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Abstract: Primary antibody deficiencies (PADs) are the most frequent group of inborn errors of
immunity. Impaired B-cell development, reduced production of immunoglobulins (mainly IgG
and IgA), and specific antibodies resulting in recurrent infections are their hallmarks. Infections
typically affect the respiratory tract; however, gastrointestinal involvement is also common. These
include infection with Helicobacter pylori, Salmonella, Campylobacter species, Giardia, and noroviruses.
Impaired IgA production also contributes to dysbiosis and thereby an increase in abundance of
species with proinflammatory properties, resulting in immune system dysregulation. Dysregulation
of the immune system results in a broad spectrum of non-infectious manifestations, including
autoimmune, lymphoproliferative, and granulomatous complications. Additionally, it increases
the risk of malignancy, which may be present in more than half of patients with PADs. Higher
prevalence is often seen in monogenic causes, and gastrointestinal involvement may clinically mimic
various conditions including inflammatory bowel diseases and celiac disease but possess different
immunological features and response to standard treatment, which make diagnosis and therapy
challenging. The spectrum of malignancies includes gastric cancer and lymphoma. Thus, non-
infectious manifestations significantly affect mortality and morbidity. In this overview, we provide
a comprehensive insight into the epidemiology, genetic background, pathophysiology, and clinical
manifestations of infectious and non-infectious complications.

Keywords: selective immunoglobulin A deficiency; common variable immunodeficiency; X-linked
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1. Introduction

Primary antibody deficiencies (PADs) are the most prevalent inborn errors of immunity
(IEI) [1]. The clinical spectrum ranges from the selective immunoglobulin (Ig) class (such as
selective IgA deficiency (sIgAD)) and the IgG (IgG1-IgG4) subclass deficiencies to severe
disorders of antibody production such as X-linked agammaglobulinemia (XLA) or common
variable immunodeficiency (CVID) [2]. Recurrent bacterial respiratory tract infections are
a hallmark of PADs, but severe gastrointestinal tract (GIT) infections are frequent [3–5].
Patients with PADs may also be affected by a broad spectrum of non-infectious com-
plications that may significantly contribute to morbidity and mortality, which develop
based on immune dysregulation. The non-infectious manifestations include autoimmune,
lymphoproliferative, and granulomatous diseases, which cause autoimmune cytopenia,
splenomegaly, lymphadenopathy, nodular lymphoid hyperplasia, granulomatous lympho-
cytic interstitial lung disease, and a broad spectrum of PAD-associated gastropathies and
enteropathies [6–8]. There is also an increased risk of hematological, lymphoproliferative,
and solid organ malignancies [9]. Therefore, early and appropriate diagnosis and treat-
ment of PADs and the related complications play an important role in prognosis [10,11]
and may have a significant impact on quality of life [12,13]. Additionally, owing to the
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main features mimicking various autoimmune and inflammatory diseases, such as celiac
disease (CED) and inflammatory bowel disease (IBD), gastrointestinal (GI) involvement
is one of the most challenging complications of PADs. In this overview, we discuss the
spectrum of GI disorders affecting patients with PADs (Table 1), which include mecha-
nisms of immune system dysregulation, genetic background, the role of the microbiome in
non-infectious complications, and diagnostic and therapeutic approaches. We primarily
focused on sIgAD, CVID, and inherited agammaglobulinemia as the most prevalent PADs.
The review was prepared in line with the Preferred Reporting Items for Systematic reviews
and Meta-Analyses guidelines [14] and the proposed guidelines for biomedical narrative
review preparation [15].

Table 1. Summary of the most common infectious, non-infectious and malignant complications
associated with Primary antibody deficiencies.

