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Abstract: Heat shock proteins (HSPs) are essential mediators of cellular homeostasis by maintaining
protein functionality and stability, and activating appropriate immune cells. HSP activity is
influenced by a variety of factors including diet, microbial stimuli, environment and host
immunity. The overexpression and down-regulation of HSPs is associated with various disease
phenotypes, including the inflammatory bowel diseases (IBD) such as Crohn’s disease (CD).
While the precise etiology of CD remains unclear, many of the putative triggers also influence
HSP activity. The development of different CD phenotypes therefore may be a result of the
disease-modifying behavior of the environmentally-regulated HSPs. Understanding the role of
bacterial and endogenous HSPs in host homeostasis and disease will help elucidate the complex
interplay of factors. Furthermore, discerning the function of HSPs in CD may lead to therapeutic
developments that better reflect and respond to the gut environment.
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1. Introduction

Crohn’s disease (CD) is a chronic relapsing inflammatory disorder of the gastrointestinal tract
and a major form of inflammatory bowel disease (IBD). The prevalence of CD differs worldwide,
with Europe and Canada having among the highest rates at 322 and 319 per 100,000 persons,
respectively [1,2]. While the precise cause of CD is unclear, it is widely accepted that disease arises from
a complex interaction between genetic and environmental factors that disrupt normal host-microbe
interactions in the gut.

The breakdown of intestinal mucosal barrier function is a key feature of CD pathogenesis.
Intestinal epithelial cells play an active role in maintaining immune homeostasis by forming a barrier
between the underlying tissues and the microbe-rich luminal environment [3]. The contribution
of genetics in the pathophysiology of CD is demonstrated by numerous CD-risk associated
polymorphisms in genes relevant to epithelial integrity and innate immune recognition [4]. There is
also an expanding group of genes involved in monogenic IBD that are associated with significant
intestinal epithelial barrier dysfunction [5]. However, the ≥200 susceptibility loci identified to date
account for only 26% of CD variance [6]. This “missing heritability” in turn is determined by an
estimation of genetic risk based on twin concordance studies, variants associated with gene expression
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regulation rather than protein-altering variants, and a gene–environment/microbiome interaction that
has proven difficult to model without a better understanding of environmental triggers [7–10].

Intestinal epithelial cells that are subjected to stress have the intrinsic ability to resist injury
via various cytoprotective responses. Of these, endogenous heat shock proteins (HSPs) represent a
major mechanism for protecting intestinal epithelial cell function and viability against a variety of
environmental and physiological stressors. HSPs are found in all organisms from bacteria to humans
and are among the most highly conserved proteins currently known [11]. HSPs are constitutively
expressed at low levels but can be potently upregulated in response to a range of cellular stresses
including nutrient depravation, oxidative stress, inflammation, and infections [12]. As molecular
chaperones, HSPs assist in the folding of newly synthesized polypeptides and assembly of multiprotein
complexes, prevent abnormal protein folding or aggregation, maintain protein conformation to
facilitate binding, mediate the intracellular protein trafficking, and degrade damaged proteins via the
ubiquitin-proteasome pathway [13–15]. In addition to intracellular functions, HSPs can be released
extracellularly where they activate immune cells by processing and loading peptide onto either class I
or II MHC molecules through direct or cross-presentation [16].

In recent years, studies in CD patients have demonstrated interesting relationships between
HSPs (both self and bacterial) and inflammation. CD patients with active disease display significantly
increased intestinal HSP expression [17,18]. Therapies that cause overexpression, or alternatively
down-regulation, of specific HSPs have been considered as potential supplemental therapies
for CD treatment [19–23]. Nonetheless, self and bacterial HSPs could represent an important
environmentally-regulated and disease-modifying factor in the development of different CD
phenotypes. Here, we review the current understanding of HSPs in mediating host inflammatory
responses in CD, and we describe ongoing studies of bacterial HSPs in CD pathogenesis and protection.

