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Abstract: Vital defect information present in the magnetic field data of oil and gas pipelines can
be perceived by developing such non-parametric algorithms that can extract modal features and
performs structural assessment directly from the recorded signal data. This paper discusses such
output-only modal identification method Complexity Pursuit (CP) based on blind signal separation.
An application to the pipeline flaw detection is presented and it is shown that the complexity
pursuit algorithm blindly estimates the modal parameters from the measured magnetic field signals.
Numerical simulations for multi-degree of freedom systems show that the method can precisely
identify the structural parameters. Experiments are performed first in a controlled laboratory
environment secondly in real world, on pipeline magnetic field data, recorded using high precision
magnetic field sensors. The measured structural responses are given as input to the blind source
separation model where the complexity pursuit algorithm blindly extracted the least complex signals
from the observed mixtures that were guaranteed to be source signals. The output power spectral
densities calculated from the estimated modal responses exhibit rich physical interpretation of the
pipeline structures.

Keywords: blind source separation; pipeline flaw detection; structure health monitoring; complexity
pursuit; output modal identification

1. Introduction

Pipelines are important channels of oil and gas transportation in many developing countries.
They are made of ferromagnetic materials which are often vulnerable to corrosion and fatigue damages
caused by surrounding environmental effects [1]. Early damage detection of buried steel pipelines
is necessary to confirm safety and reliability during service conditions. To achieve such goals, the
primary aim of this study is to develop a non-contact geomagnetic probe using basic principles of
magnetic gradient tensor [2,3] to detect the geomagnetic field signals. Non-contact geomagnetic
detection [4] is a new kind of non-destructive testing (NDT) technique that needs the Earth’s magnetic
field as the stimulus source to locate buried ferromagnetic pipelines and achieves structural defect
information, i.e., crack, corrosion and dents, etc., without any excavation. However, the magnetic field
data recorded for large scale systems like buried pipelines are often contaminated by several factors
when in their service environment, such as: the interference of parallel communication lines along
the pipeline in heavy traffic areas, unusual disturbance often caused by the underground subway
passages and overhead high voltage lines. Considerable attention in developing such non-parametric
methods that can perform quick real-time assessment of the 3-axes magnetic field data is required
towards safety and integrity of pipelines.
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Several signal processing techniques have been considered in the literature for modal identification
and flaw detection. They can perform efficient computation and adaptive implementation such
as wavelet transform [5–7] and empirical mode decomposition (EMD) also named Hilbert–Huang
Transform (HHT) [8–11] to analyze non-stationary and nonlinear signals. Adjustment of algorithm
parameters requires expert’s attention for successful applications for example, in wavelet transform
careful selection of wavelet basis and the scales is important during processing of data. Similarly, the
abilities of empirical mode decomposition method are often influenced by the sifting processes and
selection of valid modes. In addition, measurement noise presents a challenge to their effectiveness.

Recently, blind source separation (BSS) techniques have been used as promising signal analysis
tools in various fields of science [12–14]. BSS based algorithms such as independent component
analysis (ICA) [15] and second-order blind identification (SOBI) [16,17] are computational methods
used for separating a multivariate signal into their individual subcomponents. These methods were
applied in structural dynamics for the first time in Reference [18] to conduct output-only modal
identification of structures. Furthermore, comparisons of the BSS based techniques and their limitations
for modal analysis have been investigated in References [14,19–21]. BSS techniques are non-parametric
data-driven algorithms, which extract modal features and perform structural assessment directly
from the available data. BSS based methods are computationally efficient compared to the parametric
methods that do not need a mathematical model to describe the physical performance of a system.
Unlike parametric methods there is no need to adjust any parameter which keeps away the challenges
like modal order problem [22]. Advances in blind source separation (BSS) techniques for modal
identification and damage detection have offered novel opportunities to develop new data-driven
methodologies for efficient and effective sensing and processing of large scale health monitoring data.

This study presents a time-domain output data identification model for pipeline magnetic field
data using the unsupervised blind source separation technique termed complexity pursuit (CP) [23]
that was independently formulated in Reference [24]. CP learning algorithms have been successfully
applied for system identification and damage detection in References [22,25,26]. The main contribution
of this paper is to apply the CP algorithms to the pipelines noisy magnetic field data, towards an
accurate time-based modal identification. These non-parametric data driven algorithms has the ability
to perform quick even real time, automatic sensing and processing of the large scale pipeline’s magnetic
field data sets, that can provide excellent grounds for the inspection of buried ferromagnetic pipelines.
The 3-axis magnetic field sensor data are fed as input into the blind source separation model where
the complexity pursuit algorithms are applied for an accurate extraction of mode matrix that is then
plotted to obtain the time-domain output modal responses. The frequency and damping ratio are
computed from the recovered modal responses using Fourier transform and logarithm-decrement
technique, respectively. The power spectral densities calculated from the recovered mode matrix show
the abrupt variation in frequency due to the defects occurring in the pipeline. A numerical study
for multi-degree of freedom systems and detailed indoor and outdoor experimental results show
the ability of the non-parametric CP-BSS learning algorithms to accurately extract time-based modal
information of the pipeline structures.

