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Abstract: A new vibro-acoustic method is presented to analyze the sound radiation behavior of
orthotropic panel-form sound radiators using strip-type exciters to exert line loads to the panels for
sound radiation. The simple first-order shear deformation theory together with the Ritz method
is used to formulate the proposed method that makes the vibro-acoustic analysis of elastically
restrained stiffened orthotropic plates more computationally efficient than the methods formulated
on the basis of the other shear deformation theories. An elastically restrained orthotropic plate
consisting of two parallel strip-type exciters was tested to measure the experimental sound pressure
level curve for validating the effectiveness and accuracy of the proposed method. The resonance
characteristics (natural frequency and mode shape) detrimental to sound radiation are identified in
the vibro-acoustic analysis of the orthotropic plate. For any orthotropic sound radiation plate, based
on the detrimental mode shapes, a practical procedure is presented to design the line load locations
on the plate to suppress the major sound pressure level dips for enhancing the smoothness of the
plate sound pressure level curve. For illustration, the sound radiation enhancement of orthotropic
plates with different fiber orientations for aspect ratios equal to 3, 2, and 1 subjected to one or two
line loads is conducted using the proposed procedure. The results for the cases with two line loads
perpendicular to the fiber direction and located at the nodal lines of the major detrimental mode
shape may find applications in designing orthotropic panel-form speakers with relatively smooth
sound pressure level curves.

Keywords: orthotropic plate; acoustics; vibration; resonance; sound radiation

1. Introduction

In the audio industry, composite plates have been used to fabricate panel-form speak-
ers for sound radiation. In general, a panel-form speaker is much thinner than a conven-
tional cone-type speaker. Due to its thinness, the panel-form speaker has the advantage
to be used in the device, which may have limited space for installing an audio system.
For instance, consumer electronics such as TVs, computers, tablets, cell phones, etc., are
getting much thinner so that panel-form speakers become more suitable for installation
than the conventional cone type speakers. However, the use of a plate as a sound radiator
has a shortcoming. Regarding stiffness, a plate is generally weaker than a cone structure.
Therefore, a sound radiation plate is more susceptible to produce major dips or drops on
the sound pressure level (SPL) curve than a cone-shape diaphragm. Regarding sound
radiation fidelity, the suppression of SPL dips has become an important topic of research
in the development of panel-form speakers. In general, for a diaphragm vibrating at a
particular frequency, when severe interference among the sounds radiated from different
regions on the diaphragm occurs, a major SPL dip will be produced at that frequency. It
is recognized that the existence of major dips on the SPL curve will affect the fidelity of
a speaker. Therefore, the suppression of the major SPL dips has always been an essential
task in the design of a sound radiator. The sound radiation property of a sound radiation
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plate is closely related to the modal characteristics (mode shape and natural frequency)
of the plate, i.e., some mode shapes may be beneficial or detrimental to sound radiation.
Therefore, it is important to have the information about the actual modal characteristics
when designing a sound radiation plate. Regarding plate free vibration, many researchers
have proposed different methods for free vibration analysis of composite plates involving
various boundary and loading conditions [1–21]. For instance, Ashton [2] used the Ritz
method to study the effects of anisotropy on the natural frequencies and mode shapes of
free anisotropic square plates. Hung et al. [8] studied the free vibration of symmetrically
laminated rectangular plates with elastic edge restraints using an eigenvalue formulation.
In their study, the first 10 natural frequencies were determined for the plates. Kam and his
associates [16–19] proposed methods to analyze the free vibration of laminated composite
plates with different types of elastic restraints and study the effects of the elastic restraint
locations on the modal characteristics of composite plates. Ho et al. [21] used the Simple
First-order Shear Deformation Theory (SFSDT) to formulate a four-node 24 degrees of
freedom 2D element to analyze the free vibration of laminated composite plates. When
subjected to forced vibration, a plate will radiate sounds that may affect the surrounding
environment. Hence, many researchers have proposed different methods to study the
sound radiation behavior of plates [22–33]. For instance, Lomas and Hayek [26] presented
a Green function solution to study the steady-state vibration and sound radiation of elasti-
cally restrained rectangular plates. They also studied the effects of the support conditions
on the low frequency sound radiation from a plate. A number of researchers [28–30] have
studied the sound radiation behaviors of orthotropic plates with attached masses and
regular boundary conditions. With the use of attached point masses, they tried to obtain
a uniform distribution of the natural modes to improve the sound response of the plate.
Nayan and Kam [31] proposed a SFSDT based Ritz method to analyze the vibro-acoustic
behavior of shear deformable sound radiation plates excited by a circular electro-magnetic
exciter. Jiang et al. [32] used a First-order Shear Deformation Theory (FSDT) based Ritz
method to determine the optimal diameter of a centrally located ring load to make a sound
radiation plate produce a relatively smooth SPL curve. Later, Jiang et al. [33] proposed the
use of strip type exciters to excite composite plates for sound radiation. They used a CPT
based Ritz method to study the sound radiation efficiency of the composite plates subjected
to a plural number of line loads and suggested the use of at least three transverse line loads
to obtain relatively smooth SPL curves. In their study, it was shown that the use of line
loads to excite composite plates for sound radiation may find applications in designing
new types of panel-form speakers. Therefore, based on their findings, it is worthwhile to
extend the development of panel-form speakers composed of strip type exciters so that line
loads can be used to excite orthotropic plates for sound radiation in a more economic and
effective way. In the past, many researchers have devoted studies to the characteristics of
structural acoustic radiation and determine the sound radiation efficiency of structures via
an acoustic radiation mode approach. In particular, several methods have been proposed to
study the sound radiation characteristics such as the effects of modal interaction on sound
radiation, modal sound radiation efficiencies and total acoustic power out of different
structures [34–39]. On the other hand, many researchers have utilized the information of
acoustic radiation modes for active structural noise control/suppression [40–44]. Therefore,
it is clear that modal characteristics can play an important role in the acoustic radiation of a
structure and acoustic radiation modes are useful information for noise control. Regarding
the sound radiation of panel-form speakers, the goal is to achieve a smooth SPL curve. One
way to achieve this goal is to suppress the modes that are inefficient for sound radiation.
Therefore, the sound quality, especially smoothness of the SPL curve of a panel-form
speaker, can be suitably enhanced if the modal characteristics that are inefficient for sound
radiation are identified and properly dealt with.