Infections

Helicobacter pylori Campylobacter spp.
Salmonella spp. Gardia lamblia
Noroviruses Enteroviruses

Non-infectious manifestation
Chronic gastritis (gastropathy) Pernicious anemia
Celiac (-like) disease Inflammatory bowel (-like) disease
Nodular lymphoid hyperplasia

Malignancy
Gastric metaplasia (precancerous lesion) Gastric cancer
Lymphoma

2. Epidemiology

PADs represent more than half of IEI. sIgAD is the most common PAD, with inci-
dence ranging from 1:1000 to 1:140. Their incidence is higher in Caucasians but lower in
Asian countries [16,17]. CIV is the second most common PAD, with a prevalence ranging
from 0.08 (Poland) to 3.14:100,000 (Denmark) in Europe and 1.48 in USA [18]. However,
other PADs are rare. The reported prevalence of XLA is 1–2:100,000, accounting for ap-
proximately 85% of all cases. However, autosomal dominant and recessive forms have
been described as affecting the genes involved in lymphopoiesis and B-cell receptor de-
velopment [19]. Hypogammaglobinemia may also accompany other types of IEI, such as
combined immunodeficiencies and diseases of immune dysregulation [2].

2.1. Epidemiology of Selective IgA Deficiency (sIgAD)

Although the majority of patients with sIgAD are asymptomatic, infectious manifes-
tations are found as the first manifestation in 40–90% of symptomatic patients, and the
occurrence of autoimmune complications range from 5% to 30%. Patients with a history
of autoimmunity were older [20]. Among the sIgAD-associated auto-immunities, CED
is of particular interest. sIgAD is 10–15 times more common in patients with CED and
affects approximately 2% of patients with CED [21,22]. In contrast, CED was found in
14% of 184 pediatric patients with sIgAD, in contrast to other auto-immunities found in
9% of them. There is also an association between sIgAD and IBD. A population-based
study in Sweden reported an overall prevalence of IBD of 3.9%, CD of 2.4%, and UC of
1.7% corresponding to a five times higher prevalence than in the general population. The
prevalence ratios of CD and UC were 5.7 and 3.9, respectively. However, a prevalence of
6.5% and a ratio of 35 make CED the most frequent autoimmune complication in patients
with sIgAD [23].

2.2. Epidemiology of Common Variable Immunodeficiency (CVID)

Non-infectious inflammatory conditions can affect up to half of the patients with
CVID. Autoimmune diseases may affect approximately 30% of all patients and represent
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the most common non-infectious complication, followed by chronic lung disease and
lymphoproliferative disorders. GI involvement has been reported in more than 15% of
cases; it includes a broad spectrum of disorders. In a US cohort of 623 patients, the reported
prevalence of GI diseases was 17.3% [7]. However, in a Finnish study with 132 patients,
endoscopic or histological abnormalities were observed in 58% and 68% of patients who
underwent upper and lower GIT endoscopy, respectively [24]. A recent meta-analysis
showed that the spectrum of the most common manifestations of GIT disorders in CVID
include chronic diarrhea (27%, 95% CI: 21–34), gastritis (28%, 95% CI: 22–35), gastric
metaplasia (25%), gastroesophageal reflux disease (16%, 95% CI:6–25), malabsorption (13%,
95% CI: −4–26), villous atrophy (11%, 95% CI: 1–28), and IBD (10%, 95% CI: 6–16) [25].

2.3. Epidemiology of X-Linked Agammaglobulinemia (XLA)

Infections are present in the majority of XLA cases (up to 85%) [26,27]. Gastroenteritis,
particularly bacterial ethology, represents the most common manifestation of gastrointesti-
nal involvement [28]. However, patients with XLA seem to be prone to the enteroviruses
causing a variety of symptoms including fever, headache, respiratory illness, sore throat,
or vomiting and diarrhea [5]. Several members of the enterovirus family may also affect
the nervous system [29]. Nervous system involvement within enteroviral infections is
associated with high mortality in these patients [30]. Unusual complications, such as IBD
and large granular lymphocyte disease, were observed in 20.3% of 783 patients reported in
a multicenter study [31]. Another study including 128 patients found inflammatory symp-
toms in 69% of the patients; however, only 28% were diagnosed with any inflammatory
condition. Similarly, in another report, 21% of the patients reported chronic diarrhea and
17% had abdominal pain; however, Crohn’s disease (CD) was diagnosed in only 4% of the
patients [32].

3. Genetic Background

Generally, PADs are regarded as multifactorial polygenic diseases in most sporadic
cases, with the exception of well-defined syndromes, such as inherited agammaglobuline-
mia or hyperIgM syndromes. To date, 45 different genes have been identified as monogenic
causes of PADs [33]. The majority of these genes drive B-cell development, and their
mutations lead to a developmental blockage. However, a number of genes also affect T-cell
function, resulting in impaired function.