2. Blind Source Separation Problem

The process of identifying and extracting the original source signals from a mixture of signals with
little information about the properties of the original source signals is termed as blind source separation.

The linear instantaneous blind source separation model is expressed as:

x(t) = As(t) =
n

∑
i=1

aisi(t) (1)

where x(t) = [x1(t), . . . , xm(t)]
T is the measured signal, containing m mixture signals, and s(t) =

[s1(t), . . . , sn(t)]
T is the original source vector with n sources; A ∈ Rm×n is an unknown matrix
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consisting of n columns with its ith column ai ∈ Rm associated with si(t). Figure 1 shows a graphical
interpretation of the blind source separation problem.
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3. Stone’s Theorem for Solution of BSS Problem

Stone [23] proposed that under the effect of some physical laws, the moment of mass in a given
time produces possible sources in a system. Likewise, the measured system responses also contains
least complex sources, each source is created under the influence of certain physical law. Summarizing,
the complexity of a mixture of response signals can be found among the simplest and the most
composite constituent sources. This theory was proved in Reference [27].

This conclusion laid the foundation that source signals are the least complex signals that can be
separated from the measured mixture of signals. Therefore, complexity pursuit algorithms search for
source signals with least complexity, such that the “hidden” source component zi(t) which is obtained
by multiplying the mixture x(t) with the demixing row vector wi which is the least complex signal.

zi(t) = wix(t) (2)

This approach has been used as a solution towards the BSS problem.
Stone [23] concluded that the complexity of a signal can be measured by maximizing the

temporal predictability of a signal; the mathematical equation for temporal predictability is written by
Reference [23] as:

F(zi) = log
V(zi)

U(zi)
= log ∑N

t=1(zL(t)− zi(t))
2

∑N
t=1(zS(t)− zi(t))

2 (3)

F(zi) is the temporal predictability operator that contains the statistical and time-based
information of the hidden source signal zi(t), that can be measured by finding the logarithmic ratio of
V(zi)/U(zi).

The term V(zi) determines the global statistical information of signal zi(t) by computing the
‘overall variability’, estimated by a long-range prediction zL(t). Similarly, U(zi) determines the local
variance that calculates the time-based information [23], using a short-range prediction parameter zS(t)
on the temporal structure of zi(t). The filtration process is performed by the long range prediction
parameter and short-range prediction parameter, mathematically expressed as,

zL(t) = λLzL(t− 1) + ((1− λL)zi(t− 1)) 0 ≤ λL ≤ 1
zS(t) = λSzS(t− 1) + ((1− λS)zi(t− 1)) 0 ≤ λS ≤ 1

(4)

λ = 2−1/h where h is termed as a half-life parameter for hS = 1 and hL = 900,000 as long as
hL � hS, [23].
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The significance of the proposed algorithm is to extract the hidden sources with accurate
time-based structure. A careful selection of parameters is essential to predict a component with
reduced local variance (smoothness) as compared with its global (long-range) variance, as the increase
of the global statistical information V(zi) only will produce a high variance signal, while increasing
U(zi) only will produce a smooth DC signal.

4. System Identification by CP

Combining Equation (2) and Equation (3)

F(zi) = F(wi, x) = log
V(wi, x)
U(wi, x)

= log
wi

¯
PwT

i

wi
^
PwT

i

(5)

where
¯
P and

^
P are the M x M short-range and long-range covariance matrices among the mixtures,

respectively. The elements of these matrices are given by

p̂ij =
N

∑
t=1

(pi(t)− p̂i(t))
(

pj(t)− p̂j(t)
)

pij =
N

∑
t=1

(pi(t)− pi(t))
(

pj(t)− pj(t)
)

(6)

The matrices
¯
P and

^
P are calculated only once and the terms (pi(t)− p̂i(t)) and

(
pj(t)− pj(t)

)
are

calculated by fast convolution operations. For a given mixture of signals x(t), the complexity pursuit
algorithm calculates the de-mixing vector wi by maximizing the temporal predictability function F(zi);

The derivative of F with respect to wi is given by

∇wi F =
2wi
Vi

¯
P− 2wi

Ui

^
P (7)

Using the gradient ascent technique a maximum value of F can be obtained by repeatedly updating
wi; such that the extracted component zi = wix, which is “most predictable” is considered as the least
complex signal or the simplest source hidden in the mixtures [23].

