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Abstract: Magnesium (Mg) and its alloys are promising materials for temporary bone implants
due to their mechanical properties and biocompatibility. The most challenging aspect of Mg-based
implants involves adapting the degradation rate to the human body, which requires extensive in
vitro and in vivo testing. Given that in vivo tests are significantly more labour-intensive than in vitro
and ethics prohibit direct experiments on animals or humans, attempts are commonly undertaken to
infer conclusions on in vivo degradation behavior from in vitro experiments. However, there is a
wide gap between these tests, and in vitro testing is often a poor predictor of in vivo outcomes. In the
development of biodegradable Mg-based implants, considerable efforts are being made to reduce
the overall time and cost of in vitro and in vivo testing. Finding a suitable alternative to predict the
degradation of Mg alloys, however, remains challenging. We present computational modelling as
a possible alternative to bridge the gap between in vitro and in vivo testing, thus reducing overall
cost, duration and number of experiments. However, traditional modelling approaches for complex
biodegradable systems are still rather time-consuming and require a clear definition of the relations
between input parameters and the model result. In this study, Kriging surrogate models based on the
peridynamic in vitro degradation model were developed to simulate the degradation behavior for
two main alloys, Mg-5Gd and Mg-10Gd, for both in vitro and in vivo cases. Using Kriging surrogate
models, the simulation parameters were calibrated to the volume loss data from in vitro and in
vivo experiments. In vivo degradation of magnesium has one order of magnitude higher apparent
diffusion coefficients than in vitro degradation, thus yielding the higher volume loss observed in vivo
than in vitro. On the basis of the diffusivity of the Mg2+ ions modeled under in vitro degradation,
Kriging surrogate models were able to simulate the in vivo degradation behavior of Mg-xGd with a
ratio between 0.46 and 0.5, indicating that the surrogate-modelling approach is able to bridge the gap
between in vitro and in vivo degradation rates for Mg-xGd implants.
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1. Introduction

Magnesium (Mg) and its alloys are under increasing investigation as temporary
implant materials due to their non-toxicity, biocompatibility, and biodegradability prop-
erties [1,2]. In vitro and in vivo experiments are designed and conducted to study the
degradation of Mg-based alloys in both cell culture media and animal models [3–6]. In the
course of those studies, a substantial amount of experimentation is required to investigate
the degradation rate of such implants in order to subsequently adapt them to be suitable for
the human body. The analysis of several studies published in the field reflect the presence
of a large gap between the predictions of in vitro and in vivo studies even for identical
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degradation systems. The sensitivity of biodegradable systems to environmental conditions
and their complexity have also contributed to this gap [5–11]. A detailed comparison of
several published studies was conducted by Sanchez et al. in 2015 [7] to examine whether
it is possible to correlate the in vitro and in vivo degradation behavior of Mg and Mg-based
alloys. As a result, the study concluded that a clear correlation could not be established.
This poor correlation between in vitro and in vivo degradation behavior remains a challenge
until today, hence extensive studies are still required for the development of biodegradable
Mg-based implants. Unfortunately, due to the expensive and time-consuming nature of
such investigations, as well as ethical implications when considering animal experiments,
an alternate strategy to comprehensive experimental trials is required. Computational
modelling evolves as a powerful instrument for resolving this problem.

Mathematical modelling of biodegradable implant materials is a comparatively novel
tool aimed at improving the understanding and prediction of degradation processes. In the
respective literature, various mathematical models have been proposed to model certain
aspects of the biodegradation process of Mg-based implants [12–17]. A more in-depth
examination of the various modeling approaches and models of Mg-based implants in
in vivo and in vitro environments may be found in recent reviews [18–21]. Due to the com-
plexity of the system and its multiphysics nature, the available models are often limited and
calibrated to specific in vitro or in vivo study systems only. Few comparisons between both
environments have been made. For example, the model presented by Sanz-Herrera [22]
provided qualitative measurements of the degradation of the Mg screw alloy (Mg-Zn-Zr)
in vitro and implanted in a Japanese rabbit. The authors found a four-fold higher corrosion
kinetics in vivo than in vitro. However, the modelling of in vivo degradation was limited
to a 2D axissymetric geometry.

