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Abstract: This article considers the influence of the orifice arrangement in a cover of a cylindrical
resonator on the impedance determined by the Dean’s method. A resonator with a small height
and a low perforation degree is studied. This geometry provides different non-uniformity of the
sound field at the resonator backing depending on the orifice arrangement in the resonator cover,
while the number of orifices does not change. It is shown that, with different orifice arrangements,
the impedance values determined by Dean’s method at high frequencies (3000 Hz and more) differ
greatly. The authors propose the modification of Dean’s formula by using the amplitude coefficient
of the zeroth order mode instead of the acoustic pressure at the resonator backing. The computations
performed demonstrate that, in this case, the impedance does not depend on the orifice arrangement
in the resonator cover. The computations consist of three stages: numerical simulation of the plane
wave incidence onto the resonator (simulating a full-scale experiment); carrying out a modal analysis
of the sound field at the resonator backing to extract the zeroth order mode; and determination of the
resonator impedance according to the modified Dean’s formula.

Keywords: acoustic resonator; impedance; Dean’s method; numerical simulation; finite element
method; sound field modal analysis

1. Introduction

It is well known that the main source of noise in a modern aircraft bypass engine
is a fan. To reduce fan noise, the air intake ducts and the bypass ducts are treated with
locally reacting acoustic liners, which are resonators of various shapes, covered with thin
perforated sheets (Figure 1a). The fundamental characteristic of the liner is an acoustic
impedance. It is a complex value that depends on the geometric parameters of the liner
(perforation degree, the resonator height, thickness of the perforated sheet) and on the
specific external conditions, which primarily include a high level of sound pressure and the
presence of a grazing flow in the duct. During the aircraft noise certification, measurements
are carried out at three reference points on the ground corresponding to the take-off, landing
and flyover. Thus, the frequency range of the fan noise turns out to be very wide (from low
frequencies on landing to high frequencies on take-off, taking into account the fact that the
maximum contribution can be made by harmonics above the first). To be able to tune the
acoustic liner to the optimal impedance (the impedance that provides the maximum noise
reduction in the far field) in a wide frequency range, the acoustic liner is made multilayered.
Typically, the acoustic liner contains no more than three layers due to the increase in the
dimensions and mass of the liner, which is critical for an aircraft. In a multilayer liner,
the height of the layers and the perforation degree decrease with distance from the front
surface towards the rigid backing (Figure 1b).
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Figure 1. Triple-layer locally reacting liner: (a) Overall view; (b) Geometry of layers; p is perforation 
degree; h is height of resonant cavity. 

There are a number of methods for determining the impedance of the acoustic liners 
based on measuring the sound field in the duct of the experimental installation. In 
particular, one can note such standardized methods as the method using standing wave 
ratio [1] and the transfer function method [2] proposed in [3,4]. Some methods have been 
developed to determine the impedance, taking into account the influence of the grazing 
flow in the duct. The most popular among them is the impedance eduction method, which 
can be found in detail in [5–8]. Other methods of impedance determination can also be 
noted based on measurements of an acoustic liner sample in a grazing flow impedance 
tube: the direct method with determination of the axial wave numbers by Prony’s method 
[9,10]; single-mode method [10,11]; three-zone method [12]; 4-microphone method [13,14]; 
6-microphone method [15]; and analytical method taking into account the passage of 
sound modes through the impedance transition [16]. 

Another method for determination of acoustic liner impedance both on normal 
incidence impedance tube and on grazing flow impedance tube is the Dean’s method [17]. 
In contrast to the methods mentioned above, in this approach, microphones are installed 
in the walls of the resonator’s cover and backing. The method consists of measuring the 
sound pressure p1 on the front surface of the resonator and the sound pressure p2 on the 
resonator backing (Figure 2) with subsequent calculation of the normalized impedance by 
the formula: 
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It is noteworthy that this method makes it possible to determine the impedance of an 
acoustic liner installed directly on an aircraft engine [18]. This factor is extremely 
important from the point of view of verifying the methods for tuning the acoustic liner to 
the optimal impedance. However, Dean’s method also has disadvantages. Firstly, after 
mounting the measuring probes into the resonator, its integrity is violated, which can lead 
to some distortion of the acoustic characteristics of the resonator and it may be necessary 
to restore the integrity of the liner sample if further impedance measurements are carried 
out by other methods. Secondly, the implementation of this method is very laborious, 
which is associated with precise installation of the probes into the resonator (especially in 
the case of multilayer liner) and with the use of additional devices for rigid fixation of the 
microphones. Thirdly, as proved by calculations in [19], Dean’s method determines the 

Figure 1. Triple-layer locally reacting liner: (a) Overall view; (b) Geometry of layers; p is perforation
degree; h is height of resonant cavity.