Considering the uncertainties of the proposed CP model for extracting only one simplest source
can be solved by the deflation scheme [22]. The sources are simultaneously extracted one after another
using Gram–Schmidt de-correlation technique. The first step is to separate the most simplest source
present in the mixture, after removing the first source the currently simplest source becomes the second
one to be separated by the complexity pursuit algorithm and so on. The solution for gradient of F
approaches zero such that,

∇wi F =
2wi
Vi

¯
P− 2wi

Ui

^
P = 0 (8)

Rearranging Equation (8)

wi
¯
P =

Vi
Ui

wi
^
P (9)

Equation (9) has the form of a generalized eigenproblem; wi can be found as the eigenvectors of

matrix
^
P
−1 ¯

P, with corresponding eigenvalue s γi = Vi/Ui, [23]. The de-mixing matrix A = W−1 is
calculated using a generalized eigenvalue routine. All the source signals can be separated by:

s(t) = z(t) = Wx(t) (10)

s(t) = [s1(t), . . . ., sn(t)]
T is the recovered source matrix with row-wise source signals si(t).
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5. Modal Parameters Estimated by CP

The governing equation of motion for a linear time invariant system is given by

M
..
x + C

.
x(t) + Kx(t) = f(t) (11)

where M is mass, C is damping matrix and K is the stiffness matrix, all real valued and symmetric.
x(t) is the displacement vector, which are actually the measured system responses. f(t) is the external
force acting on the system.

The connection of blind source separation with output modal identification was solved for the
first time in Reference [18], as in the BSS model in Equation (1), the modes of a system can be expanded
as a linear combination of n number of modal responses: that can be expressed in Equation (12) as:

x(t) = Φq(t) =
n

∑
i=1

ϕiqi(t) (12)

The basic phenomenon of Equation (12) is same as in Equation (1), Φ contains the modal
information of a system describing the entire situation of a noise contaminated system. ϕi ∈ Rn

being the (mode shape) is related to the ith modal feature column of the mode matrix, and is related
with the ith modal response qi(t) of the modal response vector q(t). q(t) is actually the original source
signal that can be obtained by multiplying the inverse of the mode matrix with the (m x n) matrix of
the measured system responses.

q(t) = Φ−1 x(t) (13)

Φ ∈ Rn x n is used to identify the change in the normal condition of a system as an abrupt
variation in the modal feature. Therefore, plotting the mode shapes can give important information
about the damage occurring in the system under observation.

The idea of “virtual sources” in Reference [18] states that the recovered modal responses of a
system should be considered as independent sources, if the power spectral density is not same or
the frequencies are not able to be judged clearly. In such cases the mixing matrix matches with the
recovered modal matrix, consequently the hidden sources and unidentified mixing matrix can be
obtained by putting the measured system responses from the expanded model in Equation (12) as
known mixtures into the blind source separation framework in Equation (1); accordingly the desired
modal responses and mode matrix can be achieved.

Equation (12) can be used to classify the motion of a system by its mode matrix Φ as it provides
complete information about the linear system. Putting Equation (12) into Equation (11) and multiplying
the transpose of the mode matrix ΦT on both sides,

ΦTMΦ
..
q(t) + ΦTCΦ

.
q(t) + ΦTKΦq(t) = ΦTf(t) (14)

yields to
M∗

..
q(t) + C∗

.
q(t) + K∗q(t) = f∗(t) (15)

where M∗ is the diagonal real-valued modal mass matrix, C∗ is the damping matrix, and K∗ is the
stiffness matrix. f∗(t) is the modal force vector. A multi-DOF system can be decoupled into n-DOF
systems whose motions are given by

m∗i
..
qi(t) + c∗i

.
qi(t) + k∗i qi(t) = f∗i (t) (16)

Equation (16) defines the basic idea of the complexity pursuit algorithm by targeting the motion of
the decoupled single degree of freedom system on ith modal coordinate qi(t). The modal parameters

of the system i.e. damping ratio is calculated by ςi = c∗i /2
√

m∗i k∗i and resonant frequency of the
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system is calculated in terms of natural frequency ωi of the ith mode given by ωdi = ωi

√
1− ς2

i =√(
1− ς2

i
)
k∗i /m∗i .