3.1. Monogenic Causes of sIgAD

Mutations in JAK3, RAG1, DCLRE1C, CD27, LRBA, BTK, TACI, TWEAK, MSH6, MSH2,
PIK3R1, and CARD11 were associated with sIgAD development [34]. There was also an
association with certain human leukocyte antigens: HLA-A1, HLA-B8, HLA-DR3, and
HLA-DQ2 [11]. In particular, HLA-DQ2 is strongly associated with CED; HLA-DQ2
contains immunogenic gluten peptides and triggers an immune response [35]. A similar
spectrum of gene defects has been described in cases of monogenic CVID. Several reports
have described the progression from sIgAD to CVID, suggesting a close association between
the two diseases [36,37].

3.2. Monogenic Causes of CVID

Mutations in PIK3CD, PIK3R1, nuclear factor kappa-light-chain-enhancer of activated
B cells 1/2 (NFkB1/2), cytotoxic T-lymphocyte antigen 4 (CTLA4), and LRBA are the most
clinically relevant [38–40]. Although monogenic causes of CVID have been identified in
approximately 10% of patients, genetic testing plays an important role in many aspects
of patient care. Genetic testing allows us to make a definitive diagnosis, assess prognosis,
identify patients for specific therapies, and support family planning decisions [41]. Gain-of-
function mutations in PIK3CD and loss-of-function mutations in PIK3R1 are associated with
activated PI3K-delta syndrome (APDS) types 1 and 2, respectively. PI3 kinases (PI3Ks) are
a family of lipid kinase enzymes producing 3′-phosphorylated phosphoinositides. They are
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activated by the engagement of various receptors, including BCR and TCR. These lipids act
as secondary messenger molecules. Two key pathways resulting from the action of PI3Ks
are the activation of NF-κB through the PLCγ-DAG/IP3-PKC pathway and Akt-mTOR.
These pathways particularly control the production of proinflammatory cytokines and cell
metabolism [42,43].

CTLA4, a CD28 homologous glycoprotein, is constitutively expressed on Tregs and
plays an essential role in their function. CTLA4 competitively binds to CD80 and CD86
(B7 proteins); however, it possesses the opposite effect compared with the activation of
CD28, and the binding activity is expected to be 10–100 times. As a result, T cells receive
fewer CD28-mediated activation signals. Moreover, CTLA4 induces the removal of B7
proteins from the cell surface via transendocytosis. The intracellular trafficking of CTLA4
is controlled and regulated by specific proteins, such as clathrin adaptor complexes. On the
other hand, the turnover of CTLA4 is promoted by the lipopolysaccharide (LPS)-response
and beige-like anchors (LRBA), a protein protecting CTLA4 from lysosomal degradation.
This mechanism facilitates accumulation of CTLA4 molecules in the cytoplasm, followed by
subsequent cell membrane re-expression. CTLA4 and LRBA play critical roles in peripheral
tolerance mediated by Tregs. Their impaired function may lead to variable phenotypes
that are usually characterized by autoimmune phenomena; hypogammaglobulinemia;
and decreased Treg, class-switched (cs)-B-cell, plasmablast, and follicular T-helper-cell
count [44,45].