There are a number of methods for determining the impedance of the acoustic liners
based on measuring the sound field in the duct of the experimental installation. In particular,
one can note such standardized methods as the method using standing wave ratio [1] and
the transfer function method [2] proposed in [3,4]. Some methods have been developed to
determine the impedance, taking into account the influence of the grazing flow in the duct.
The most popular among them is the impedance eduction method, which can be found
in detail in [5–8]. Other methods of impedance determination can also be noted based on
measurements of an acoustic liner sample in a grazing flow impedance tube: the direct
method with determination of the axial wave numbers by Prony’s method [9,10]; single-
mode method [10,11]; three-zone method [12]; 4-microphone method [13,14]; 6-microphone
method [15]; and analytical method taking into account the passage of sound modes
through the impedance transition [16].

Another method for determination of acoustic liner impedance both on normal in-
cidence impedance tube and on grazing flow impedance tube is the Dean’s method [17].
In contrast to the methods mentioned above, in this approach, microphones are installed
in the walls of the resonator’s cover and backing. The method consists of measuring the
sound pressure p1 on the front surface of the resonator and the sound pressure p2 on the
resonator backing (Figure 2) with subsequent calculation of the normalized impedance by
the formula:

Z = −i
p1
p2

eiϕ 1
sin(kh)

, (1)

where ϕ is a phase between acoustic pressures p1 and p2; k is a freespace wave number; h is
a distance between the front surface and the resonator backing; i is an imaginary unit.

It is noteworthy that this method makes it possible to determine the impedance of an
acoustic liner installed directly on an aircraft engine [18]. This factor is extremely important
from the point of view of verifying the methods for tuning the acoustic liner to the optimal
impedance. However, Dean’s method also has disadvantages. Firstly, after mounting
the measuring probes into the resonator, its integrity is violated, which can lead to some
distortion of the acoustic characteristics of the resonator and it may be necessary to restore
the integrity of the liner sample if further impedance measurements are carried out by
other methods. Secondly, the implementation of this method is very laborious, which
is associated with precise installation of the probes into the resonator (especially in the
case of multilayer liner) and with the use of additional devices for rigid fixation of the
microphones. Thirdly, as proved by calculations in [19], Dean’s method determines the
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impedance of only one resonator; therefore, to obtain the impedance of the whole liner, it is
required to carry out many measurements at different points of the liner.

Acoustics 2022, 4 FOR PEER REVIEW  3 
 

 

impedance of only one resonator; therefore, to obtain the impedance of the whole liner, it 
is required to carry out many measurements at different points of the liner. 

 
Figure 2. Installation of microphones into the resonator cell for determination of the impedance by 
Dean’s method. 

The disadvantages listed above relate to the implementation of Dean’s method in a 
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Figure 2. Installation of microphones into the resonator cell for determination of the impedance by
Dean’s method.

The disadvantages listed above relate to the implementation of Dean’s method in a
full-scale experiment, but they are absent when the experiment is replaced by numerical
simulation. However, the method has another drawback, which we will focus on in this
study. It lies in the fact that Formula (1) was derived under the assumption that only plane
waves propagate in the resonant cavity. This assumption is valid for most cases, since
the non-uniformity of the pressure field caused by the passage of a sound wave through
a perforated plate is observed only near orifices and then, with an increase in the depth
of the resonator, the wave becomes plane. In addition to the depth of the resonator, the
uniformity of the sound field over the cross section is affected by the perforation degree of
the liner: the higher the perforation degree, the faster the wave becomes plane along the
cavity depth. It is also worth noting that the non-uniformity of the pressure field at the
resonator backing increases as frequency increases.

In the case of low height and low perforation degree of a resonator, another geometric
parameter appears that can affect the non-uniformity of the sound field at the resonator
backing—this is the position of the orifices in the resonator cover. This parameter does not
apply to the geometric characteristics of the acoustic liner, since in industrial production
the space between the orifices remains constant (Figure 1); however, in this case, the orifices
can fall on the ribs of the resonator walls. This leads to the appearance of uncharacteristic
narrowband peaks in the impedance spectra, which can be seen in [20]. In addition, a
different number of orifices can fall on a different number of resonator cells, so it is necessary
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to carry out measurements in different resonators, since just one measurement may provide
us inaccurate values of the liner impedance. To avoid the mentioned problems in scientific
research, orifices in liner samples are often spaced unequally so that the same number of
orifices fall on each resonator, providing a given perforation degree for both an individual
resonator and the whole liner sample [21].