In free excitation, i.e., f(t) = 0, the modal responses behave like exponentially decaying sinusoids.
The motion of mass at ith modal coordinate governed by Equation (16) can be written as

qi(t) = uie−ςiωit cos(ωdit + θi) (17)

The measured mixtures are linear combinations of these modal responses, written as

x(t) = Φq(t) =
n

∑
i=1

ϕiqi(t) =
n

∑
i=1

ϕiuie−ςiωit cos(ωdit + θi) (18)

where ui and θi are some constants determined by initial conditions.
In case of random excitation, the recovered modal responses are dominant over the measured

system response, producing randomly modulated exponentially decaying sinusoids with an envelope
function ei(t) at the ith mode [18],

qi(t) ∼= ei(t)uie−ςiωit cos(ωdit + θi) (19)

Hence, the measured responses are given by

x(t) =
n

∑
i=1

ϕiqi(t) ∼=
n

∑
i=1

ϕiei(t)uie−ςiωit cos(ωdit + θi) (20)

In case of highly damped systems with complex valued mode matrix the complexity pursuit
algorithms can separate the system into their respective modes until the intrinsic frequency and
damping property of the system does not change. In such case the physical system in Equation (12)
can be decoupled into Equation (17) in the state-space by the excitation mode matrix Φc, as well as the
modal responses qc(t). Therefore, using Stone’s algorithm the measured mixture x(t) consisting of
time based modal responses q(t), can be subsequently separated by CP–BSS model,

~
q(t) = s(t) = Wx(t) (21)

and the excitation mode matrix can be estimated by

Φ̃ = W−1 (22)

The frequency and damping ratio can be readily computed from the recovered time-domain
modal response

~
q(t) using Fourier transform and logarithm-decrement technique, respectively.

Yang and Nagarajaiah [22] solved the modal order problem in complexity pursuit based blind source
separation method by arranging the recovered modes ordering the frequency values, i.e., the first
mode can be identified by the modal response with smallest frequency and so on.

6. Numerical Simulations

Using the CP based BSS algorithm, numerical examples are conducted on a 3-DOF system shown
in Figure 2 including different levels of damping.
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Figure 2. The three-degree of freedom linear spring-mass damped system.

The system parameters are adjusted to classify different modal identification problems i.e.
proportional damping well-separated mode, closely spaced mode and complex mode. Free excitation
and random excitation in each case are discussed. Gaussian White Noise (GWN) is used to produce
stationary random excitation. Similarly the Gaussian White Noise (GWN) is modulated with a constant
exponential decay function to create a non-stationary excitation effect in the system. The time histories
of the system responses, i.e., the displacement vector, are calculated by the Newmark-Beta solver.
The sampling frequency is set to 10 Hz.

The parameters of complexity pursuit based blind source separation method remains the same
throughout the process. The long-range parameter hL = 900,000 and short-range parameter hS = 1
are taken same as given by Reference [23]. Fast convolution operations are performed to calculate
the long-range and short-range covariance matrices. The demixing matrix which is the eigenvector
matrix is calculated by conducting eigenvalue decomposition on the obtained covariance matrices.
The excitation mode matrix and the time-domain modal responses are calculated by Equations (21)
and (22) respectively. Fourier transform algorithms and logarithm-decrement technique are used to
calculate frequency and damping ratio respectively.

A modal assurance criterion is defined in Equation (23) to evaluate the correlation among the
recovered mode values ϕ̃i and the theoretical mode values ϕi,

MAC(ϕ̃i, ϕi) =

(
ϕ̃T

i , ϕi
)2(

ϕ̃T
i .ϕ̃i

)(
ϕT

i .ϕi
) (23)

Ranging from 0 to 1, where 0 means no correlation and 1 indicates perfect correlation.

6.1. Proportional Damping

The parameters of the system shown in Figure 2 are borrowed from Reference [18]. In case of
proportional damping

M =

 2 0 0
0 1 0
0 0 3

K =

 2 −1 0
−1 2 −1
0 −1 2

C = αM = α

 2 0 0
0 1 0
0 0 3


M is the mass matrix, K is the stiffness matrix and C is the damping matrix. The value of α

corresponds to different damping level, (α = 0.08 and 0.13). f(t) = 0 in free excitation with initial

condition x(0) =
[

0 1 0
]T

and
.
x(0) =

[
0 0 1

]T
. In case of random excitation the system is

excited at the 2nd and 3rd DOFs using stationary and non-stationary Gaussian white noise. Tables 1
and 2 show the obtained results by CP algorithms and the modal assurance criterion values respectively.
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Table 1. Identified modal parameters (proportional damping).