3.3. Genetic Background of XLA

Mutations in the X-linked BTK gene encoding Bruton’s tyrosine kinase are the most
common causes of inherited agammaglobulinemia. To date, more than 600 mutations
have been described, 10–15% of which occur de novo. Most of them involve one to four
base pairs. However, larger deletions have been found in 3–5% of patients. The deleted
regions may damage other linked or adjacent genes such as TIMM8A and TAF7L, resulting
in both XLA and deafness-dystonia-optic neuropathy syndrome. BTK is a cytoplasmic
tyrosine kinase expressed mainly on hematopoietic cells. It is essential for BCR-mediated
proliferation and survival and B-cell development. BTK transduces signals from pre-BCR
complexes comprising µ heavy chain and surrogate light chain proteins (VpreB and λ5),
and Ig-α/CD79a and Ig-β/CD79b signaling components. Impaired BTK function leads to
the developmental blockage of pre-B cells in the bone marrow and missing B cells in the
peripheral blood. Nevertheless, hypomorphic mutations may cause a partial interruption,
leading to a “leaky” phenotype. Mutated BTk may also be associated with neutropenia in
some patients. Notably, patients with a known family history of XLA had an earlier age of
diagnosis than patients without a family history (mean age 2.59 vs. 5.37 years). Autosomal
dominant (LRRC8, TOP2B) and recessive forms (µ heavy chain, Lambda 5, Ig alpha/beta,
BLNK, PI3K genes, and TCF3) represent rare forms of inherited agammaglobulinemia.
Most of them affect pre-B-cell/B-cell receptor complex or signaling pathways [19,46–49].

4. Mechanisms of Immune Dysregulation

Immune dysregulation is the main feature contributing to the development of in-
flammatory and autoimmune complications. While the developmental block of B cells
in inherited agammaglobulinemia occurs at the pre-B-cell stage, it predominantly affects
memory cells in sIgAD and CVID (Figure 1).
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Figure 1. B cell development scheme, adapted from Warnatz et al. (2008) [50].

4.1. Immune System Dysregulation in sIgAD

Several studies have reported a decreased number of cs-memory B cells, plasmablasts,
and transitional B cells in patients with sIgAD. In contrast, the patients had elevated counts
of CD21(low)CD38(low) B cells (Table 2) [51].

Table 2. Characteristics, relative (% of CD19+ cells), and absolute counts of B-cell subpopulations in
peripheral blood [50].

Subpopulation Characteristics Relative Count (%) Absolute Count (E9/l)

B cells (total) CD19+ 6–22 0.1–0.53
Transitional B cells CD19 + IgM + IgD + CD24 + CD38 + CD27- 0.9–5.7 0–0.03

Naїve B cells CD19 + IgD + CD27- 48.4–79.7 0.06–0.47
Class-switched B cells CD19 + CD27 + IgD-IgM- 8.3–27.8 0.02–0.09

Plasmablasts CD19 + CD27 + CD38 + IgM-IgD-CD24- 0.4–2.4 0–0.01
Marginal zone-like B cells CD19 + IgD + CD27+ 7–23.8 0.01–0.08

CD21(low)CD38(low) B cells CD19 + CD21lowCD38low 1.6–10 0.01–0.02

The B cells of the patients with sIgAD also failed to respond to Toll-like receptor 9 to
CpG, which did not induce IgA production and further enhanced transitional B-cell defects.
Additionally, it affects the B regulatory subset (Bregs), which express anti-inflammatory
interleukin (IL)-10 [52]. Mouse models of IgA deficiency were prone to spontaneously
induced inflammation of the ileum [53]. The level of immune dysregulation correlates
with the clinical phenotype. Patients with sIgAD with a profound reduction in cs-B-cell
count also show more severe clinical features, including pneumonia, bronchiectasis, and
autoimmune diseases [54]. Recent findings also implicate the defects of T-helper-cell (Th)
subsets, Th1 and Th17, which are reduced along with increased blood concentrations of
transforming growth factor (TGF) β1, B-cell activating factor (BAFF), and proliferation-
inducing ligand (APRIL) [55]. The BAFF/APRIL system has been identified as an important
pathophysiological pathway, and increased levels of both cytokines have been found in a
broad spectrum of autoimmune diseases [56]. An increased concentration was also found in
patients with CD, and its levels correlated with disease activity [57–59] and even predicted
tumor necrosis factor alpha (TNFα) inhibition [60].