Thus, the objectives of the study are as follows:

• evaluation of the effect of the orifice arrangement in the resonator cover at low height
and low perforation degree of the resonator on the impedance determined by the
Dean’s Formula (1);

• elimination of the inaccuracy in determining the impedance associated with a more
complex modal structure of the sound field at the resonator backing.

The article is structured as follows: Section 2 contains a detailed description of the
numerical simulation of the plane wave incidence onto the resonator to obtain the sound
field on the resonator backing at many points, which is difficult to provide in a natural
experiment. Section 3 presents the numerical results of impedance determined by normal
Dean’s formula for different orifice arrangements based on data obtained in numerical
simulation. Section 4 considers the determination of the resonator impedance by Dean’s
method, taking into account the complex modal structure of the sound field on the resonator
backing (this is a new scientific result). Section 5 presents the concise results regarding
numerical simulation, modal analysis and impedance analysis, followed by Section 6,
which concludes the manuscript.

2. Numerical Simulation of the Physical Process in a Resonator under the Incidence of
Plane Waves

To obtain the values of the acoustic pressure at the resonator cover and resonator
backing at different orifice arrangements, a number of computations are carried out. The
computations consist of the numerical simulation of the physical process in a resonator
installed in a normal incidence impedance tube. A three-dimensional geometric model
of the computational domain is the internal volume of the cylindrical resonator, where
acoustic processes occur, attached to the tube 150 mm long. On the other side of the tube,
plane wave radiation is applied (Figure 3). The inner diameter of the impedance tube
is 30 mm; therefore, only a plane wave propagates in the frequency range of interests
500–6000 Hz.
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Table 1. Geometry of the resonator under consideration.

Characteristic Symbol Value

Inner diameter of the resonator, mm D 30
Height of the resonant cavity, mm h 5

Perforated plate thickness, mm t 1
Orifice diameter, mm d 2

Number of the orifices n 7
Perforation degree, % p 3.1

To save computational resources, the computational domain is divided into
two subdomains. The first subdomain, in which only acoustic wave propagation occurs at
a given frequency, occupies most of the computational domain and acoustic processes in it
are described by the Helmholtz equation (hereinafter referred to as Model 1):

∆p + k2 p = 0, (2)

where p is an acoustic pressure; k is a freespace wave number.
The second subdomain is located in the orifices of the resonator cover and near the

orifices on the side of the tube and the cavity of the resonator. This subdomain was created
to simulate the loss of acoustic energy due to friction of particles of the medium on the walls.
The physical processes occurring in this subdomain are described (hereinafter referred to
as Model 2) by:

−continuityequation iωρ +∇ · (ρ0u) = 0, (3)

−momentumequation iωρ0u = ∇ ·σ, (4)

−energyequation ρ0Cp(iωT + u · ∇T0)− αpT0(iωp + u · ∇p0) = ∇ · (kT), (5)

−equationofstate ρ = ρ0(βT p− αpT). (6)

Here, σ = −pI + µ
(
∇u + (∇u)T

)
−
( 2

3 µ− µB
)
(∇ · u)I is the stress tensor;

u =
{

ux uy uz
}T is the acoustic velocity field; ρ is the acoustic density; T is the

acoustic temperature; ω is the angular frequency; I is the identity tensor; µ is the dy-
namic viscosity; µB is the bulk viscosity; Cp is the heat capacity at constant pressure; αp
is the coefficient of thermal expansion; k is the thermal conductivity; βT is the isothermal
compressibility. The subscript 0 refers to the parameters of the equilibrium state.

A slight expansion of the second subdomain from the orifices towards the tube and
resonant cavity is made to provide a smoother transition of the finite element mesh from
orifices with a small diameter to the large diameter of the tube and resonator (Figure 4).
This configuration reduces the jump in the values of acoustic parameters at the boundary
nodes connecting the subdomains for Model 1 and Model 2. Figure 5 shows an example of
the acoustic pressure distribution taken along the symmetry axis of the geometric model
(coordinate z = 0 corresponds to the front surface of the resonator; z-axis is directed towards
the resonator backing). It can be seen that, despite the jumps at the boundary nodes, the
acoustic pressure corresponds to the general trend of a smooth change in pressure along
the axis.