2. HSP Families

HSPs are categorized into six families based on their molecular weight: small HSPs (sHSPs),
HSP40, HSP60, HSP70, HSP90, and large HSPs (lHSPs) (Figure 1).

2.1. Small HSPs

sHSPs are structurally defined by a conserved β-sandwich α-crystallin domain flanked by
non-conserved N- and C-terminal sequences [24]. While most prokaryotes contain only one or
two sHSP genes, some pathogenic bacteria contain none and some symbiotic bacteria contain ≥10
sHSP genes [25]. In comparison to prokaryotes, sHSPs reportedly evolved independently in the
main eukaryotic lineages, including animals, plants and fungi [26]. There are eleven ubiquitous
sHSPs encoded by HSPB genes that range in size from 12–42 kDa, with the most prominent
members being HSP10 and HSP27 that function in the mitochondria and cytosol/nucleus, respectively.
Most sHSPs cooperate and co-assemble into large ensembles and, unlike large HSPs, function in an
ATP-independent manner [27,28]. sHSP activity is regulated at the level of the oligomeric ensemble by
balancing between an inactive and active conformation [29–31].

2.2. HSP40

HSP40, encoded by DNAJ genes, is the largest chaperone family containing 49 members that
function in the cytosol or mitochondria [32,33]. All members of the family contain the conserved J
domain usually present in the N-terminal region [34]. There are additional conserved regions, that are
used to categorize the HSP40 proteins into three groups: Type 1 proteins (DNAJA) contain a J domain,
a Gly/Phe-rich region, and cysteine-rich region with four zinc-finger motif repeats; Type 2 proteins
(DNAJB) contain a J domain and a Gly/Phe-rich region; and Type 3 proteins (DNAJC) contain only a
J domain [35–37]. HSP40 members primarily function as HSP70 co-chaperones [32]. HSP40 ATPase
activity is essential for HSP70 protein activity as ATP hydrolysis converts HSP70 from an open state to



Gastrointest. Disord. 2019, 1 41

a close state [38]. In addition to its role with HSP70, HSP40 performs typical chaperone functions such
as protein folding/unfolding, translocation, and degradation.Gastrointest. Disord. 2018, 1, x FOR PEER REVIEW  3 of 18 
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domain; CTD, C-terminal domain; JD, J domain; G/F region, Gly/Phe-rich region; C-rich region, 
cysteine-rich region; E1/2, equatorial region 1/2; I1/2, intermediate region 1/2; AD, apical domain; 
SBD, substrate-binding domain; ABD, ATP-binding domain. 
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2.3. HSP60

HSP60 is an essential mitochondrial chaperonin encoded by the chromosomal gene
HSPD1 [32,39,40]. Most information on HSP60 structure is based on studies of the prokaryotic homolog,
GroEL, which has three structural domains: apical (A), intermediate (I1/2) and equatorial (E1/2) [41].
As a mitochondrial protein, HSP60 catalyzes the folding of matrix proteins and maintains proteins in
an unfolded state to channel them across the inner membrane for import or export [42,43]. HSP60 is
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also secreted from cells and thus has a wide range of extracellular activities, such as stimulating human
leukocytes and endothelial cells to produce a pro-inflammatory cytokine response [40]. Chaperonins
differ from other ATP-dependent chaperones as they form a double ring structure stacked back-to-back
with a central cavity for protein folding [44,45]. The chaperonin structure serves to prevent protein
aggregation, which accelerates the rate of protein folding, although whether the mechanism is passive
or active remains unclear [46,47].