A peridynamic model was recently developed to simulate the in vitro volume loss of
Mg-5Gd and Mg-10Gd bone implant screws (in wt.%) in complex cell culture media [14].
Whereas in classical degradation modelling, e.g., by means of the Finite-Element-Method
(FEM), additional effort is required to capture the evolution of the corrosion surface over
the duration of simulated immersion [23], the corrosion model obtained from the nonlocal
theory of peridynamics proposes a formulation using integro-differential equations, thus
resulting in the evolution of the corrosion interface as a natural component of the solution of
the governing equations [16,24]. In recent years, these models were extended to address sev-
eral corrosion phenomena, e.g., passivation, salt layer formation, intergranular corrosion,
stress-assisted corrosion, stress corrosion cracking and galvanic corrosion [25–29]. Using
a peridynamic formulation, in [14] the degradation was modelled as a diffusive process
depending on the diffusion of metal ions from the metal phase across a diffusive degra-
dation layer into the surrounding medium. The model was demonstrated to accurately
simulate the volume loss of the Mg-based implants in 3D and in turn served as input for the
subsequent FEM model to predict the residual strength of the degraded implant. Consider-
ing that the peridynamic degradation model is diffusion-driven, by calibrating the model
diffusivity parameters to both in vitro and in vivo data, it may be possible to elucidate
correlations between the observed degradation behaviour. However, peridynamic models
are relatively complex and computationally expensive. For such computation-intensive
models, surrogate modelling has become an increasingly popular approach, introducing
mathematical models that are more compact and faster to evaluate without compromising
the accuracy of the original models.

Several techniques have been proposed to construct surrogate models using a min-
imum number of original model simulations [30–33]. Kriging, also known as Gaussian
process modelling, has become a popular surrogate modeling technique in recent years,
due to its accuracy and simplified mathematical construction. The quality of Kriging
surrogate model predictions, however, is heavily influenced by the size and distribution of
the input parameters as well as the original model response used to construct the surrogate
model [34–37]. Recently, Zeller-Plumhoff and Albaraghtheh et al. [12] implemented Krig-
ing to calibrate and optimize the key parameters of a complex physical degradation model
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of pure Mg under physiological conditions. The calibrated model was able to simulate the
degradation with an accuracy of 7%, which is equal to the experimental error. Furthermore,
the measured normalized root-mean-square deviation (NRMSE) of the simulated mean
elemental weight percentage of precipitated salts reflected an acceptable agreement with
the experimental data used in the calibration.

In this study, Kriging surrogate degradation models were developed based on in vitro
peridynamic models that simulate the degradation of Mg-5Gd and Mg-10Gd bone implant
screws. The optimized surrogate models were extended further to simulate the diffusion
behavior of the aforementioned implants in vivo. The key model parameters describing
the diffusion of Mg2+ ions within the electrolyte and the porous degradation layer forming
on the metal surface were calibrated to in vitro and in vivo experiments thus providing the
possibility to compare the diffusive behaviour with respect to the observed volume loss
and degradation rates for both cases and alloys.

2. Materials and Methods
2.1. Model Calibration Data

The experimental data used for the calibration of the simulations were obtained by
evaluating the relative volume loss (VL in %) of two magnesium gadolinium alloys, Mg-5
wt.%Gd and Mg-10 wt.%Gd screw implants (4 mm length, 2 mm diameter, M2 thread
with 0.5 × 0.5 mm slotted screw head) in in vitro and in vivo tests. Details regarding the
implant manufacturing and testing were published in [8,38]. In summary, in all cases,
non-degraded screws were imaged using micro computed tomography (µCT) to obtain
their initial geometry. For the in vitro testing the screws were immersed in complex cell
culture medium (α-Minimum Essential Medium or Dulbecco’s Modified Eagle’s Medium
supplemented with 10% Fetal Bovine Serum and 1% Penicillin/Streptomycin) for 1, 2, 3, 4
and 8 weeks under cell culture conditions (37 °C, 5% CO2, 20% O2, and 95% rel. humidity).
The immersion medium was changed every 2–4 days to avoid saturation of the medium
with ions. To obtain the geometry after degradation the degradation layer was removed
using chromic acid and the implants were again measured using µCT. For details concerning
methods, such as imaging parameters, see [38]. In vivo tests were carried out by implanting
the screws into rat tibia with healing durations of 4, 8 and 12 weeks. Again, µCT imaging,
in this case synchrotron radiation-based, was used to study the morphology of the degraded
screws. The experimental details can be found in [8]. Importantly, the data provided
by (synchrotron radiation-based) µCT yields highly resolved information on the screw
morphology and can be used to determine the volume loss of the implants [39].