Acoustics 2022, 4 387

Acoustics 2022, 4 FOR PEER REVIEW  5 
 

 

02 =+Δ pkp , (2) 

where p is an acoustic pressure; k is a freespace wave number. 
The second subdomain is located in the orifices of the resonator cover and near the 

orifices on the side of the tube and the cavity of the resonator. This subdomain was created 
to simulate the loss of acoustic energy due to friction of particles of the medium on the 
walls. The physical processes occurring in this subdomain are described (hereinafter 
referred to as Model 2) by: 

- continuity equation         0)( 0 =⋅∇+ uρωρi , (3)

- momentum equation          σu ⋅∇=0ωρi , (4)

- energy equation      ( ) ( ) )(00p0p0 kTppiTTTiC ⋅∇=∇⋅+−∇⋅+ uu ωαωρ , (5)

- equation of state          )( pT0 Tp αβρρ −= . (6)

Here, ( ) ( )IuuuIσ ⋅∇−−∇+∇+−= 













B
T

3
2 μμμp  is the stress tensor; 

{ }T
zyx uuu=u  is the acoustic velocity field; ρ  is the acoustic density; T  is the 

acoustic temperature; ω  is the angular frequency; I  is the identity tensor; μ  is the 
dynamic viscosity; Bμ  is the bulk viscosity; pC  is the heat capacity at constant 

pressure; pα  is the coefficient of thermal expansion; k  is the thermal conductivity; Tβ  

is the isothermal compressibility. The subscript 0 refers to the parameters of the 
equilibrium state. 

A slight expansion of the second subdomain from the orifices towards the tube and 
resonant cavity is made to provide a smoother transition of the finite element mesh from 
orifices with a small diameter to the large diameter of the tube and resonator (Figure 4). 
This configuration reduces the jump in the values of acoustic parameters at the boundary 
nodes connecting the subdomains for Model 1 and Model 2. Figure 5 shows an example 
of the acoustic pressure distribution taken along the symmetry axis of the geometric 
model (coordinate z = 0 corresponds to the front surface of the resonator; z-axis is directed 
towards the resonator backing). It can be seen that, despite the jumps at the boundary 
nodes, the acoustic pressure corresponds to the general trend of a smooth change in 
pressure along the axis. 

 
Figure 4. Finite element mesh of the computational domain. Figure 4. Finite element mesh of the computational domain.

Acoustics 2022, 4 FOR PEER REVIEW  6 
 

 

 
Figure 5. Distribution of acoustic pressure along the symmetry axis of the geometric model at a 
frequency of 3000 Hz: the red line is the real part; the blue line is the imaginary part; coordinate z = 
0 is on the resonator surface. 

Equations (2)–(6) are solved by the finite element method in the COMSOL 
Multiphysics software. For Model 1, a quadratic Lagrange finite element is used. In Model 
2, pressure and temperature are approximated by a quadratic Lagrange finite element and 
velocity is approximated by a cubic Lagrange finite element. The maximum finite element 
size for subdomain 1 is chosen to provide 20 elements per wavelength at 6000 Hz; for 
subdomain 2, the sizes of the elements are even smaller. A boundary layer is applied to 
the walls of the orifices. The thickness of the wall layer element is set to the viscous 
penetration depth 0/2 ωρμδ =visc . Air is used as the working medium in the 
numerical simulation. Computations are carried out at normal environmental conditions 
in the frequency range 500–6000 Hz with a step of 100 Hz. The basic parameters of the 
numerical simulation are presented in Table 2. 

Table 2. Basic parameters of the numerical simulation. 

Characteristic Symbol Value 
Static pressure, Pa 0p  101,325 

Static temperature, C 0T  20 

Maximum element size, mm maxδ  2.8 

Minimum element size, mm minδ  0.028 

3. Calculation of Resonator Impedance Using the Normal Dean’s Formula 
The numerical simulation considered in Section 2 was performed for various 

arrangements of orifices in the resonator cover (Figure 6). The red color dot indicates the 
point where the acoustic pressure is recorded in the numerical simulation to use it as the 
pressure p1 when calculating the impedance using Formula (1). The pressure p2 is 
recorded at the resonator backing at the point exactly under the red dot shown in Figure 
6. 

Figure 5. Distribution of acoustic pressure along the symmetry axis of the geometric model at a
frequency of 3000 Hz: the red line is the real part; the blue line is the imaginary part; coordinate z = 0
is on the resonator surface.