Mode Comparison
Frequency (Hz) Damping Ratio (%)

1 2 3 1 2 3

α = 0.08
Theoretical Value 0.0895 0.1458 0.2522 4.4437 2.7299 1.5775

CP Identified Value 0.0879 0.1465 0.2539 4.4493 2.8233 1.5248

α = 0.13
Theoretical Value 0.0895 0.1458 0.2522 11.5537 7.0977 4.1015

CP Identified Value 0.0879 0.1465 0.2539 11.4167 7.3448 3.9240

Table 2. Identified Modal Assurance Criteria values (proportional damping).

α Free Excitation Stationary GWN Non-Stationary GWN

Mode 1 2 3 1 2 3 1 2 3

0.08 0.9975 0.9993 0.9990 1.0000 0.9962 0.9998 0.9998 0.9977 0.9981
0.13 0.9929 0.9816 0.9876 0.9990 0.9916 0.9996 0.9996 0.9977 0.9873

Figure 3 shows the measured responses of a 3DOF linear system for α = 0.08 in free excitation
proportional damping. After applying CP-BSS the estimated modes in free excitation are given in
Figures 4 and 5, respectively. The order of the recovered modal responses in each case is not rearranged
to show the original results by CP model; (for example the Mode 1 in Figure 4 simply means the
first mode recovered by CP algorithm, not suggesting Mode #1). This is due to modal order problem
that can be solved by rearranging the frequency values. Thus it can be observed that the measured
responses of the 3DOF system are well-separated into their respective modes. The frequency of the
separated modes can be observed from the power spectral densities of the estimated modes.
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6.2. Effect of Noise

The calculated signal responses are now contaminated by adding zero-mean Gaussian white
noise (with a 10% of the original signal). The results for α = 0.08 in free excitation are shown in Table 3,
addition of noise has no influence on the output of the CP model. The same accuracy has been seen in
cases with various damping levels. This means that the CP algorithm provides healthy outputs for
noise added signals also.
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Table 3. Identification results by CP in 10% root-mean-square noise (α = 0.08).

Mode
Frequency (Hz) Damping Ratio (%)

MAC Values
Theoretical Value CP Identified Theoretical Value CP Identified

1 0.0894 0.0885 4.4437 4.2151 0.9989
2 0.1457 0.1459 2.7299 2.7910 0.9617
3 0.2521 0.2529 1.5775 1.5343 0.9979

6.3. Closely Spaced Modes

The complexity pursuit model was implemented on measured system responses of a 3DOF system
with closely spaced modes. The mass, stiffness and damping matrix were obtained by modifying the
high proportional damping matrix in Reference [21],

M =

 1 0 0
0 2 0
0 0 1

K =

 5 −1 0
−1 4 −3
0 −3 3.5

C = αM = α

 1 0 0
0 2 0
0 0 1


The initial conditions used in free excitation are changed to x(0) =

[
0 0 0

]T
and

.
x(0) =[

0 0 0
]T

, the remaining parameters were left the same as used in proportional damping case.
Fairly accurate modal identification results are obtained in closely spaced modes shown in Tables 4
and 5, respectively.

Table 4. Identification results of free excitation in closely spaced modes cases.

Mode Comparison Frequency (Hz) Damping Ratio (%)

1 2 3 1 2 3

α = 0.08
Theoretical Value 0.1039 0.3425 0.3713 3.8279 1.1618 1.0715

CP Identified Value 0.1074 0.3418 0.3711 3.8199 1.1434 1.0151

α = 0.13
Theoretical Value 0.1039 0.3425 0.3713 9.9526 3.0208 2.7860

CP Identified Value 0.1074 0.3418 0.3711 9.9770 2.9906 2.7274

Table 5. Modal assurance criterion results in closely space mode cases.

α Free Excitation Stationary Gaussian White Noise Non-Stationary Gaussian White Noise

Mode 1 2 3 1 2 3 1 2 3

0.08 1.0000 0.9971 0.9999 0.9999 1.0000 0.9991 1.0000 0.9973 0.9963
0.13 1.0000 0.9735 0.9759 0.9998 0.9999 1.0000 0.9999 0.9765 0.9914

A highly damped system (α = 0.13) with closely spaced mode in free excitation is shown in
Figure 6. The closely spaced 2nd and 3rd modes of the system responses that can be hardly judged in
the power spectral densities are clearly decoupled by the CP model as shown in Figure 7.
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6.4. Non-Proportional Damping