In this paper, a new vibro-acoustic method is formulated to study the vibro-acoustics
of elastically restrained stiffened shear deformable orthotropic plates subjected to line
loads. The experimental SPL curve of an orthotropic plate with aspect ratio of 2 excited
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by two strip type exciters is used to validate the proposed method. The mode shapes
that can induce the major SPL dips/drops for several orthotropic sound radiators with
different aspect ratios are identified to approximate the locations of line loads for SPL dip
suppression. Finally, the proper excitation locations of two line loads that can enhance
the smoothness of the SPL curves of panel-form composite sound radiators with different
aspect ratios and fiber angles are determined using the proposed method.

2. Free Vibration of Composite Sound Radiation Plate

A schematic description of the strip type electro-magnetic exciter [45] used in a panel-
form sound radiator is shown in Figure 1. Here, the voice coil attached to the sound
radiation plate works as a stiffener to the plate. The electro-magnetic force F generated
by the strip-type exciter is assumed to be distributed uniformly on the plate as a line
load. Here, F is expressed as F = BLqI with B = magnetic flux density, Lq = length of wire
immersed in the magnetic field, I = electric current. It is noted that, in the audio industry,
the system parameters of a speaker such as damping ratio, spring constant, BLq, and mass
can be determined via the measurement of the impedances of the speaker with and without
an attached mass using LMS [46]. Once these system parameters are available, they can be
used to formulate the following vibro-acoustic method.

Figure 1. Schematic description of flat-strip type exciter.

Consider the rectangular orthotropic sound radiation plate excited by two longitu-
dinal and two transverse voice coils, which exert totally four line loads to the plate as
shown in Figure 2. Let Lf be the length of the line load, Lb the distance between the lon-
gitudinal line loads, and La the distance between the transverse line loads. The plate of
size a (length) × b (width) × hp (thickness) with a ≥ b is elastically restrained along the
plate periphery by distributed springs with translational and rotational spring constant
intensities KLi and KRi, respectively. Each voice coil is restrained at the center by a spring
with spring constant KC. The x-y plane of the reference coordinate is located at the mid-
plane of the plate. According to the SFSDT, the displacement field of the orthotropic plate
is expressed as

up = uop(x, y, t)− zp
∂wpB

∂x (x, y, t)
vp = vop(x, y, t)− zp

∂wpB
∂y (x, y, t)

wp = wpB(x, y, t) + wpS(x, y, t)

(1)

where up, vp, and wp are the displacements at any point in the plate in the x, y, and
z directions, respectively; uop, vop are plate in-plane displacements; wpB is the bending
induced deflection; and wpS is through-thickness shear induced deflection. It is noted
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that the in-plane displacements are taken into account in the above equation because the
orthotropic plate becomes unsymmetrical when stiffeners are attached to the plate. It is also
noted that in the SFSDT, only four displacement components, i.e., uop, vop, wpB and wpS,
are required to form the displacement field for the plate. In contrast, in the first-order shear
deformation theory (FSDT), five displacement components, i.e., two in-plane displacements,
vertical displacement and two shear rotations, are required to form the displacement field
for the plate. Therefore, it is obvious that, in terms of computational efficiency, the present
vibro-acoustic method formulated on the basis of the SFSDT should be more attractive than
that on the basis of the FSDT or other high-order shear deformation theories.
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Figure 2. Schematic description of sound radiation plate: (a) Model geometry, and (b) coordinates.

The strain-displacement relations of the plate are expressed as

εx =
∂uop
∂x − zp

∂2wpB
∂x2

εy =
∂uop
∂y − zp

∂2wpB
∂y2

γxy =
∂uop
∂y +

∂vop
∂x − 2zp

∂2wpB
∂x∂y

γxz =
∂wpS

∂x

γyz =
∂wpS

∂y

(2)
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where ε and γ are normal and shear strains, respectively. The stress–strain relations of
the orthotropic composite plate in the global x-y-z coordinate system are expressed in the
following general form [47]:

σx
σy
τyz
τxz
τxy

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66




εx
εy

γyz
γxz
γxy

 (3)

where σ and τ are normal and shear stresses, respectively; and Qij are the lamina stiffness
coefficients, which are expressed as

Q11 = E1
1−ν12ν21

; Q12 = ν12E2
1−ν12ν21

; Q22 = E2
1−ν12ν21

Q44 = G23; Q55 = G13; Q66 = G12
(4)

where Ei is Young’s modulus in the ith direction, νij Poisson ratio, and Gij shear modulus.
The plate stress resultants are defined as(