The volume loss [%] for Mg-xGd is calculated as

VL(t) =
V(0)−V(t)

V(0)
· 100%, (1)

where V(0) and V(t) are the volume of residual metallic material before and after the
degradation tests, respectively, as determined from µCT images. The degradation rate (DR)
[mm/yr] is calculated based on the volume loss as

DR(t) =
V(0)−V(t)

A(0) · t , (2)

where A(0) is the initial surface area of the sample and t is the degradation time.

2.2. Peridynamic Model and Implementation

In the present study, the peridynamic degradation model from [14] was employed to
simulate the degradation behavior of Mg-based implant screws. Given that computational
modelling of the electrochemical degradation processes associated with Mg-based alloys
is generally very challenging, we adopt a bi-material solid-liquid interface description to
efficiently capture the electrochemically driven dissolution and surface evolution. Con-
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sidering a generic domain Ω ∈ Rnd , where nd ≡ 3 is the spatial dimension, the governing
equation of the bi-material peridynamic degradation model is given by

Ċ(x, t)−
∫
Hx

c(t)
C(x′, t)− C(x, t)
||x′ − x||nd−2p dVx′ = 0, x ∈ Ω, t > 0, (3)

where C(x, t) is the (molar) concentration of the Mg-based alloy material associated with
point x at time t,H is the spherical integration region or neighborhood with radius δ called
horizon, p ∈ (−1, ∞) is a scalar value assumed as p ≡ 0 and c(t) is the proportional-
ity coefficient called micro-diffusivity. The latter is a model parameter that depends on
the regions (solid or liquid) in which the interacting points x′ and x are located within
the neighbourhood:

c(t) =


3χ2

s
πδ2 10

(
− VL(t)

l

)
, x′ or x in solid part

3χ2
l

πδ2 , x′ and x in liquid part,

(4)

where χ2
s and χ2

l are the diffusivities of the classical local Fickian diffusion equation within
the solid and liquid domains, respectively, VL(t) is the volume loss at time t of the Mg-based
implant screw and l > 0 is an analytical non-negative model parameter, which represents
the depth of the growing degradation layer and therefore leads to a dampening of the
degradation with increasing values [40]. The values for l were found to be 1/4.25 and
1/15.53 for Mg-5Gd and Mg-10Gd, respectively. For the numerical implementation of (3)
we employ the standard one-point Gaussian integration scheme and an adaptive multi-
grid discretization method in space and an implicit Euler time-stepping algorithm [14,41].
The in-house high performance computing (HPC) cluster was utilized to perform the
simulation on a computational node, that consists of two sockets, each with a 24-core
2.1 GHz Intel Xeon Scalable Platinum 8160 processor, thus providing a shared memory
multiprocessing parallelism on 48 cores.

2.3. Kriging-Based Surrogate Model and Implementation

The implementation of Kriging techniques to construct a surrogate model for studying
the degradation of Mg-based implants is described in detail in an earlier publication of
ours [12]. In brief, the peridynamic degradation model is treated as a black-box and the
Kriging-based surrogate model is built using a data-driven approach, as illustrated by
the schematic diagram in Figure 1. The training data for the Kriging model are sampled
from the input distribution in the parametric space of the input parameters. The sampled
parameter combinations are evaluated using the expensive computational model (black-
box) and the resulting observations are exploited to build the surrogate model on the whole
domain of the input distribution.

Figure 1. Schematic diagram of the construction of surrogate models.

The Latin hypercube sampling (LHS) method is used to draw thirty different sets of
samples based on the assumed parameter distribution of the input parameters (χ2

s and χ2
l )

over a user-defined parametric space, similar to the sampling domain shown in Figure 2.
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The sampling of the input variables ranges should be representative and capture all possible
information about the original peridynamic model [42,43]. Due to the fact that the size
and distribution of data points used in the numerical experiments have a major impact on
the quality of surrogate model predictions [34,36]. In this case, the parametric space was
extended from the range of optimized parameters proposed in [14].

Figure 2. The sampling domain of χ2
s and χ2

l generated using the LHS technique.