The parameters of a system under non-proportional damping are given as follows,

M =

 3 0 0
0 2 0
0 0 1

K =

 4 −2 0
−2 4 −2
0 −2 10

C =

 0.3856 0.2290 −0.9702
0.2290 0.5080 −0.0297
−0.9702 −0.0297 0.3241


The model was obtained by slightly changing the damping matrix used in Reference [21] that

results in complex modes. McNeil and Zimmerman [21] presented a standard method to transform
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the complex modes into real ones due to the output of the complexity pursuit model to provide a real
value demixing matrix. Tables 6 and 7 show the identification results. Fairly well comparison can
be seen among the identified and the theoretical results. Equation (23) can be used to evaluate the
accuracy of the identified mode shapes. The system responses and recovered modal responses are
shown in Figures 8 and 9, respectively. Little influence on the output of the CP algorithm has been seen
in case of non-proportional damping; still it offers better approximation compared to the theoretical
values for complex modes.

Table 6. Identified results of free excitation in non-proportional high damping.

Mode
Frequency (Hz) Damping Ratio (%) Modal Assurance

CriterionIdentified Theoretical Identified Theoretical

1 0.1377 0.1353 10.959 10.889 0.9853
2 0.2391 0.2444 6.7317 6.8753 0.9520
3 0.4970 0.5084 4.6748 4.8727 0.9813

Table 7. Identified MAC values for non-proportional high damping.

α Free Excitation Stationary Gaussian White Noise Non-Stationary Gaussian White Noise

Mode 1 2 3 1 2 3 1 2 3

0.01 1.0000 0.9999 0.9998 0.9999 1.0000 0.9996 1.0000 1.0000 0.9990
0.05 1.0000 0.9971 0.9999 0.9999 1.0000 0.9991 1.0000 0.9973 0.9963
0.13 1.0000 0.9735 0.9759 0.9998 0.9999 1.0000 0.9999 0.9765 0.9914
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6.5. Modal Identification of a 12-DOF System

The performance of complexity pursuit algorithms is further extended towards large scale
structures, a 12-DOF system is built up such that the values of constant mass matrix M are given
by; m1 = 2, m2 . . . , m11 = 1, m12 = 3, and values of stiffness matrix K are k1, k2, . . . k13 = 20000 and
damping matrix is calculated by C = αM with α = 3, where α is the damping ratio. The first mode
has a theoretical damping ratio of 4.46%. The frequencies of the 12 modes are distributed between
5.3505 and 44.5827 Hz; with a sampling frequency set to 1000 Hz. The system is excited at the 12th
DOF, and the time histories of the signals with 5000 samples are measured (the length of the signal can
be increased and the accuracy holds). Modal assurance criterion (MAC) values for all 12 modes under
different conditions are shown in Table 8. A high correlation among the approximated modes can be
seen with (MAC) values above 0.99 for all damping levels.

Table 8. MAC values for 12-DOF System Proportional Damping.

Modes
Free Excitation Stationary GWN Non-Stationary GWN

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 0.9950 0.9972 0.9904 0.9989 0.9946 0.9837 0.9973 0.9975 0.9938
2 0.9974 0.9977 0.9939 0.9989 0.9951 0.9857 0.9970 0.9979 1.0000
3 0.9994 0.9952 0.9922 0.9982 0.9981 0.9937 0.9989 0.9948 0.9921
4 0.9997 0.9977 0.9959 0.9995 0.9982 0.9927 0.9996 0.9974 0.9958
5 0.9999 0.9992 0.9985 0.9999 0.9995 0.9991 0.9998 0.9991 0.9985
6 0.9998 0.9997 0.9995 0.9999 0.9996 0.9996 0.9998 0.9997 0.9995
7 0.9999 0.9998 0.9997 1.0000 0.9998 0.9997 0.9999 0.9998 0.9997
8 1.0000 0.9999 0.9999 1.0000 1.0000 0.9999 1.0000 0.9999 0.9999
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999
11 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999
12 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999
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7. Experimental Analysis

7.1. Measurement Probe Designed to Detect the Magnetic Field of a Pipeline Based on the Principles of
Magnetic Gradient Tensor

The block diagram of the complete measurement system is shown in Figure 10a. It consists of
batteries, magnetic probe, National Instruments data acquisition system, industrial control computers,
and a global positioning system. Two rechargeable batteries (24 V and 12 V) are connected as power
source to all the measurement system. A global positioning system (GPS) is used to locate the position
of a buried pipeline at each point of the measured distance. The measurement array of magnetic probe
is composed of five triaxial magnetic field sensors shown in Figure 10b. The sensor to sensor baseline
distance d is 0.1 m. The analog signals collected by each sensor are comprised of x, y and z-components
of the magnetic field. The measured signals are converted into digital data by the National Data
Acquisition System. This digital data is further transferred to an industrial control computer. This part
of measurement system is the computer (CPU) and a storage unit that records the real-time data to be
used for further processing. A complete measurement system is shown in Figure 10c.
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7.2. Indoor Data Recording Procedure