4.2. Immune System Dysregulation in CVID

A similar spectrum of B-cell changes were observed in patients with CVID. In the
majority of patients, the number of cs-B cells was associated with a decrease in serum
IgG and IgA levels. In contrast, elevated counts of CD21(low)CD38(low) B cells were
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significantly associated with splenomegaly, granulomatous complications, and elevated
counts of transitional B cells with lymphadenopathy. CD21(low)CD38(low) B cells showed
increased expression of activation markers (such as CD69, CD80, CD86), chemokine recep-
tors recruiting cells to the site of inflammation (e.g., CCR1, CCR5, CCR6) [61]. These cells
have features of the competent antigen-presenting cells [62] and the drive inflammatory
response towards Th1 [63]. This population also contains mostly autoreactive unrespon-
sive clones [64] and its expansion was found in many autoimmune conditions such as
rheumatoid arthritis or systemic lupus erythematodes [65]. Low numbers of memory B
cells were also observed in individuals affected by CVID-associated chronic diarrhea [66].
Based on these findings, a few classification systems, such as EUROclass (Figure 2) [67]
and Freiburg scheme, have been defined to identify patients at high risk of non-infectious
complications [50].
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Reduced Bregs have also been reported in CVID, but no correlation with clinical and
immunological characteristics have been found [68]. However, impaired Bregs function
may contribute to T-cell activation and immune response skewing toward Th1, character-
ized by overproduction of IFNγ [69]. Local overproduction of IL-12, a cytokine that drives
the immune response toward Th1, was found in patients with CVID-associated IBD. The
cytokine profile differentiates between CD and CVID-associated enteropathy, which does
not lead to excess levels of IL-23, IL-17, and TNFα [70]. A negative correlation was ob-
served between the frequency of Tregs and the CD21(low)CD38(low) B-cell population [71].
Again, there was no significant correlation between Treg count and clinical autoimmune
complications. Nevertheless, the functional defects of Tregs, i.e.,CTLA4 or IL-10, may
contribute to immune dysregulation as CTLA4 deficiency has been described as one of
the monogenic causes of CVID associated with severe autoimmune complications [72].
Heavily impaired production of IL-10 or function of the IL-10 receptor is closely related to
severe early-onset forms of IBD [73]. Other T-cell abnormalities include increased T-cell
activation, apoptosis, and exhaustion, which may result in reduced T-cell counts [74,75].
Severely reduced CD4+ T cells (<200 × 106 cells/L) were found in specific subgroups of
CVID and late-onset combined immunodeficiency (LOCID). These patients had a higher
frequency of splenomegaly, granulomas, GI diseases, and lymphomas [76]. LOCID is more
common in patients with monogenic CVID [77].

5. GI Infections

Recurrent sinopulmonary infection is a hallmark of PADs. Clinically, sIgAD is charac-
terized by undetectable serum levels of IgA as the main diagnostic criterium. Although IgA
plays an important role in mucosal immunity, most patients are asymptomatic. More severe
infections and post-infectious complications, such as bronchiectasis, may be associated
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with IgG2 deficiency. Patients with PADs are also predisposed to develop GI infections.
Although Helicobacter pylori (HP) infection was found to be one of the most common causes
of GI infections in pediatric patients with sIgAD [78], no differences in proportion were
observed between a cohort of older patients and in the general population. However,
HP infection is associated with more severe forms of gastritis, duodenal ulcers, nodular
lymphoid hyperplasia, and gastric cancers [79,80]. Similarly, CVID does not predispose
to HP infection, but is associated with immune dysregulation, including expansion of
CD21(low)CD38(low) B cells or reduced expression of CD25 on T cells, similar to sIgAD. In
the context of other findings, such as atrophic gastritis and metaplasia, HP infection may
contribute to the development of gastric cancer, one of the most common CVID-associated
malignancies [81]. Early HP screening and eradication, upper endoscopy, and assessment
of other risk factors such as increased serum vitamin B12 levels and iron levels should be ac-
tively offered to all patients with CVID [82]. Another GI infection described in patients with
PAD is Giardia lamblia [83,84]. Although T-cell immunity is important for the clearance of
Giardia infection [85], impaired barrier function allows its adherence to the epithelium and
subsequent proliferation and infection development. Giardia infection is diagnosed based
on the clinical manifestations of bloating, cramping, or watery diarrhea, and the results of
stool examination. In cases of negative results and persistent suspicion of Giardia infection,
duodenal aspirates should be indicated as an alternative test with a higher sensitivity.
Metronidazole is the treatment of choice, but infection is often unremitting in sIgAD [86].
The spectrum of pathogens also include Salmonella spp. and Campylobacter spp. [87]. De-
spite a predisposition to bacterial infections, there is also an increased risk of viral infection.
Viral positivity is associated with mucosal inflammation, and reduced serum and secretory
IgA levels have been shown to be significant predispositions [88]. Notably, norovirus has
been identified as a cause of CVID-associated enteropathy including intestinal villous atro-
phy and malabsorption [89]. The clearance of norovirus leads to symptom resolution and
histological recovery, induced after ribavirin therapy in some patients [90]. Immunoglobu-
lin replacement therapy (IRT) is the key therapeutic option in the management of infectious
complications in PADs. IRT with intravenous or subcutaneous immunoglobulins is indi-
cated in severe hypogammaglobulinemia, disturbed specific antibody immune response,
and severe recurrent infections with or without concomitant antibiotic therapy [91].