Nx, Ny, Nxy
)
=
∫ h

2
− h

2

(
σx, σy, σxy

)
dz(

Mx, My, Mxy
)
=
∫ h

2
− h

2

(
σx, σy, σxy

)
zdz
(
Qx, Qy

)
=
∫ h

2
− h

2

(
σxz, σyz

)
dz

(5)

In view of Equations (2), (3) and (5), the stress resultants can be expressed in terms of
displacements

(
u, v, wpB, wpS

)
as

Nx
Ny
Qy
Qx
Nxy
Mx
My
Mxy


=



A11 A12 0 0 0 0 0 0
A12 A22 0 0 0 0 0 0
0 0 A44 0 0 0 0 0
0 0 0 A55 0 0 0 0
0 0 0 0 A66 0 0 0
0 0 0 0 0 D11 D12 0
0 0 0 0 0 D12 D22 0
0 0 0 0 0 0 0 D66





uop, x
vop, y
wpS, y
wpS, x

uop, y + vop, x
−wpB, xx
−wpB, yy
−2wpB, xy


(6)

where Aij, and Dij are the extensional and bending stiffness coefficients, respectively, which
are written as

(
Aij, Dij

)
=

N

∑
n=1

∫ zn+1

zn
Qn

ij

(
1, z2

)
dz (7)

The strain energy, Up, of the plate is

Up =
1
2

∫
Vp

(
σxεx + σyεy + τxyγxy + τxzγxz + τyzγyz

)
dVp (8)

In view of the relations given in Equations (1)–(7), Equation (8) can be rewritten as

Up = 1
2

a∫
0

b∫
0
[D11

(
∂2wpB

∂x2

)2
+ A11

(
∂uop
∂x

)2
+ 2D12

(
∂2wpB

∂x2
∂2wpB

∂y2

)
+ 2A12

(
∂uop
∂x

∂vop
∂y

)
+D22

(
∂2wpB

∂y2

)2
+ A22

(
∂vop
∂y

)2
+ 4D66

(
∂2wpB
∂x∂y

)2
+ 2A66

(
∂uop
∂y

∂vop
∂x

)
+A66

(
∂uop
∂y

)2
+ A66

(
∂vop
∂x

)2
+ A44Kp

(
∂wpS

∂y

)2
+ A55Kp

(
∂wpS

∂x

)2
]dxdy

(9)
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For vibration analysis, the knowledge of the actual distribution of the through thick-
ness shear stress is not required. Hence, the shear correction factor Kp has been adopted in
calculating the above strain energy and is assumed to be 0.85.

The kinetic energy, Tp, of the plate is

Tp =
1
2

∫
Vp

ρp

( .
up

2 +
.
vp

2 +
.

wp
2
)

dVp (10)

where ρp is plate mass density. In view of Equation (1), Equation (10) can be rewritten as

Tp = 1
2

b∫
0

a∫
0

ρp[hp

(
∂uop

∂t

)2
+ hp

(
∂vop

∂t

)2
+ hp

(
∂wpB

∂t

)2
+ hp

(
∂wpS

∂t

)2
+ 2hp

(
∂wpB

∂t

)(
∂wpS

∂t

)
+

hp
3

12

(
∂2wpB
∂t∂x

)2
+

hp
3

12

(
∂2wpB
∂t∂y

)2
]dxdy

(11)

The voice coils are treated as simple beams in the vibration formulation. Observing
the displacement continuity at the interface between the plate and beam, the displacement
field of the beam oriented, for instance, in the x-direction is expressed as

ub = uop(x, t)−
(

hp

2
+ Zb

)
∂wpB

∂x
− Zb

∂wpS

∂x
vb = 0 wb = wpB(x, t) + wpS(x, t) (12)

vb = 0

wb = wpB(x, t) + wpS(x, t)

where ub, vb, and wb are beam displacements. The beam lateral displacement is negligible
and thus treated as zero. The strains and strain energy of the beam are given, respectively, as

εxb = ub
∂x =

∂uop
∂x −

(
hp
2 + Zb

)
∂2wpB

∂x2 − Zb
∂2wpS

∂x2

εyb = 0, εzb = 0, γyzb = 0, γxzb = 0, and γxyb = 0
(13)

and

Ub = 1
2

∫ Lb
2
−Lb

2

[
Ebtbhb

(
∂uop
∂x

)2
− Ebtbh2

b

(
∂uop
∂x

)(
∂2wpB

∂x2

)
− Ebtbh2

b

(
∂uop
∂x

)(
∂2wpS

∂x2

)
−Ebtbhbhp

(
∂uop
∂x

)(
∂2wpB

∂x2

)
+ 2

3 Ebtbh3
b

(
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(14)

where Eb is beam Young’s modulus, Lb length, hb height, and tb thickness. The kinetic
energy Tb of the beam is

Tb =
1
2

∫
ρb

(∂uop

∂t
−
(

hp

2
+ Zb

)
∂2wpB

∂x∂t
− Zb

∂2wpS

∂x∂t

)2

+

(
∂wpB

∂t
+

∂wpS

∂t

)2
dVb (15)

where ρb is beam mass density.
Consider one voice coil to be attached at the plate center. The strain energy, Us, stored

in the elastic restraints is written as
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US = KL1
2