2.4. HSP70

The conserved HSP70 family, encoded by the HSPA gene family, are present in most prokaryotic
and eukaryotic genomes [48,49]. The 13 proteins that comprise the HSP70 family are highly
homologous with 52–99% amino acid identity [32]. HSP70 proteins are composed of three domains:
a N-terminal nucleotide-binding domain with ATPase activity, a substrate-binding domain that
interacts with stretches of hydrophobic amino acids, and an α-helical C-terminal domain (the least
conserved region) [50–54]. HSP70 proteins play indispensable roles as protein unfolding machines
both in the cytosol and in membrane-bound organelles [48]. Furthermore, HSP70 proteins mediate the
unpacking of endocytosed clathrin-coated vesicles and the translocation of organelle-targeted proteins
to their proper translocase machinery [48].

2.5. HSP90

The five members of the HSP90 family, encoded by the HSPC1–5 genes, play critical roles in
protein stabilization, function, and degradation. HSP90 proteins act as homodimers and consist of three
conserved domains including an N-terminal ATP-binding site, a middle domain for activating ATP
hydrolysis in the N-terminal domain and substrate binding, and a C-terminal domain for dimerization
and substrate binding [55,56]. The number of HSP90 homologs per cell differs amongst organisms
with bacteria containing one homolog called HtpG and yeast containing one to two homologs in their
cytosol and mitochondria. Human cells containing four HSP90 isoforms including: cytosolic heat-shock
inducible HSP90α, cytosolic constitutively-expressed HSP90β, mitochondrial Trap1, and endoplasmic
Grp94. Mediated by co-chaperones, HSP90 ATP hydrolysis is associated with conformational changes
that moderate substrate interaction with proteins such as kinases, transcription factors, and steroid
hormone receptors [57,58].

2.6. Large HSPs

The family of lHSPs has two major members, cytoplasmic HSP110 (HSP110 gene) and endoplasmic
Grp170 (HYOU1 gene) [59]. HSP110 has two different forms: 105α which is constitutively expressed
in the cytoplasm, and 105β which is localized in the nucleus and induced by heat-stress [60,61].
Grp170, also called Orp150 and HYOU1, is induced by a variety of stimuli including glucose starvation,
hypoxia/anoxia, low pH, etc. [62,63]. lHSPs work with other chaperone proteins during periods of
cytotoxic or proteotoxic stress [64,65]. lHSPs have an increased size due to an additional loop structure
that aids in their ability to bind to polypeptide substrates or non-protein ligands [66].

As HSP are integral to many cellular functions, it is not unexpected that HSP polymorphisms
are associated with, but not limited, to cardiovascular, neurological, and enteric disorders [67–71].
Moreover, heat shock transcription factor (HSFs) knockouts in mice have demonstrated various
phenotypes including loss of thermotolerance, female/male infertility, reduced viability, partial
embryonic lethality, and central nervous system defects [72]. In the next section, we review the
role of HSPs in intestinal homeostasis and the polymorphisms associated with CD.

3. HSPs in Gastric and Intestinal Homeostasis

Aptly named cellular gatekeepers, HSPs play an essential role in the maintenance of
gastrointestinal homeostasis by rendering epithelial cells in both the stomach and intestine more
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resistant to stress or injury [73,74]. In response to epithelial disruption, HSFs are activated and
translocated into the nucleus, where they bind to the promoter region of the HSP genes (Figure 2) [74].
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Figure 2. Schematic of HSP induction following epithelial disruption by invading H. pylori. Upon
epithelial cell disruption, activated HSF (in trimer) translocates to the nucleus, binds to the HSP
gene promoter, and activates HSP gene transcription. HSPs then orchestrate various cellular
protection mechanisms.

In mammalian cells, the stress response involves the induction of four major HSPs: HSP27, HSP60,
HSP70 and HSP90.

To date, HSP70 (encoded by the HSPA6 gene) polymorphisms have been observed in CD [71].
HSP70 polymorphisms perturb normal HSP70 function, enabling bacterial infection through a
disrupted epithelial barrier [71,75]. The HSP70-2 gene has various genotypes—AA, AB, and BB—due
to a A–G transitions at the 1267 position that created a PstI site [71,76]. The heterozygous genotype
AB is the most commonly observed in CD-patients and A or AA genotypes, in comparison to BB
genotypes, are associated with less severe CD [71,76–79].