6. The Role of Microbiome

IgA also contributes to the control of gut microbiota composition that cannot be sub-
stituted by IgM, which shows less specificity [92]. Insufficient production of IgA leads to
dysbiosis, and the microbiota of patients with sIgAD is enriched with species with proin-
flammatory properties [93]. Furthermore, gut dysbiosis is another factor contributing to
the pathogenesis of enteropathy in CVID. The findings from several studies suggest a role
for altered microbiota in systemic immune response activation [94,95]. For instance, patho-
bionts such as Acinetobacter baumannii may re-direct pathways from lipid metabolism
to immune response related to enteropathies [96]. In contrast, Bifidobacterium, commonly
reduced in CVID, ameliorated the gut barrier, and reduced systemic inflammation in mouse
models. Interestingly, there was a limited impact on the microbiome with the repeated
antibiotic therapies that are frequently used in CVID [97].

7. Non-Infectious Manifestation

The main feature of PADs is the impaired production of immunoglobulins. sIgAD
is characterized by undetectable serum IgA levels, and CVID is defined by significantly
reduced IgA and IgG levels (<2 SD of the normal levels) with variable levels of IgM that
are missing in XLA along with all remaining immunoglobulin classes. CVID is accompa-
nied by a disturbed specific response to polysaccharide and/or protein antigens, which
should be preserved in sIgAD. Heavily reduced counts of B cells in the peripheral blood
(<2%) are found in XLA. XLA is typically diagnosed before 5 years of age, and a definitive
diagnosis of sIgAD and CVID should be made after 4 years of age. Secondary causes of
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antibody deficiency should be considered and excluded. Autoimmune, lymphoprolifer-
ative, and granulomatous complications represent other features that are reflected in the
diagnostic criteria of sIgAD and CVID, in addition to recurrent infections [98]. However,
non-infectious complications may be diagnosed in up to 28% of patients with XLA, as
inflammation-related symptoms are reported more often in a majority of patients [32]. The
diagnostic criteria are summarized in Table 3.

Table 3. Diagnostic criteria of European Society for Immunodeficiency (ESID) for agammaglobuline-
mia, common variable immunodeficiency, selective IgA deficiency [98].

Agammaglobulinemia

<2% of circulating B cells
normal number of T cells
<200 mg/dL in infants aged < 12 months or
<500 mg/dL in children aged > 12 months
or normal IgG levels with IgA and IgM below 2SD
onset of recurrent infections before 5 years of age
Common variable immunodeficiency
increased susceptibility to infection
autoimmune, granulomatous, lymphoproliferative manifestations
affected family member with antibody deficiency
marked decrease in IgG and marked decrease in IgA with or without low
IgM levels (<2SD for specific age)
poor antibody response to vaccines and/or absent isohemagglutinins
secondary causes of hypogammaglobulinemia have been excluded
diagnosis is established after the 4th year of life
no evidence of profound T-cell deficiency
Selective IgA deficiency
increased susceptibility to infection
autoimmune manifestations
affected family member
undetectable serum IgA (<0.07 g/L) but normal serum IgG and IgM
normal IgG antibody response to all vaccinations
diagnosis after 4th year of life
secondary causes of hypogammaglobulinemia have been excluded
exclusion of T-cell defect