∫ b
0 w2

∣∣∣
x=0

dy + KL2
2

∫ b
0 w2
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dy + KL3
2

∫ a
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2 , b

2

) (16)

The total strain energy U and total kinetic energy T of the sound radiating plate are
written, respectively, as

U = Up +
N

∑
i=1

Ubi + Us (17)

and

T = Tp +
N

∑
i=1

Tbi (18)

where N is number of beams.
Consider the non-dimensional coordinates ξ and η for which ξ = 2x/a − 1 and

η = 2y/b − 1. Ritz method is used to study the free vibration of the sound radiation plate. The
displacements of the plate expressed in terms of the non-dimensional coordinates (ξ, η) are

uop(ξ, η, t) = Uop(ξ, η) sin ωt

vop(ξ, η, t) = Vop(ξ, η) sin ωt

wpB(ξ, η, t) = WpB(ξ, η) sin ωt

wpS(ξ, η, t) = WpS(ξ, η) sin ωt

(19)

with

Uop(ξ, η) =
Â
∑

i=1

B̂
∑

j=1
Cijφi(ξ)ψj(η)

Vop(ξ, η) =
Ĉ
∑

i=1+Â

D̂
∑

j=1+B̂
Cijφi(ξ)ψj(η)

WpB(ξ, η) =
Î

∑
i=1+Ĉ

Ĵ
∑

j=1+D̂
Cijφi(ξ)ψj(η)

WpS(ξ, η) = ∑M̂
i=1+ Î ∑N̂

j=1+ Ĵ Cijφi(ξ)ψj(η)

(20)

where ω is circular frequency; t is time; Cij are unknown constants; Â,B̂, Ĉ, D̂, Î, Ĵ, M̂, N̂
denote the numbers of terms in the series. Legendre’s polynomials are used to represent the
characteristic functions, φ and ψ. The characteristic functions, for instance, φi(ξ), are given as

φ1(ξ) = 1,

φ2(ξ) = ξ, −1 ≤ ξ ≤ 1

for n ≥ 3,

φn(ξ) = [(2n− 3)ξ × φn−1(ξ)− (n− 2)× φn−2(ξ)]/(n− 1)

(21)

with the satisfaction of the following orthogonality condition:

∫ 1

−1
φn(ξ)φm(ξ)dξ =

{
0, i f n 6= m

2
2n − 1, i f n = m

(22)

Define the functional Π = Tmax − Umax, where Tmax and Umax are the maximum kinetic
and strain energies, respectively. The extremization of the functional Π gives the following
eigenvalue problem. [

K−ω2M
]
C = 0 (23)
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where K and M are structural stiffness and mass matrices, respectively. The solution of
the above eigenvalue problem can lead to the determination of the natural frequencies
and mode shapes of the plate. The terms in K and M for an orthotropic plate with two
longitudinal voice coils are listed in Appendix A.

3. Determination of Sound Pressure Level Curve

The smoothness of the sound pressure level curve can be used as a criterion for sound
fidelity assessment of a sound radiator. Hence, the construction of the sound pressure level
curve for a sound radiator is an essential task in the design process. When subjected to
a harmonic excitation, a plate will deflect to move air for sound radiation. Consider the
sound radiation of the baffled plate with area S in Figure 3. The sound pressure p(r, t) at
point P in space can be calculated using the first Rayleigh integral.

Figure 3. Sound pressure measurement of baffled plate.

If the effects of air loading on the plate vibration are neglected, the sound pressure
p(r, t) is expressed as

p(r, t) =
−v2ρ0

2π ∑
i

Aiej(2vt+θi−kRi)
∆Si
Ri

(24)

where Ai is the central deflection amplitude of differential surface element i; ρ0 is air
density; k is wave number (v/c) with c being speed of sound; ri is the distance between
the plate center and the point of measurement; Ri =

∣∣rp − ri
∣∣ the distance between the

observation point and the position of the surface element at ri; θi is phase angle; j =
√
−1.

For air at 20 ◦C and standard atmospheric pressure, ρ0 = 1.2 kg/m3 and c = 344 m/s. The
SPL at point P can be calculated using the following equation.

SPL ≡ 20log10

(
prms

2× 10−5

)
dB (25)

with

prms =

[
1
T

∫ T/2

−T/2
|p(r, t)|2dt

] 1
2

(26)

where T is period of harmonic load.
It is noted that both Equations (24) and (26) are determined via a numerical approach.
The deflection amplitude Ai and phase angle θi in Equation (24) can be obtained by

solving the following equations of motion.

M
..
C + D

.
C + KC = F (27)
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where the dot(s) above C stands for derivative. The damping matrix D is assumed to be in
the form of Rayleigh damping.