More recently, Jostins et al. reported an IBD susceptibility locus on Chromosome 1 (with tagging
SNP rs1801274) and prioritized the HSPA6 gene through DAPPLE (Disease Association Protein-Protein
Link Evaluator) and eQTL approaches [5]. Interestingly, mutations in HSPA1L, a member of the
HSP70 family, have been reported in cases of CD in individuals with no family history of CD [71,
75,80]. Relative to HSP70, there is little known about how alterations in the function of other HSPs
might impact CD pathogenesis. For example, HSP70 and HSP90 can function together to stabilize
proteins, therefore further investigation is needed to determine how HSP polymorphisms impact their
combined activities.

The induction of HSPs allows cells to survive otherwise lethal stresses, but this activity can also
be subverted to support tumorigenicity and cancer cell resistance to therapy [81]. HSP overexpression
has been reported for a wide range of cancers, including colorectal cancer (CRC), one of the most
serious complications of CD responsible for approximately 15% of IBD-related deaths [82–84].
Overexpression of HSP27, for example, promotes carcinogenesis through multidrug resistance and
inhibition of apoptotic cell death [85]. Conversely, a decrease in HSP expression is also associated
with carcinogenesis. Helicobacter pylori (H. pylori), a known causative agent of gastric cancer,
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reduces gastric epithelial cell proliferation by downregulating HSP70 expression through epigenetic
modification [86,87]. HSP70 knockout mice have induced histological features of human IBD-associated
colon cancer [88,89]. In attempts to inhibit HSP-induced carcinogenesis and tumorigenesis, researchers
have utilized HSP-inhibitors or mutant HSPs to successfully sensitize human colorectal cancer
cells to chemotherapy or radiation therapy [90–92]. Moreover, to combat H. pylori-induced gastric
cancer, researchers have developed HSP complex vaccines containing HSP derived from H. pylori.
Using a mouse mucosal vaccination model, HSP complex vaccines have been shown to induce
protective immunity against H. pylori without the induction of a severe inflammatory response [93].

HSPs exemplify the goldilocks principle in which just the right amount of HSP activity maintains
gastrointestinal homeostasis whereas too much or too little causes disease. In the following sections,
we discuss some of the major mechanisms to regulate HSP activity and the role of bacterial HSP in
human immunity.

4. HSP Interactions with NOD-Like Receptor Innate Immunity Receptors

Mutations in the NOD2/CARD15 gene are the strongest genetic determinants of CD susceptibility
and severity identified to date. Individuals homozygous or compound heterozygous for NOD2 variants
have a 20–40-fold increased risk of developing CD [94]. NOD2 (nucleotide binding oligomerization
domain-containing protein 2) belongs to a family of intracellular pattern recognition receptors
(PRR) called NLRs (nucleotide-binding domain and leucine-rich repeat containing receptors) and
is expressed in peripheral blood mononuclear cells such as macrophages, granulocytes, dendritic
cells and within intestinal epithelial cells, particularly Paneth cells. NOD2 protein (as part of the
innate immune inflammasome) is involved in several key processes of intestinal homeostasis including
intestinal barrier integrity, microbial defense, innate immune regulation, oxidative stress, ER stress,
and autophagy [95,96]. NOD2 mediates intestinal homeostasis through intracellular sensing of bacterial
muramyl dipeptide (MDP), a derivative of peptidoglycan. NOD2 binding initiates innate immune
responses via nuclear factor (NF)-κB, mitogen-activated protein kinase cascades, and caspase-1 leading
to production of cytokines, mucins and anti-microbial peptides [94,96–99]. Mice deficient in NOD2
have significantly increased susceptibility to colonization by pathogenic bacteria, putting them at
risk for bacterial infections and intestinal inflammation [100–103]. NOD2 is also a vital component
of the inflammasome, a multiprotein inflammatory complex that detects invading pathogens and
environmental stressors and is involved in several key processes of intestinal homeostasis including
intestinal barrier integrity and microbial defense [104]. Mutations in NLRP3, another NLR and
inflammasome component, are also linked to CD susceptibility [105]. Indeed, abnormal activation
of the NLRP3 inflammasome directly affects intestinal inflammation in humans and in models of
experimental colitis models [106–108]. Given the impact of dysfunctional NOD2 signaling on intestinal
homeostasis and CD, significant research attention has been devoted to understanding how NOD2
activity is regulated.