7.1. Non-Infectious Complications of sIgAD

Autoimmune conditions associated with sIgADs include idiopathic thrombocytopenic
purpura, Graves’ disease, autoimmune hemolytic anemia, type 1 diabetes mellitus, rheuma-
toid arthritis, thyroiditis, and systemic lupus erythematosus [11,99]. Despite the absence of
anti-gliadin, endomysium, and transglutaminase IgA autoantibodies, patients with sIgAD
may develop villous atrophy and permanent gluten intolerance. The diagnosis of CED in
a terrain of absent IgA is very challenging. IgG class CED-specific antibody assessment
and/or endoscopy with histological verification should be considered. Specific IgG antibod-
ies can be used to monitor a patient’s dietary compliance. It is also recommended to assess
the total serum IgA concentration when patients are tested for CED and the presence of spe-
cific IgA antibodies [22,100]. Moreover, the threshold also indicates the strong association
of CED with type 1 diabetes mellitus, the second most common autoimmune complication
in sIgAD [101]. Interestingly, ulcerative colitis [102], CD [103–105], and nodular lyphoid
hyperplasia [106,107] have been reported less frequently in sIgAD than in CVID.

7.2. Non-Infectious Complications of CVID

In a cohort of 473 patients with CVID who were followed up for 4 decades, ap-
proximately 70% of the patients experienced one or more inflammatory autoimmune
manifestations. Chronic lung disease and hematologic and organ-specific autoimmune
diseases (immune thrombocytopenic purpura and autoimmune hemolytic anemia as the
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most common) were reported as the most common non-infectious manifestations, found
in approximately 30% of all patients with CVID. Non-infectious GI diseases have also
been documented in more than 15% of cases, including IBD, chronic diarrhea, GI bleed-
ing, and diverticulosis. Malabsorption develops in 6% of individuals with CVID [7]. A
similar prevalence of autoimmune complications was observed in a study of more than
2000 patients with CVID by the European Society for Immunodeficiency Registry. They
also found a positive association between the co-occurrence of autoimmunity, enteropathy,
granulomas, and splenomegaly, suggesting common mechanisms of immune system dys-
regulation [108]. Regarding GI involvement, GI complications significantly contribute to
the morbidity and mortality of patients with CVID [109]. Furthermore, GI disorders and
malabsorption increase the risk of mortality by more the two-fold [8]. Chronic diarrhea
also significantly impairs the quality of life of patients [110]. A large study on 623 patients
with CVID reported a 17% prevalence of non-infectious GI diseases, with one-third of them
developing malnutrition. Enteropathy clinically mimicked IBD or CED and affected the
small and large intestines in 79.4% and 50% of cases, respectively. Histological features
(biopsies available in 34 participants) included villous atrophy (32.4%), nonspecific inflam-
mation (8.8%), nodular lymphoid hyperplasia (8.8%), and intraepithelial lymphocytosis
(64.7%) with the absence of plasma cells (47.1%) [7]. Notably, lymphocytic infiltration and
granuloma formation, particularly involving the gut, are hallmarks of CTLA4 and LRBA
deficiencies [111,112]. An increased incidence of GI nodular hyperplasia was observed
in patients with APDS (26%), along with other features of lymphoproliferation, such as
lymphadenopathy and splenomegaly [113]. Gastritis and gastropathy (not otherwise speci-
fied) were found in 40% of the patients with gastric disease; meanwhile, gastric metaplasia
was present in 5.9% of patients. In a study of 30 patients with CVID who underwent
upper and lower GI endoscopy, abnormalities were found in 83% of them. However, only
18 patients experienced GI-related symptoms. Half of the patients were HP-negative. Five
patients had acute atrophic gastritis with vitamin B12 deficiency and anti-gastric parietal
cell autoantibodies [114].