D = αM + βK (28)

with α = ζω, β = 2ζ/ω where ζ is damping ratio at the first resonant frequency of the
elastically restrained plate. Once the BL of the excitation force has been determined in
the measurement of the sound radiator impedance and the input power of the strip-type
electromagnetic exciter chosen, the force vector in Equation (27) can be established. It is
noted that the derivation of the force vector F has considered the contributions of wpB and
wpS to the work done by the applied force. Consider a longitudinal line load of length Lf
having constant load amplitude Fo, which is located at the plate center and oriented in the
ξ−direction. The terms in F are expressed as

Fmn = ab
4 ϕi(0)

∫ La
a
− La

a

I
∑

i=1

J
∑

j=1
q(ξ, 0)φi(ξ)dξ

for m = 1 + Î, . . . , M̂; n = 1 + Ĵ, . . . , N̂

= 0, for other i, j

(29)

For the case of two transverse line loads applied to the plate at the locations ξ = La/a
and −La/a, respectively, the terms in F are expressed as

Fmn = ab
4

{
φi

(
− La

a

) ∫ Lb
b

− Lb
b

I
∑

i=1

J
∑

j=1
q
(
− La

a , η
)

ϕj(η)dη + φi

(
La
a

) ∫ Lb
b

− Lb
b

I
∑

i=1

J
∑

j=1
q
(

La
a , η

)
ϕj(η)dη

}
for m = 1 + Î, . . . , M̂; n = 1 + Ĵ, . . . , N̂

= 0, for other i, j

(30)

For the case of two longitudinal line loads applied to the plate at the locations η = Lb/b
and −Lb/b, respectively, the terms in F are expressed as

Fmn = ab
4

{
ϕi

(
− Lb

b

) ∫ La
a
− La

a

I
∑

i=1

J
∑

j=1
q
(

ξ,− Lb
b

)
φj(ξ)dξ + ϕi

(
Lb
b

) ∫ La
a
− La

a

I
∑

i=1

J
∑

j=1
q
(

ξ, Lb
b

)
φj(ξ)dξ

}
for m = 1 + Î, . . . , M̂; n = 1 + Ĵ, . . . , N̂

= 0, for other i, j

(31)

It is worth to point out that according to the method of modal analysis, the vibration
shape (response) of the plate is derived from the contributions of all the modes under
consideration. When the excitation frequency coincides with a specific natural frequency,
the amplitude of the mode shape associated with the natural frequency will dominate the
amplitude of the vibration shape of the plate. On the other hand, from the energy point
of view, each mode shape will share a portion of the total strain energy of the plate in
vibration. Nevertheless, when the load is placed at the nodal line of a particular mode
shape of the plate, the mode shape will be suppressed and thus have no contribution to the
vibration shape (response) of the plate. In such case, the particular mode shape will have no
share of the total strain energy of the plate, i.e., the total strain energy will be shared by the
other modes so that the strain energy stored in each mode will increase. The contributions
of the other modes (except the particular mode) for forming the vibration shape of the
plate can be determined in the modal analysis through the solution of Equation (27). Mode
shapes are also closely related to the sound radiation of the plate. Consider a particular
mode shape that has adverse effects on sound radiation. When the excitation frequency
coincides with the natural frequency of the particular mode, the amplitude of the mode
will be magnified to cause resonance. Under this situation, the sound radiation power of
the particular mode will play a dominant role in the sound radiation of the plate while the
contributions of the other modes become negligible. The formation of this kind of vibration



Acoustics 2021, 3 651

shape generally leads to the production of a SPL dip at that particular natural frequency.
Nevertheless, when the load is placed at the nodal line of the particular mode shape, this
mode shape will be suppressed so that no adverse effect on the sound radiation of the plate
will be produced. On the other hand, the modes that are neighboring to the suppressed
mode are generally beneficial to sound radiation. Therefore, from the energy point of view,
the increases in the sound radiation powers of the other modes, especially those in the
vicinity of the suppressed mode, will lead to the increase in sound radiation power of the
vibration shape and make the SPL dip disappear. Hereafter, a procedure will be presented
to illustrate the beneficial effects on smoothing SPL curves by eliminating the detrimental
mode shape from the vibration shape.

4. Experimental Investigation

The sound radiation of a rectangular orthotropic plate excited by two strip type exciters
was studied experimentally. The excitation pattern for the plate is shown in Figure 4 in
which the dimensional parameters for the two transverse flat voice coils oriented in the
y-direction were chosen as a length of the flat voice coil Lf = 45 mm and distance between
the two voice coils Lf = 60 mm.

Figure 4. Locations of voice coils for exciting plate (a/b = 2, a = 100 mm).

The sound radiation plate with aspect ratio a/b = 2 (a = 100 mm) and thickness
hp = 2 mm was made of Balsa wood, of which the material is orthotropic. The material
properties of Balsa wood were determined experimentally [48]. Herein, without loss of
generality, it is assumed that the transverse shear moduli G13 and G23 are the same as
the in-plane shear modulus G12. The properties of the orthotropic plate (fiber oriented
in x-direction, i.e., fiber angle θ = 0◦), stiffeners, and the equivalent edge spring constant
intensities were given as:

(i) Plate
E1 = 3.7 GPa, E2 = 0.055GPa,

G12 = G12 = 0.05 GPa, G23 = 0.0083GPa

ν12 = ν13 = 0.03, ν23 = 0.2, ρp = 130kg/m3

Dampingcoefficient : α = 676.445, β = 7.5× 10−6

(ii) Spring KL = 7087.116 N/m2, KR is negligible, and KC = 800 N/m2 for each voice coil.
(iii) Voice coil Length Lf = 45 mm, height is 10 mm, thickness is 0.75 mm; equivalent

Young’s modulus E = 18.3 Gpa, ρb = 2600 kg/m3.

The sound radiation test of the speaker was conducted in a semi-anechoic chamber.
The impedance of each voice coil was 4.574 Ohm. The voice coils were connected in parallel.
The sound pressure generated from the plate under an input electric power of one Watt was
measured using a microphone placed at a location of 1 m directly away from the center of
the front surface of the sound radiator. The amplitude of the excitation force Fo = 0.4438 N.
The sweep sine technique together with the frequency range 0–20 kHz was used to perform
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the sound radiation test. The measured sound pressure signals were processed using LMS
to produce the SPL curve of the speaker.