To maintain cellular stability and avoid degradation, NOD2 is constitutively associated with
HSP90 [109]. HSP90 is believed to bind to a conserved protein domain on the NOD2 protein called
the NACHT domain [110]. In this state, NOD2 is considered inactive, but signal-competent [104].
NOD2 becomes active and begins signaling when HSP90 dissociates from NOD2 due to MDP
binding [109,111]. Following activation, NOD2 is subsequently tagged with ubiquitin for degradation,
an action believed to confer tolerance to MDP [109,110]. NOD2 activity is further regulated through
interaction with the substrate binding domain of cytosolic HSP70. Grimes et al. demonstrated that
HSP70 overexpression increased and down-regulation decreased, the half-life of NOD2 and therefore
signaling duration in response to MDP stimulation [112]. HSP70 has also been shown to stabilize
NOD2 variants associated with CD (e.g., G908R, R702W, and 1007fs) and restore proper responsiveness
to MDP [113]. As these CD mutants are still able to sense MDP, but have a diminished NF-κB response,
restoring proper responsiveness is essential to maintaining gut homeostasis [114].
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5. Environmental Factors That Influence HSP Abundance

HSPs are constitutively expressed under physiological conditions but expression can increase
dramatically in response to four types of stimuli: (1) physical, including heat shock and radiation;
(2) chemical; (3) microbial, such as commensal/pathogenic bacteria, viruses, parasites, and fungi;
and (4) dietary. Physical and chemical stimuli have been extensively discussed in previous articles,
thus we focus on microbial and dietary factors [115–119].

5.1. Microbial Stimuli

Physiological expression of inducible HSPs in the intestine is thought to be maintained through
interactions with commensal microbes. HSP27 (or HSP25 in mice) and HSP70 are preferentially
expressed in colonic epithelium as compared to the small intestine, which is exposed to relatively
smaller amounts of microbes [120,121]. Furthermore, colonic HSP expression is reduced or absent
in germ-free mice, indicating a requirement for microbial stimuli [122]. Multiple bacteria and
bacterial products have been shown to induce HSPs in the colon, including lipopolysaccharide
(LPS) and short-chain fatty acids (SCFAs) [123–126]. Some examples include soluble factors from
probiotic bacteria, such as Lactobacillus GG and Bifdobacterium breve, which induce HSP25 and
HSP72 [121,127–130]; LPS from Escherichia coli that induces HSP25 [124]; Salmonella enteritidis 857
that induces HSP70 and HSP90 [131]; and a sporulating factor from Bacillus subtilis that induces
Hsp27 [132].

Oral antibiotics are commonly used to support immunosuppressive therapies for CD, with varying
rates of success [133]. However, antibiotics can profoundly alter the composition and abundance of
bacterial within the gut microbiome and have been shown to have a corresponding impact on the
expression of intestinal HSPs [134]. Mice treated with broad-spectrum antibiotics such as metronidazole
exhibit reduced intestinal expression of HSP25 and HSP72 and, in combination with ampicillin,
neomycin, and vancomycin, increased mortality in a model of chemically-induced colitis [121,135].
These studies suggest that antibiotic therapy may disrupt physiological HSP induction, and affect
intestinal vulnerability to infection and inflammation.