The training data, also known as numerical experiment design (ED) {X ,Y}, is gen-
erated by evaluating the peridynamic model output Y = [y1, y2, ..., yN ]

T for N generated
sample points of the input parameter vector X =

[
χ2

s , χ2
l
]T , where Y is the quantity of

interest (QoI) simulated by the surrogate model, which for the model at hand is the volume
loss VL of Mg-5Gd and Mg-10Gd implants. The general mathematical presentation of the
surrogate model simulating the degradation of Mg-xGd implants is

M(x) = βT f (x) + σ2Z(x, ω), (5)

M is the Kriging mapping function, which is the realization of the Gaussian process, that is
used to calculate the volume loss Y for any input parameter vector X for a finite period of
time. βT f (x) is the trend of the Kriging, which is the mean value of the Gaussian process,
σ2Z(x, ω) is the realization of the stochastic process that is assumed to have a zero-mean,
unit-variance Z(x, ω), where σ is the variance of the process and ω is the underlying
probability space, which is defined in terms of the correlation function of the stochastic
process R(x, x′, θ)[44]. The performance of the Kriging-based surrogate model based on
the training simulation data generated from the peridynamic model is estimated by the
leave-out-error (εLOO), which is defined as

εLOO =
1

Ne

[
∑Ne

i=1(M(xi)−M(−i)(xi))
2

Var[M(X )]

]
, (6)

where Ne is the number of of data points considered during Kriging,M(−i)(xi) designates
that the Kriging surrogate model is obtained using all points of the numerical experimental
design except xi andM(X ) is the corresponding surrogate model response of the initial
numerical experimental design generated using the original model [44]. The generated
Kriging-based surrogate model is calibrated based on the experimental data of both in vitro
and in vivo degradation tests of Mg-xGd biodegradable implants. The calibration process
was performed by dividing the model domain into equal intervals and then re-sampling
each of the intervals using LHS. Intervals with higher uncertainty were further divided
and sampled. The goodness of the calibration was measured by the means of the mean
absolute error (MAE), which is calculated via

MAE =
∑N

j=1|yt − ŷj|
N

, (7)
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with N the number of measurement points, yt the (mean) experimental value at time t for
the volume loss at point j, ŷj the Kriging surrogate model response at point j. The Kriging-
based surrogate model is implemented using the Kriging module within the UQLab
framework [45], which is installed and integrated under BSD 3-clause license in MATLAB

2021b (The MathWorks, Inc., Natick, MA, USA).

3. Results and Discussion

Surrogate models were trained to predict the volume loss based on the computational
experimental design (ED), which was collected from random samples of the target pa-
rameters using LHS. The ranges for the input parameters were set similarly to the ranges
assumed during the parameter optimization for the PD models. Thus, the ranges were
assumed between 1× 10−17 m2/s to 1× 10−12 m2/s and 1× 10−12 m2/s to 1× 10−7 m2/s
for χ2

s and χ2
l , respectively.

The developed surrogate models can capture the QoI for both implant alloys, Mg-5Gd
and Mg-10Gd, for in in vitro degradation sufficiently well, as can be inferred from the
performance of the surrogate model with respect to the peridynamic model shown in
Figure 3. It should be noted that the response of the PD model for the in vivo case was
assessed based on pure numerical findings of the PD model, the ranges of the numerical
test were confirmed based on the experimental data from [38]. The error of the surrogate
models, represented by εLOO was between 2.1× 10−3 and 5.5× 10−3 for Mg-5Gd and
1.7× 10−3 and 3.1× 10−3 for Mg-10Gd. Furthermore, the Kriging surrogate model reduces
the computational time required to run the training matrix, which contains the training sets
of parameters, down to 23.6 s in order to simulate the entire domain over the respective
simulated immersion time compared to approximately 3 h for the peridynamic model with
the same set of parameters.

Figure 3. Comparison between the QoI (VL) computed by the PD model and corresponding Kriging
surrogate models predictions (a) Mg-5Gd in vitro, (b) Mg-5Gd in vivo. (c) Mg-10Gd in vitro and
(d) Mg-10Gd in vivo.

Generally, surrogate models have a wider range of applications due to their ability for
mapping the response domain with respect to the full input distribution. The model key
parameters χ2

s [m2/s] and χ2
l [m2/s] were calibrated and optimized using the predictions

of the surrogate model and later the model response was validated against VL determined
from µCT measurements obtained for in vitro degradation [38] and for in vivo degrada-
tion [8]. The optimized values of χ2

s and χ2
l for Mg-5Gd and Mg-10Gd for both in vitro and
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in vivo cases are given in Table 1. The PD model responses were collected over 56 days
(8 weeks), so the Kriging models of the in vitro case were initially trained and calibrated
over 56 days. Surrogate model responses were numerically extrapolated to 100 days in
order to capture the time points from in vivo experiments. The diffusivity of Mg2+ ions was
found to be one order of magnitude higher in the in vivo case with respect to in vitro, which
is expected based on the reported degradation behaviour of the current implants by [8,38].