5. Results and Discussion

The experimental SPL curve of the panel-form sound radiator consisting of two trans-
verse line loads will be used to validate the capability of the present method in predicting
accurate SPL curves for orthotropic sound radiation plates. The theoretical SPL curve pre-
dicted using the present method is compared with the experimental one as shown in Figure 5.

Figure 5. SPL curve of orthotropic plate consisting of two transverse voice coils (a/b = 2, a = 100 mm).

It is noted that both SPL curves have similar trends and are in good agreement in the
audible frequency range 50–20 kHz. Furthermore, both the theoretical and experimental
curves also comprise a major SPL dip in the frequency interval 2–4 kHz. Hence, the close
agreement between the experimental and theoretical SPL curves has demonstrated the
suitability of the present method for sound radiation analysis of panel-form composite
sound radiators. In addition, it is noted that the capability of the proposed method in
predicting accurate modal characteristics (natural frequency and mode shape) has been
verified by the experimental results reported in the literature [49]. On the other hand, it is
worthwhile to point out that the vibration shape associated with the SPL dip is evolved from
the mode shape associated with the natural frequency of 3083 Hz. In view of the evolution
process involving the vibration shapes at different excitation frequencies as given in Table 1,
it is easy to notice that the vibration shape associated with the SPL dip is indeed evolved from
the mode shape at 3083 Hz when the plate is excited by the two line loads. The inspection of
the vibration shape associated with the major SPL dip has also revealed that the plate area
is divided into two types of regions which have opposite phase angles. The interference
among the sounds radiated from these regions leads to the major SPL dip at 4250 Hz.

The effects of excitation locations on the SPL curves of flat-panel speakers with different
plate aspect ratios and fiber orientations will be studied using the proposed method. First, con-
sider the case in which the plate is excited by a longitudinal voice coil (length L f = 53.73 mm)
passing through the plate center. The dimensional parameters for the plate under consid-
eration are chosen as aspect ratio a/b = 3, length a = 53.73 mm, and thickness hp = 2 mm.
The plate material properties are the same as those adopted in the experimental study. The
information of other system parameters adopted in the analysis is given as:

Voice coil: Eb = 18.3 Gpa, ν = 0.145, ρb = 2600 kg/m3, hp = 2 mm (height),
tb = 0.55 mm (thickness)

Amplitude of excitation force: Fo = 0.576 N
Damping: = 7.5× 10−6, α = 676.445
Elastic restraint: Surround, KL = 2699 N/m; KR = 0; Voice coil, KC = 600 N/m
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The excitation force is uniformly distributed on the longitudinal stiffener. As men-
tioned before, some mode shapes may be closely related to SPL dips. Herein, several mode
shapes, which may induce adverse effects on the sound radiation of the plate with different
fiber angles, are listed in Table 2. To make the table concise, the mode shapes that are bene-
ficial to sound radiation are not shown in Table 2. It is noted that the modal characteristics
(natural frequency and mode shape) of the plate with 0◦ fiber angle are different from those
of the plate with 90◦ fiber angle. Thus, it is foreseeable that the plate with different fiber
angles may have different excitation patterns for suppressing the SPL dips of the plate.
Again, the inspection of the mode shapes comprising regions with opposite phase angles
has revealed that some of the mode shapes may lead to major SPL dips. Therefore, the
suppression of the vibration shape evolved from a detrimental mode shape is an important
task in the design of panel-form sound radiators.

Table 1. Relation between mode shape and vibration shape for plate (a/b = 2, a = 100 mm).

Evolution of Vibration Shape from Mode Shape Vibration Shape for SPL dip

Natural
Frequency Mode Shape Vibration

Frequency

Vibration Shape
for Two Line

Loads

Vibration
Frequency Vibration Shape

3083 3083 4250

3500

4000

Table 2. Mode shape of orthotropic plate with different fiber angles (a/b = 3, a = 53.73 mm).

Natural Frequency Mode Shape (0◦ Fiber) Natural Frequency Mode Shape (90◦ Fiber)

1373 8385

1897.7 9187

7658 11,873

8567 12,437

9035



Acoustics 2021, 3 654

The SPL curves of the sound radiation plate with the fiber angle equal to 0◦ and 90◦

excited by a longitudinal line load are shown in Figure 6.

Figure 6. SPL curves of orthotropic plate with different fiber angles subjected to one longitudinal
line load (a/b = 3, a = 53.73 mm).

