase slightly. It should also be noted that the
application of RDM does not create any new limitations on the frequency range of waves
that can be modeled in the simulation. The frequency range is entirely dependent on the
grid-point spacing, time-step size, and the FDM to which RDM is being applied.

The calculations in this manuscript are performed in 2-D models. The simulations
can therefore be used to describe a line source and the response from a structure invariant
along strike, which is the direction parallel to the source. In such a scenario, the line of
receivers, possibly provided by DAS, can be oriented in any direction relative to the source.

There are several possibilities for future work. The RDM method can be adapted to
more complex finite difference schemes or to 3-D applications. Currently, we are more
focused on developing a 3-D version of RDM as it will have a greater impact on the range
of applications of RDM. This will take time and additional programming effort, but we
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expect RDM to be able to maintain its significant reduction in computational cost in the
three-dimensional simulations.

5. Conclusions

Wave modeling methods that allow the calculation of pressure in only a subset of grid
points can provide an excellent reduction in computation time and complement a variety of
finite difference schemes. The RDM algorithm developed herein can be applied to any FDM
that uses pre-defined finite difference operators. The developed method uses an adaptively
changing subset of all the grid points to accurately model both first-arriving and reflected
waves. As a result, a high level of accuracy is obtained while reducing computation time
by more than 50%. The reduced domain method was tested on simple models describing
the ocean floor with a buried steel object, which were used to demonstrate how the map of
relevant grid points changes throughout the simulation, and also on more complex and
realistic models which contained many layers and substantial heterogeneity.

While RDM is valuable in most forward modeling scenarios, we expect RDM to be
the most useful in inverse problems wherein many forward modeling runs are required.
Running repeated forward models can take a lot of time. Here, the computation cost
reduction to forward modeling obtained with RDM could be of great value. Furthermore,
RDM may also be very useful when studying a seismic source with reverse time migration
(RTM), where we are only concerned with the waves converging at the source. Because
a big portion of the waves in RTM does not converge at the source, we could apply
RTM aggressively to drastically reduce computation time, while having little effect on the
accuracy of the results.
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