5.2. Dietary Stimuli

Food-derived nutrients and bioactive substances protect cells through mechanisms that involve
the induction of HSPs during stress and/or fasting [136]. Food restriction is a stressful condition.
Fasting increases HSP27 and HSP90, but not HSP70, in the gastrointestinal tract of piglets [137,138].
Conversely, glutamine, the most abundant free amino acid in the body, is a major substrate for intestinal
cells and protects against cellular stress by inducing HSP70 expression [139]. Glutamine depletion can
be associated with the metabolic stress associated with IBD and sepsis. Administration of glutamine
improved survival in HSP70+/+ mice in a sepsis model, but had no survival benefit in HSP70−/−

mice [140]. Initial experiments using different individual amino acids, such as arginine, histidine,
glutamate, proline, alanine, and glycine were unable to increase HSP concentration, although it should
be noted that these experiments were tested in vitro, with the amino acid acted as the sole nutrient
source [141]. Subsequent experiments, however, demonstrated many of these amino acids affected
HSP levels. For example, arginine restored physiological levels of HSP70 in intestinal Caco-2 cells;
glutamine induced HSP25 expression in rat IEC-18 cells; and threonine induced HSP25 and HSP70
in gastrointestinal epithelial cells [142–144]. In addition to the reported effects of free amino acids on
gut epithelial HSP induction, dietary proteins and peptides also play a role in gut HSP expression.
For example, consumption of whey protein increased HSP70 expression in the lungs and muscles of
rats undergoing thermal stress from exercise [145].

Plant-derivatives are reported to have differential effects on HSP abundance in the gut. Plant lectins,
for instance, are known to reduce levels of HSP70, HSP72, and HSP90 in the jejunum of rats [146].
Downregulation of HSPs in response to lectin is thought to contribute to severe disruptions in epithelial
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layer integrity [146]. In contrast to lectins, psyllium fiber feeding increases HSP25, but not HSP32 and
HSP70, expression in the jejunum, ileum, and colon [147]. Interestingly, the increased expression of
HSP25 was not correlated with a change in HSF1 expression, suggesting that there may be a currently
unknown mechanism of HSP regulation that does not involve HSF1 [147].

Phenols represent a diverse group of compounds that consequently have diverse functions in
intestinal homeostasis. In early work using human colon cancer cell lines, several flavonoids, such
as quercetin and kaempferol, were shown to inhibit the synthesis of HSPs during heat shock [148].
More recently, curcumin, another phenol, demonstrated a similar ability to reduce HSP70 levels
in serum [149]. Using a sepsis rat model, Rocha et al. observed a decrease in HSP70 serum
levels following curcumin dispersion seven days prior and two-days post sepsis induction [149].
In comparison to some flavonoids and curcumin, carvacrol induces HSP70 expression in the Peyer’s
patches of mice [150]. In this model, carvacrol amplified the CD4+CD25+FoxP3+ T cell recognition of
HSP70 and downregulated inflammatory disease by suppressing proteoglycan-induced experimental
arthritis [150].

Dietary factors can interact directly with host cells and indirectly through their effect on the gut
microbiome [73,139,151]. Exclusive enteral nutrition (EEN) is a dietary intervention consisting of a
liquid formula diet either composed of individual amino acids (elemental) or intact proteins (polymeric)
that is used to induce remission in active CD [152–154]. EEN is a liquid formula diet either composed
of individual amino acids (elemental) or intact proteins (polymeric) [152]. EEN therapy achieves
remission in approximately 80% of pediatric CD patients [152,155]. While the exact mechanism for
EEN therapy is unknown, EEN is thought to act through modifying microbial communities and
microbial metabolite production in the gut [156,157]. As gut bacteria are important in the induction
of HSPs during times of stress, EEN may not only affect the gut microbiome, but also gut bacterial
induction of HSPs.