Table 1. The optimized parameters of in vitro and in vivo measured via the Kriging-based surrogate
models and the MAE with respect to the experimental data.

In Vitro In Vivo

Mg-5Gd Mg-10Gd Mg-5Gd Mg-10Gd

χ2
s [m2/s] 2.9× 10−15 1.78× 10−15 7.8× 10−14 9.6× 10−14

χ2
l [m2/s] 8.7× 10−9 1.44× 10−9 5.4× 10−8 8.4× 10−8

MAE 0.03 0.08 0.31 0.44

The visualization of the calibrated surrogate models’ responses in comparison to
the experimental data for 100 days of degradation for Mg-5Gd and Mg-10Gd implants
for both in vitro and in vivo are shown in Figure 4a. For the in vitro degradation the
simulated VL are in agreement with VL determined from µCT measurements (scatter
plots in Figure 4a,b [38], with MAE of 0.03 for Mg-5Gd and 0.08 Mg-10Gd. The same
observation is also valid for the simulated in vivo VL, where the simulated values agree
with VL determined from µCT measurements [8] (scatter plots in in Figure 4a,b), with
MAE values of 0.31 and 0.44 for Mg-5Gd and Mg-10Gd, respectively. The accuracy of the
calibration process of the key parameters of the surrogate models was slightly compromised
by the uncertainties associated with the experimental data. The relatively high standard
deviation of the experimental measurements, as can be seen in Figure 4a, was one of the
main challenges of the calibration process. There were also limitations in the number of
available data, i.e., the in vitro degradation was limited to five time points between one
week and eight weeks, while the in vivo degradation was limited to three time points: four,
eight, and twelve weeks. The calibration process would be improved by including more
degradation time points, which would also reduce numerical overfitting and underfitting.
In addition, it is important to increase the number of samples at each point in order to
maintain lower standard errors.

Figure 4. (a) Experimental (single data points displaying mean ± standard deviation) and Kriging-
based surrogate model simulations of volume loss of in vitro and in vivo for Mg-5Gd and Mg-10Gd,
respectively. (b) The degradation rate calculated based on the volume loss. The VL was determined
from µCT measurements as published in [8,38].

In general, based on in vitro surrogate models for the same implants, the current
approach of surrogate modeling provided an opportunity to model the in vivo degradation
behaviour of Mg-5Gd and Mg-10Gd. It has also been shown that the surrogate models
are capable of simulating the degradation of Mg-xGd implants for over 100 days, for both
in vitro and in vivo degradation; however, further experiments are needed to validate
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the results. For comparison the degradation rates (DR) of Mg-5Gd and Mg-10Gd were
calculated in both in vitro and in vivo systems, Figure 4b. The surrogate model-based DR
were found to follow the experimental data for both the cases.

As the simulation results for the DR suggest, calculating a ratio between DR for
in vitro and in vivo as performed by [7] will yield different values, depending on the
degradation time. By contrast, using computational modelling, it is possible to derive a
time-independent ratio between the DR based on the diffusivity of the Mg2+ ions. For Mg-
5Gd, the mean ratio of χ2

s and χ2
l between in vitro and in vivo experiments was calculated

as 0.5, while for Mg-10Gd the mean ratio was calculated as 0.46. By establishing such ratios
for different material systems, it will be possible to predict the degradation behaviour
in vivo based on that observed in vitro in the future, thus reducing the effort required by
performing a large number of experiments.

4. Conclusions

In this study, Kriging surrogate models were developed to simulate degradation be-
havior as a function of Mg2+ ion diffusivity. Peridynamic in vitro degradation models
were used to generate observations in order to construct Kriging surrogate models. These
models were shown to simulate the in vitro degradation behaviour of Mg-5Gd and Mg-
10Gd implants with MAE-values of 0.03 and 0.08, respectively. The Kriging surrogate
models with optimized key parameters, χ2

s and χ2
l , were able to simulate in vivo degra-

dation behavior for Mg-5Gd and Mg-10Gd at MAE values of 0.31 and 0.44, respectively.
Additionally, the computational approach employed was able to significantly reduce the
computational time and cost as compared to the original peridynamic degradation model.
More importantly, the proposed approach provided time-independent ratios based on
the variation in Mg2+ ion diffusivities within the degradation system. Using the time-
independent ratios established between in vitro and in vivo experiments by means of
Kriging surrogate models, we may in the future be able to infer in vivo degradation rates
based on in vitro experiments.
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