For indoor experiments a two-story robot was designed shown in Figure 11a. The magnetic probe
is fixed at the first floor with sensors facing towards the pipeline. The National Instruments data
acquisition units have been fixed at the second story above the magnetic probe. The robot is moved
along the surface of the pipeline with a measurement length of 10 m. The pipeline test sample is made
of Q235 steel with an inner wall to wall diameter of 0.1 m and wall thickness of 0.002 m. The height of
the sensor probe from the pipeline is 1 m with a sampling frequency of 1 kHz. The defects on the wall
of the pipeline can be seen in Figure 11b, i.e., a groove of depth 0.001 m and a hole of diameter 0.01 m
at a distance of 4 m from each other. The measurement system data are arranged in a m x n matrix,
with m = 15 signals and n = 120, 000 samples.

Acoustics 2018, 1, x FOR PEER REVIEW  15 of 21 

 

7.2. Indoor Data Recording Procedure 

For indoor experiments a two-story robot was designed shown in Figure 11a. The magnetic 
probe is fixed at the first floor with sensors facing towards the pipeline. The National Instruments 
data acquisition units have been fixed at the second story above the magnetic probe. The robot is 
moved along the surface of the pipeline with a measurement length of 10 m. The pipeline test sample 
is made of Q235 steel with an inner wall to wall diameter of 0.1 m and wall thickness of 0.002 m. The 
height of the sensor probe from the pipeline is 1 m with a sampling frequency of 1 kHz. The defects 
on the wall of the pipeline can be seen in Figure 11b, i.e., a groove of depth 0.001 m and a hole of 
diameter 0.01 m at a distance of 4 m from each other. The measurement system data are arranged in 
a 𝑚 x 𝑛 matrix, with 𝑚 = 15 signals and 𝑛 =  120,000 samples.  

 

 
(a) (b) 

Figure 11. (a) Magnetic probe passing through pipeline, (b) Pipeline groove and hole defects. 

7.3. Indoor Experimental Results 

The CP-BSS method is then applied on the measured data matrix. The recovered modal 
responses for x, y and z-components of magnetic field for Sensor 1 and Sensor 3 are given in Figures 
12 and 13, respectively. The results clearly indicate that the measured system data are accurately 
transformed into their respective modal responses. The power spectral densities calculated from the 
recovered mode matrix clearly shows the abrupt variation in power of the signal at given frequencies, 
i.e., 25 Hz and 75 Hz in all three power spectral densities which is due to the damage occurring in the 
pipeline, i.e., groove and hole present in the pipeline test sample. 

Figure 11. (a) Magnetic probe passing through pipeline, (b) Pipeline groove and hole defects.

7.3. Indoor Experimental Results

The CP-BSS method is then applied on the measured data matrix. The recovered modal responses
for x, y and z-components of magnetic field for Sensor 1 and Sensor 3 are given in Figures 12 and 13,
respectively. The results clearly indicate that the measured system data are accurately transformed
into their respective modal responses. The power spectral densities calculated from the recovered
mode matrix clearly shows the abrupt variation in power of the signal at given frequencies, i.e., 25 Hz
and 75 Hz in all three power spectral densities which is due to the damage occurring in the pipeline,
i.e., groove and hole present in the pipeline test sample.
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measurement plane to the ground is ℎ = 1 m. The sampling frequency is 100 Hz. 𝐵 , 𝐵  and 𝐵  are 
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7.4. Outdoor Data Recording Procedure

An outdoor experiment has been performed on an underground pipeline in Hebei province
of China. The measurement setup shown in Figure 10c has been used to record the magnetic field
data of the pipeline. A schematic illustration of the measurement procedure is shown in Figure 14.
The pipeline is made from Q235 steel with a diameter D = 0.323 m and a wall thickness of δ = 0.005 m.
The distance from the top of the pipeline to the ground is h1 = 0.5 m, while the distance from the
measurement plane to the ground is h2 = 1 m. The sampling frequency is 100 Hz. Bx, By and Bz are
the x, y and z components of the magnetic field of the pipeline respectively. The length of the pipeline
is 16 m, for which the data signal has been recorded with a time history of 35 seconds.
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Figure 14. Schematic diagram of the experimental procedure.