It is noted that when the fiber angle is 0◦, the vibration shape associated with the
major SPL dip in the frequency interval 1.3–1.8 kHz is evolved from the transverse bending
mode shape at 1373 Hz. The formation of the major SPL dip is due to the fact that one
longitudinal line load passing through the plate center is unable to suppress but rather
instigates the transverse bending mode shape at 1373 Hz. Furthermore, the vibration shape
associated with the second major SPL dip in the interval 7.5–12 kHz is evolved from the
mode shape at 7658 Hz. The side views of the mode shape at 1373 or 7658 Hz as shown
in Table 2 have revealed the fact that the interference among the sounds radiated from
the regions with opposite phase angles on the plate leads to the major SPL dip. On the
other hand, for the 90◦ fiber angle case, the vibration shape associated with the SPL dip
in the frequency interval 8–11 kHz is evolved from the mode shape at 8385 Hz. For this
mode shape, the plate area has been divided into two groups of regions with opposite
phase angles. The interference of the sounds radiated from these regions leads to the SPL
drop in 8–11 kHz. To suppress the SPL dips, two line loads will be used to excite the plate.
First, consider the exertion of two transverse line loads to the plate. The two line loads are
symmetrically placed, respectively, on the left and right of the plate center with La = 30 mm.
It is noted that La coincides with the distance between the two nodal lines of the mode
shape at 1897.7 Hz for the case of 0◦ fiber angle. The SPL curves for 0◦ and 90◦ fiber angles
are shown in Figure 7. It is noted that for the case of 0◦ fiber angle, the mode shapes at
1373 and 1897.7 Hz will not be instigated to produce major SPL dips. However, there is a
major SPL drop around 7 kHz, which is caused by the mode shape at 7006 Hz. As for the
case of 90◦ fiber angle, the mode shapes at 1058 and 4624 Hz will induce major SPL dips.

Now, consider the use of two longitudinal line loads with Lb = 9.8 mm. It is noted that
La is chosen as the distance between the two nodal lines of the mode shape at 1373 Hz for
the case of 0◦ fiber angle. The SPL curves for 0◦ and 90◦ fiber angles are shown in Figure 8.
It is noted that for the case of 0◦ fiber angle, the mode shape at 7006 Hz for the case of
0◦ fiber angle has been instigated to produce the major SPL drop. As for the case of 90◦

fiber angle, the SPL curve is relatively smooth and no major SPL dip has been induced.
Therefore, in view of the above results, it is obvious that both the excitation pattern and
fiber angle have significant effects on the smoothness of the SPL curve. For the orthotropic
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sound radiation plate with aspect ratio a/b = 3, the use of both two longitudinal line loads
and 90◦ fiber angle can produce the smoothest SPL curve.

Figure 7. SPL curves of orthotropic plate with different fiber angles subjected to two transverse line
loads (a/b = 3, a = 53.73 mm, La = 30 mm).

Figure 8. SPL curves of orthotropic plate with different fiber angles subjected to two longitudinal
line loads (a/b = 3, a = 53.73 mm, Lb = 9.8 mm).

Next, consider the sound radiation of the composite plate with aspect ratio a/b = 2.
The mode shapes, which may induce adverse effects on the sound radiation of the plate
with different fiber angles, are listed in Table 3.

The plate subjected to one or two line loads are to be studied. The SPL curves of the
sound radiation plate with the fiber angle equal to 0◦ and 90◦ excited by a longitudinal line
load are shown in Figure 9.
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Table 3. Mode shapes of orthotropic plate with different fiber angles (a/b = 2, a = 43.28 mm).

0◦ 90◦

Natural Frequency Mode Shape Natural Frequency Mode Shape

1016.9 5735

2868.8 7256

5436.2 7773

6902 9782

9119

Figure 9. SPL curves of orthotropic plate with different fiber angles subjected to one longitudinal
line load (a/b = 2, a = 43.28 mm).

It is noted that for the case of 0◦ fiber angle, the vibration shapes associated with the
major SPL dips in the frequency intervals 1–1.3 kHz and 5.4–8.5 kHz are evolved from
the mode shapes at 1016.9 and 5436.2 Hz, respectively. On the other hand, for the 90◦

fiber angle case, the vibration shape associated with the SPL dip in the frequency interval
5.7–7.6 kHz is evolved from the mode shape at 5735 Hz. For these two cases, the location of
the one line load, which is at the center of the plate, does not coincide with the nodal lines of
the aforementioned detrimental mode shapes. Therefore, the detrimental mode shapes will
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be instigated to produce SPL dips to make the plate SPL curves unsmooth. To suppress the
SPL dips, two line loads will be used to excite the plate. First, consider the exertion of two
transverse line loads to the plate. The two line loads are symmetrically placed, respectively,
on the left and right of the plate center with La = 28 mm. It is noted that La is chosen as the
distance between the two nodal lines of the mode shape at 2532.4 Hz for the case of 0◦ fiber
angle. The SPL curves for 0◦ and 90◦ fiber angles are shown in Figure 10.

Figure 10. SPL curves of orthotropic plate with different fiber angles subjected to two transverse line
loads (a/b = 2, a = 43.28 mm, La = 28 mm).

It is noted that for the case of 0◦ fiber angle, the mode shapes at 1373 and 1897.7 Hz
will not be instigated to produce major SPL dips. However, there is a major SPL drop
around 14 kHz which is caused by the mode shape at 14,796 Hz. As for the case of 90◦ fiber
angle, the mode shape at 9782 Hz will induce the major SPL dip in the interval 9–12 kHz.

Now consider the use of two longitudinal line loads with Lb = 14 mm. It is noted that
Lb is chosen as the distance between the two nodal lines of the mode shape at 1016.9 Hz for
the case of 0◦ fiber angle. The SPL curves for 0◦ and 90◦ fiber angles are shown in Figure 11.

Figure 11. SPL curves of orthotropic plate with different fiber angles subjected to two longitudinal
line loads (a/b = 2, a = 43.28 mm, Lb = 14 mm).
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It is noted that for the case of 0◦ fiber angle, the mode shape at 5436.2 Hz has been
instigated to produce the major SPL dip in the interval 4.2 - 6.2kHz. As for the case of 90◦

fiber angle, the SPL curve is relatively smooth and no major SPL dip has been induced.
Therefore, in view of the above results, it is obvious that for the orthotropic sound radiation
plate with aspect ratio a/b = 2, the use of both two longitudinal line loads and 90◦ fiber
angle can produce the smoothest SPL curve.