Equations (2)–(6) are solved by the finite element method in the COMSOL Multiphysics
software. For Model 1, a quadratic Lagrange finite element is used. In Model 2, pressure
and temperature are approximated by a quadratic Lagrange finite element and velocity is
approximated by a cubic Lagrange finite element. The maximum finite element size for
subdomain 1 is chosen to provide 20 elements per wavelength at 6000 Hz; for subdomain 2,
the sizes of the elements are even smaller. A boundary layer is applied to the walls of
the orifices. The thickness of the wall layer element is set to the viscous penetration
depth δvisc =

√
2µ/ωρ0. Air is used as the working medium in the numerical simulation.

Computations are carried out at normal environmental conditions in the frequency range
500–6000 Hz with a step of 100 Hz. The basic parameters of the numerical simulation are
presented in Table 2.
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Table 2. Basic parameters of the numerical simulation.

Characteristic Symbol Value

Static pressure, Pa p0 101,325
Static temperature, C T0 20

Maximum element size, mm δmax 2.8
Minimum element size, mm δmin 0.028

3. Calculation of Resonator Impedance Using the Normal Dean’s Formula

The numerical simulation considered in Section 2 was performed for various arrange-
ments of orifices in the resonator cover (Figure 6). The red color dot indicates the point
where the acoustic pressure is recorded in the numerical simulation to use it as the pressure
p1 when calculating the impedance using Formula (1). The pressure p2 is recorded at the
resonator backing at the point exactly under the red dot shown in Figure 6.
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Figure 6. Orifice arrangement in the resonator cover: (a) Variant 1; (b) Variant 2; (c) Variant 3.

Figure 7 demonstrates the curves of the normalized impedance obtained by Formula (1)
for different orifice arrangements in the resonator cover. It can be seen that at high fre-
quencies, completely different dependencies of the impedance on frequency are obtained.
Moreover, their discrepancy is already noticeable at a frequency of 3000 Hz, where the
ratio of the wavelength to the resonator height is still quite large. This result is obviously
due to the fact that the acoustic pressure field at the resonator backing is not uniform (the
incident wave is out-of-plane). In addition, different orifice arrangements lead to different
irregularities of sound pressure at the resonator backing. To confirm this statement, it is
proposed to carry out a modal analysis of the sound field at the resonator backing for all
three variants of the orifice arrangement. It allows us to extract zeroth order mode and use
it in Formula (1) instead of the acoustic pressure p2.
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4. Impedance Determination by the Modified Dean’s Formula

The modal analysis of the sound field at the resonator backing consists of determi-
nation of the amplitude coefficients of the acoustic modes. It is based on minimizing the
residual function, which is the sum difference of squares of absolute values of acoustic
pressure Pe obtained in numerical simulation and theoretical acoustic pressure Pt:

Φ =
K

∑
k=1

∣∣Pe
k − Pt

k
∣∣2, (7)

where k is an index of a point at the resonator backing where acoustic pressure is determined;
K is a number of points at the resonator backing.

The array of points at the resonator backing for recording acoustic pressure Pe in
numerical simulation is shown in Figure 8.
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The theoretical value of the acoustic pressure at circular cross section of a cylindrical
duct is the sum of the acoustic modes:

Pt
k =

M

∑
m=−M

N

∑
n=0

CmnWmn J|m|(krmnrk)eimθk , (8)

where m, n are the circumferential and radial orders; M, N are the limits of circumferential
and radial orders; Cmn is the amplitude mode coefficient; J|m| is the Bessel function of order
m; krmn = λmn/R is the radial wave number; λmn is n-th root of equation J′ |m|(x) = 0; R is
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the radius of cylindrical cavity; rk, θk is the radial and angular coordinate of k-th point at
resonator backing. The normalization factor is given by:

Wmn =


1 for krmn = 0(planewave)[(

1−
(

m
krmnR

)2
)(

J|m|(krmnR)
)2
]− 1

2
for krmn 6= 0

The minimization of residual function (7) is performed by the conjugate gradient method:

{C}j+1 = {C}j − hj · {S}j,

where {C} is a column vector consisting of the amplitude coefficients of the modes Cmn from
Formula (8); j is iteration index; {S}j = ∇Φj + bj−1 · ∇Φj−1; bj−1 = ‖∇Φj‖2/‖∇Φj−1‖2;

∇Φ =
{

∂Φ
∂C1

, ∂Φ
∂C2

, · · · , ∂Φ
∂C(2M+1)(N+1)

}T
.