7.5. Outdoor Experimental Results

The recovered modal responses for Sensors 1 and 3, along with their respective power spectral
densities, are shown in Figures 15 and 16, respectively. The identified visible modes are shown as the
active modes present in the pipelines structural response data. The power spectral densities calculated
from the recovered modes clearly reveals an abrupt variation in power of the source signals at given
frequencies due to the damage occurring in the pipeline. The results demonstrate that the active modes
present in the pipeline magnetic field can be accurately identified using the complexity pursuit based
blind identification model.
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8. Concluding Remarks 

Time-domain output-only modal identification using novel blind source separation technique 
complexity pursuit was discussed in this paper. An application to the pipeline flaw detection is 
presented. A Complexity Pursuit algorithm is implemented for the blind identification of structural 
damage from the measured magnetic field data of a pipeline. Using Fourier transform the power 
spectral densities are calculated from the approximated modal responses. Numerical simulations for 
multi-DOF systems are carried out to explain and validate the CP based BSS method for proportional 
damping (well-separated and closely spaced modes) and non-proportional damping (complex 
modes) structures. The complexity pursuit based BSS model is implemented on the indoor and 
outdoor experimental data comprised of 3-axis magnetic field signals; it offers excellent results about 
the pipeline structural information. The process needs much less user interaction because the 
parameters of the model remain the same throughout the process of targeting the input data. 
Similarly the length of measured data does not influence the accuracy of the CP model. The 
performance of the unsupervised CP-BSS model to identify structural information makes it more 
suitable for real-time, as well as for off-line, inspection of pipeline structures.  
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Figure 16. Recovered modal responses for magnetic field (x, y and z-components) recorded at Sensor 3
and their power spectral densities.

8. Concluding Remarks

Time-domain output-only modal identification using novel blind source separation technique
complexity pursuit was discussed in this paper. An application to the pipeline flaw detection is
presented. A Complexity Pursuit algorithm is implemented for the blind identification of structural
damage from the measured magnetic field data of a pipeline. Using Fourier transform the power
spectral densities are calculated from the approximated modal responses. Numerical simulations for
multi-DOF systems are carried out to explain and validate the CP based BSS method for proportional
damping (well-separated and closely spaced modes) and non-proportional damping (complex modes)
structures. The complexity pursuit based BSS model is implemented on the indoor and outdoor
experimental data comprised of 3-axis magnetic field signals; it offers excellent results about the
pipeline structural information. The process needs much less user interaction because the parameters
of the model remain the same throughout the process of targeting the input data. Similarly the length of
measured data does not influence the accuracy of the CP model. The performance of the unsupervised
CP-BSS model to identify structural information makes it more suitable for real-time, as well as for
off-line, inspection of pipeline structures.
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List of Acronyms

BSS Blind Source Separation
CP Complexity Pursuit
CP-BSS Complexity Pursuit-Blind Source Separation
CPU Central Processing Unit
DC Direct Current
DOF Degree of Freedom
EMD Empirical Mode Decomposition
FFT Fast Fourier Transform
GPS Global Positioning System
GWN Gaussian White Noise
HHT Hilbert–Huang Transform
LCD Liquid Crystal Display
MAC Modal Assurance Criterion
MFL Magnetic Flux Leakage
NDT Non-Destructive Testing
PSD Power Spectral Density
RMS Root Mean Square
SDOF Single Degree of freedom
SHM Structure Health Monitoring
SNR Signal to Noise Ratio
SR Sparse Representation

Notations

The following notations are used in this paper
A Unknown constant mixing matrix
ai ith column of matrix A
C∗ Diagonal real valued modal damping matrix
F Temporal Predictability operator
f∗(t) Modal force vector
hL Long-term half-life parameter
hS Short-term half-life parameter
K∗ Diagonal real valued modal stiffness matrix
M∗ Diagonal real valued modal mass matrix
¯
P Short-term covariance matrix
^
P Long-term covariance matrix
~
q(t) Time-domain mode matrix
s(t) Latten source vector (with n source signals)
si(t) ith component of source vector s(t)
U Measures the local smoothness
ui & θi Constants determined by initial conditions
V Computes overall variability of a signal
W Eigenvector matrix (Equal to the inverse of unknown mixing matrix)
wi Deming (row) vector
x(t) Observed mixture vector (with m mixture of signals)
zi(t) Recovered Component
zL Long-term predictor
zS Short-term predictor
Φ Mode matrix
Φc Excitation mode matrix
ϕi Mode-shape
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ςi Damping ratio
ρi Generalized eigenvalue
τH Impulse response length
µ(ω) Modal overlap factor
ωi Natural Frequency of the ith mode
∆ω Spectral Separation
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