Finally, consider the sound radiation of the composite plate with aspect ratio a/b = 1.
The mode shapes, which may induce adverse effects on the sound radiation of the plate
with different fiber angles, are listed in Table 4.

Table 4. Mode shapes of orthotropic plate with different fiber angles (a/b = 1, a = 30.983 mm).

0◦ 90◦

Natural Frequency Mode Shape Natural Frequency Mode Shape

708 3095

4229 4988

4399 14,339

7574

The plate subjected to one or two line loads are to be studied. The SPL curves of the
sound radiation plate with the fiber angle equal to 0◦ and 90◦ excited by a longitudinal line
load are shown in Figure 12.

It is noted that for the case of 0◦ fiber angle, the vibration shapes associated with
the major SPL dips in the frequency intervals 0.70–0.85 and 2.8–4.5 kHz are evolved from
the mode shapes at 0.708 and 2.88 kHz. On the other hand, for the 90◦ fiber angle case,
the vibration shape associated with the SPL dip in the frequency interval 3–4 kHz is
evolved from the mode shape at 3.095 kHz. For these two cases, the nodal lines of the
aforementioned mode shapes do not coincide with the centrally located longitudinal load.
Therefore, the detrimental mode shapes will be instigated to produce the dips on the SPL
curves. To suppress the SPL dips, two line loads will be used to excite the plate. Consider
the exertion of two longitudinal line loads to the plate. The two line loads are symmetrically
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placed, respectively, above and below the plate center with Lb = 20 mm. It is noted that Lb
is chosen as the distance between the two nodal lines of the mode shape at 3095 Hz for the
case of 90◦ fiber angle. The SPL curves for 0◦ and 90◦ fiber angles are shown in Figure 13.

Figure 12. SPL curves of orthotropic plate with different fiber angles subjected to one longitudinal
line load (a/b = 1, a = 30.983 mm).

Figure 13. SPL curves of orthotropic plate with different fiber angles subjected to two longitudinal
line loads (a/b = 1, a = 30.983 mm, Lb = 20 mm).

It is noted that for the case of 0◦ fiber angle, the mode shape at 2.88 kHz for the case of
0◦ fiber angle has been instigated to produce the major SPL dip in the interval 2.5–3.4 kHz.
As for the case of 90◦ fiber angle, the SPL curve is relatively smooth up to 14 kHz at which
the mode shape at 14.339 kHz causes the SPL to drop slowly. Therefore, in view of the
above results, it is obvious that for the orthotropic sound radiation plate with aspect ratio
a/b = 1, the use of both two longitudinal line loads and 90◦ fiber angle can produce a
relatively smooth SPL curve. It is noted that for a square orthotropic plate, the use of two
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transverse line loads together with 0◦ fiber angle will produce exactly the same results as
those for the case of two longitudinal line loads together with 90◦ fiber angle.

In view of the results obtained in the above illustrative cases, it is noted that the use of
one longitudinal line load is unable to smooth the SPL curves for the plates with aspect
ratios equal to 3, 2, and 1. The existence of the dips/drops on the SPL curves is due to
the fact that the line load is not located at the nodal lines of the detrimental mode shapes.
Therefore, the general rule for SPL suppression is to place the line loads on the nodal
lines of the detrimental mode shapes so that such mode shapes will be unable to generate
adverse effects on sound radiation. It has been demonstrated that the placement of two
line loads on the nodal lines of the detrimental mode shapes can produce relatively smooth
SPL curves for the plates under consideration. The method and results presented in the
paper should be of value in the design of panel-form speakers.

6. Conclusions

A new vibro-acoustic method formulated on the basis of the simple first-order shear
deformation theory and first Rayleigh integral has been presented to study the sound
radiation behavior of elastically restrained rectangular orthotropic sound radiation plate
excited by strip-type exciters. The proposed method is more computationally efficient than
those formulated on the basis of other shear deformation theories. The experimental sound
pressure level curve of an orthotropic sound radiation plate consisting of two transverse
strip-type exciters has been used to verify the accuracy of the proposed method. The
modal analyses and sound radiations of orthotropic plates with 0◦ or 90◦ fiber angle and
aspect ratio equal to 3, 2, and 1 subjected to one or two line loads have been performed
using the proposed method. It has been shown that mode shapes are closely related to the
smoothness of the SPL curve. A mode shape consisting of nearly equal areas with opposite
phase angles is likely to incur a SPL dip at the natural frequency associated with the mode
shape. The mode shapes that can have detrimental effects on the sound radiation of the
orthotropic plates have been identified. It has been shown that, for the orthotropic sound
radiation plates under consideration, the use of one line load is unable to suppress the
detrimental mode shapes to produce smooth SPL curves. A procedure has been presented
to select appropriate excitation locations of two line loads to suppress the major dips on
the SPL curves of the plates. It has been shown that the plates consisting of two line loads
perpendicular to the fiber direction and located at the nodal lines of the major detrimental
mode shape can produce relatively smooth sound pressure level curves. The proposed
method as well as the results obtained in this study has the potential to find practical
applications in the design of orthotropic panel-form speakers.
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