7.3. GI Malignancies

Malignancies are a significant cause of mortality in patients with PADs. Surprisingly,
CVID is the second most prevalent cancer within IEI, following the syndrome associated
with chromosomal instability and DNA repair defects [115]. In an Italian cohort, gastric
cancer was found to be the leading cause of mortality [116]. In a meta-analysis, the overall
prevalence of malignancy was 8.6%, with a predominance of lymphoma (4.1%) and gastric
cancer (1.5%). The most common lymphoproliferative malignancies affecting the GIT are
MALT lymphomas. Autoimmunity and malabsorption were more frequent in patients
with malignancy than in those without, suggesting a role of immune dysregulation [117].
An increased risk of cancer has also been described in patients with atrophic gastritis,
interstitial lung disease, arthritis, or thrombocytopenia. In several cases, monogenic causes
of CVID have been identified, such as CTLA4 deficiency, NFkB1 deficiency, and APDS
1, which indicate a multifactorial pathogenesis with a significant genetic contribution.
Notably, immune dysregulation and a high prevalence of non-infectious complications
are hallmarks of these deficiencies [118]. Other genes associated with increased cancer
susceptibility include BRCA1, RABEP1, EP300, and KDM5A [119].

8. Therapy of GI Complications

Therapeutically, corticosteroids and/or mesalazine may be effective as first-line thera-
pies. However, some patients require other immunosuppressive agents (e.g., azathioprine
and cyclosporine). Biological treatment has been reported in only a very limited number of
patients with PAD in contrast to classical forms of IBD. The biologics indicated in these pa-
tients in particular include TNFα inhibitors (adalimumab, infliximab) that show a very low
level of efficacy suggesting a different underlying pathophysiological mechanism. Other
biologics such as vedolizumab or ustekinumab have been used anecdotally. Adjustment
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of immunoglobulin replacement therapy with increased doses to achieve sufficient serum
IgG levels should be considered [120–122]. In some cases, the identification of monogenic
causes allows the initiation of disease-specific treatment, such as abatacept in CTLA4 or
LRBA deficiencies [123,124], and mTOR and PI3K inhibitors in APDS [125,126]. The treat-
ment options should also involve routine upper and lower GI endoscopies, which could
be actively offered, particularly in all patients with CVID. Because a causal relationship
has been described between HP infection, mucosa-associated lymphoid tissue (MALT)
lymphoma, and gastric cancer, screening for HP infection (preferential urea breath test,
stool antigen immunoassay, and/or endoscopic biopsy), assessment of serum vitamin
B12 and iron levels, and additional tests are needed. In positive cases, ATB eradication is
indicated [127]. Other nutrients important for the proper function of the immune system
such as vitamin A or zinc may be missing [128]. A significant number of patients with
PADs may also have a low serum concentration of vitamin D that increases the risk of
osteopenia and osteoporosis [129–131]. Furthermore, reduced high-density lipoprotein
(HDL) cholesterol and apo A-I, and increased levels of oxidized low-density lipoprotein
(LDL) cholesterol contribute to elevated cardiovascular risk [132,133]. The assessment of
nutrition status (including BMI and serum levels of particular nutrients), cardiovascular
risk factors (lipid metabolism, arterial hypertension, and other cardiovascular diseases),
and bone density should be considered.

9. Conclusions

GI complications significantly contribute to morbidity and mortality in patients with
PADs. They include a broad spectrum of infectious and non-infectious complications that
may mimic various diseases, such as IBD and CED, but possess different immunological
features. The spectrum of infections includes Salmonella spp., Campylobacter spp., Giardia,
noroviruses, and HP, which may contribute to an increased risk of gastric cancer and should
be actively screened and eradicated in positive cases. Therefore, serological detection
methods need to be avoided. GI involvement may also occur in a significant number of
asymptomatic patients. Therefore, upper and lower endoscopy should be actively offered,
particularly in patients with CVID, along with other additional tests, such as assessment
of serum vitamin B12 and iron levels on a regular basis. Other nutrients (such as vitamin
A and D, and zinc), BMI status, cardiovascular risk (including lipid metabolism and the
presence of cardiovascular comorbidities), and bone density should be regularly assessed
in the prevention of non-immune mediated complications. Genetic testing is routinely
indicated in patients with XLA to confirm the diagnosis; however, it should be considered
in patients with other PADs and severe non-infectious complications. The identification
of the underlying genetic defect is crucial not only for genetic counseling but also for
disease-specific management. The diagnosis and treatment of GI involvement in PADs is
challenging and requires a multidisciplinary approach. Further research is needed to better
understand the pathophysiology of non-infectious complications and to discover novel
therapeutic and diagnostic options.
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