From the modal analysis of the sound field, we take the amplitude coefficient of
the zeroth order mode C00 corresponding to the acoustic pressure that would be at the
resonator backing if only a plane wave incidences (for the zeroth order mode, the other
multipliers in expression (8) are equal to unity) and substitute C00 in Formula (1) instead of
the pressure p2:

Z = −i
p1

C00
eiϕ 1

sin(kh)
. (9)

Hereinafter, this formula is referred to as the modified Dean’s formula for calculating
the resonator impedance.

Figure 9 shows the results of impedance calculations according to the Formula (9). It
is clearly seen that the impedance for all variants of the orifice arrangement fall within the
same trend. Small deviations are associated with a limited number of modes in Formula (8),
which are taken into account in modal analysis of the sound field at the resonator backing
and also with the fact that the final value of the residual function (7) is not exactly zero.
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Thus, we can conclude that the impedance determined by Formula (9) does not depend
on the orifice arrangement in the resonator cover. In addition, we note that the impedance
curves in Figure 9 coincide with those in Figure 7, determined by Formula (1) for the
Variant 1 of the orifice arrangement, i.e., when the orifices are uniformly distributed in the
resonator cover.
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5. Discussion

As a result of the studies, it is revealed that the complex modal structure of the sound
field at the resonator backing can greatly affect the impedance calculated by the normal
Dean’s formula. Determination of the impedance taking into account the complex modal
structure of the sound field in the resonator is proposed to perform in three steps: numerical
simulation of the plane wave incidence onto the resonator; modal analysis of the sound
field at the resonator backing; and calculation of the impedance by the modified Dean’s
formula. Let us briefly discuss here the main points and results concerning each stage.

Numerical simulation of wave propagation in the impedance tube and in the most
part of the resonator cavity can be performed based on the Helmholtz equation. For more
correct modeling of acoustic energy dissipation in the orifices and their vicinity, numerical
simulation is performed based on linearized equations of continuity, momentum and
energy and equation of state. Conducting this stage allows us to determine the sound
pressure field at the resonator backing at a multitude of points, which is extremely difficult
to realize in a natural experiment. The results of the numerical simulation for a resonator
with a small height and a low perforation degree indicate that:

• the sound field at the resonator backing is non-uniform for different orifice arrangements;
• the sound pressure distribution at the resonator backing is different for different

orifice arrangements.

The modal analysis of the sound field at the resonator backing consists of finding
the amplitude coefficients of sound modes. This problem can be solved on the basis of
minimization of the residual function between the theoretical and experimental (in our
case the natural experiment replaced by numerical simulation) values of the sound field.
The minimization procedure can be performed by any known method, for example, by the
method of conjugate gradients. The results of the modal analysis are the following:

• the amplitude coefficients of the zeroth order mode have been determined;
• the amplitude coefficients of the zeroth order mode turn out to be almost the same for

different orifice arrangements.

The resonator impedance is calculated using the modified Dean’s formula. The
distinction between the modified Dean’s formula and the normal Dean’s formula is that
the amplitude coefficient of the zeroth order mode is used instead of the acoustic pressure
at the resonator backing. The results of the calculations show that:

• impedance does not depend on the orifice arrangement in the resonator cover;
• with a uniform orifice arrangement, the impedance is the same as the impedance

determined by the normal Dean’s formula.

6. Conclusions

The conducted studies show that for a resonator with a low height and a small
perforation degree, the position of the orifices in the resonator cover can significantly
change the impedance in the high-frequency region if it is determined by the normal Dean’s
formula. This result is associated with the uneven distribution of acoustic pressure at the
resonator backing. To make the impedance independent of the orifice arrangement, the
authors propose the modification of the Dean’s formula by using the amplitude coefficient
of the zeroth order mode instead of the acoustic pressure at the resonator backing.

Thus, it can be assumed that to determine the impedance by the Dean’s method in
full-scale tests, it is better to use acoustic liner samples with uniformly distributed orifices.
This should make it possible to accurately determine the impedance of a resonator with a
small height and perforation degree only from measurements of acoustic pressure in one
point at the resonator backing, i.e., use the normal Dean’s formula, and do not perform
modal decomposition, because the impedance values for these two cases are the same.
Confirmation of this assumption requires the collection of the statistics (conducting studies
on samples with different numbers of orifices and their arrangement), which should also
include the implementation of a full-scale experiment on measuring the acoustic pressure
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at many points of the resonator backing in order to conduct a modal analysis of the
sound field.
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