6. Role of Bacterial HSP in Host Immune Responses

Bacterial HSPs show varying degrees of homology to their eukaryotic counterparts but are highly
conserved among pathogens [158]. For this reason, studies have observed bacterial HSPs to act as
antigens, determined by increased levels of anti-heat shock protein antibodies, and inducers of humoral
and cellular immune responses [159]. Bacterial HSPs have been shown to have both protective and
pathogenic activities in the human host depending on the infection [160]. Three of the best studied
bacterial HSPs in human health and disease include HtpG, DnaK, and GroEL.

6.1. HtpG

Animal infection models, in vitro cellular analysis, and human metagenomic studies have been
used to study the function of HtpG, the bacterial homolog to the highly abundant chaperone HSP90.
For certain bacterial genera including Salmonella, Leptospira, Edwardsiela, Porphyromonas and Francisella,
HtpG appears to act as a virulence factor by aiding in pathogenesis and persistent infection [161–166].
For example, using a pig infection model of Salmonella, Verbrugghe et al. demonstrated the role of S.
typhimurium HtpG in enabling bacterial persistence in intestine-associated tissues [162]. The activity
of HtpG, however, is not always associated with disease. In a recent metagenomic study, Dunn et al.
observed a decreased abundance of HtpG in CD patients compared to healthy controls [167]. Moreover
CD patients unable to sustain remission had an even lower HtpG abundance than CD patients able to
sustain remission [166]. The results from the Dunn et al. study suggest a role for bacterial HSPs in
induction of mucosal tolerance as healthy individuals tended to have higher abundances of HtpG.

6.2. GroEL

GroEL is part of the HSP60 protein family and functions with assistance from the co-factor
GroES. The GroEL/ES system has played an important role in the structural evolution of proteins by
providing foldability and stability to proteins with otherwise deleterious mutations [168,169]. One of
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the major functions of GroEL is maintaining intestinal homeostasis by stimulating immunoregulatory
pathways. A study by Ohue et al. demonstrated that GroEL caused naïve T cells to differentiate into
CD4+CD25+Foxp3+T cells in the gut [170]. Moreover, Ohue et al. observed that mouse-derived HSP60
was not able to cause such differentiation suggesting that the production of Treg cells was dependent
on HSP type. Similar to what was seen in the previous section with HtpG, GroEL from commensal
bacteria appears to function as constitutive regulators of gut immune homeostasis. That being
said, GroEL also plays an inflammatory role under specific situations. For instance, GroEL from
Aggregatibacter actinomycetemcomitans and Chlamydia trachomatis induce human peripheral blood T-cell
apoptosis, which is thought to manipulate the immune response [171–174].

6.3. DnaK

DnaK is the bacterial counterpart to eukaryotic HSP70. In a recent publication, Chuang et al.
observed intranasal vaccination with DnaK derived from Mycobacterium tuberculosis resulted in
protective immunity against tuberculosis in immunocompetent and immunocompromised mice [175].
Intranasal vaccination generated IFNγ-secreting CD4+ T cells in the spleen and IL-17-releasing CD4+ T
cells in the lungs [175]. The protective immunity generated by DnaK was comparable to the currently
used BCG vaccine [175]. One year ago, Okuda et al. implicated Dnak in Pseudomonas aeruginosa
translocation across the gut epithelium [176]. Inactivation of DnaK caused serious repression of
P. aeruginosa through a colonic cell monolayer as well as decreased bacterial motility (swimming,
swarming, and twitching), impacting bacterial colonization and spreading [176].

7. Conclusions

HSP function and expression are modulated by host genetics and environmental factors including
gut microbes and their products and diet (Figure 3). HSPs play a key role in the maintenance of
intestinal homeostasis by supporting host pathways critical to intestinal epithelial barrier integrity
and innate immune recognition. Importantly, defects in these processes are closely associated with
CD, suggesting that HSPs could provide additional insight to mechanisms of CD pathogenesis
and treatment.
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