
Citation: Marquez-Peñaranda, J.F.;

Sanchez-Silva, M.; Bastidas-Arteaga, E.

Probabilistic Assessment of

Biodeterioration Effects on

Reinforced Concrete Sewers. Corros.

Mater. Degrad. 2022, 3, 333–348.

https://doi.org/10.3390/

cmd3030020

Academic Editors: Miguel-Ángel

Climent and Carmen Andrade

Received: 12 June 2022

Accepted: 4 July 2022

Published: 10 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

corrosion and 
materials degradation

Article

Probabilistic Assessment of Biodeterioration Effects on
Reinforced Concrete Sewers
Jorge Fernando Marquez-Peñaranda 1, Mauricio Sanchez-Silva 2 and Emilio Bastidas-Arteaga 3,*

1 Departamento de Construcciones Civiles, Universidad Francisco de Paula Santander, Avenida Gran Colombia
No. 12E-96 Colsag, Cucuta 540003, Colombia; jorgefernandomp@ufps.edu.co

2 Department of Civil and Environmental Engineering, Universidad de Los Andes, Carrera 1 Este No. 19A-40,
Edificio Mario Laserna, Piso 6, Bogota 111711, Colombia; msanchez@uniandes.edu.co

3 Laboratory of Engineering Sciences for the Environment (LaSIE UMR CNRS 7356), La Rochelle Université,
Avenue Michel Crépeau, CEDEX 1, 17042 La Rochelle, France

* Correspondence: ebastida@univ-lr.fr; Tel.: +33-(0)5-86-56-22-32

Abstract: The worldwide current practice of the structural design of sewers is based on procedures
which usually include the effects caused by chemical and biological deterioration. However, in
the last few decades, many sewer pipes have been designed using reinforced concrete which have
succinctly considered such deterioration promoters. Indeed, knowledge related to reinforced concrete
deterioration processes has become an important issue when forecasting the expected or remaining
lifespan of sewers. Within these processes, thickness and strength losses and porosity augments have
been found to be the result of the vital activity of sulfur-oxidizing bacteria and some types of fungus.
This paper presents a rational methodology that uses biodeterioration measurements to describe
how biodeterioration effects can affect the probability of failure during the lifetime of sewers. The
probability of failure was obtained using Monte Carlo simulations based on numerical sampling
from lognormal and uniform distributions. The concrete and reinforcement strength, geometric
properties, H2S concentration in the headspace, and load values were considered as the main sources
of uncertainty. The results indicate that the expected service lifespan can vary between 55 and 37 years
for low and high H2S concentrations, respectively.
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1. Introduction

Reinforced concrete sewers are usually exposed to highly varying and aggressive
work conditions during their lifetimes. They are built underground, supporting important
infill and traffic loads which can lead to soil settlement and structural material cracking [1].
Inside a typical sewer, different hazards can arise for its structure: (a) diluted and de-
posited solid matter and the velocity variability of running water can modify the surfaces
roughness and the concrete cover thickness [2], (b) the existence of gases such as carbon
dioxide and hydrogen sulfide promote chemical deterioration [3], (c) byproducts coming
from the growth of microorganisms existing in wastewater and moist walls increase the
harmful chemical reactions [4], (d) concrete strength losses with subsequent cross-section
reduction change the structural properties [5–9], (e) the variability of the real hydrogen
sulfide concentration imposes high uncertainty in deterioration processes [10–15], (f) su-
perimposed loads and biodeterioration processes typically lead to the prevalence of pipe
crown failure [16–21], and (g) chloride diffusion can corrode the steel reinforcement [22,23].
The combination of mechanical, chemical, and biogenic hazards can reduce the sewer’s
service life significantly [24,25].

The sewer’s failure affects infrastructure investment adversely and jeopardizes human
health [26]. Hence, appropriate design and management procedures are indispensable for
the optimization of the sewer’s level of service. However, although modern design aids
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and data from powerful sewer inspection systems are available [10,11,27–29], the current
design practice is still based on procedures which are mainly focused on the mechanical
relationships of the problem [28,30,31]. Likewise, the inclusion of chemical and biogenic
aspects has been strongly recommended. Nonetheless, most designers still emphasize their
work in solving exclusively physically related algorithms [32,33].

Concrete weight, strength losses, and porosity augments are related to the early failure
of sewers. Although there is evidence of 70-year-old sewers maintaining an acceptable ser-
vice level, others have failed after only ten years of service [29,30,34,35]. The differences in
the performance of these systems can be associated with wastewater quality variations, ma-
terial behavior, and wastewater flow characteristics. Some research works have suggested
that the legislation for the reduction of metal contaminants in sewer systems, promulgated
in the 1980s in the USA and Europe, brought an important diminution of biologically
toxic elements within sewers, allowing a larger and faster proliferation of microorganisms
capable of producing biodeterioration [10,11,36,37]. In addition, the increased wastewater
transport demand of the last few years has produced important augments in the caudal,
velocity and turbulence of running water, which remove the layers of corroded material
formed over years. The corroded layer’s removal facilitates continuous biofilm renewal on
exposed surfaces and the penetration of the front of biodeterioration into deeper layers of
the concrete matrix [38–41].

This paper proposes a methodology to assess the reliability of sewer pipes subjected
to biodeterioration effects. The mechanical strength and demand variation of the bending
moment in the crown and walls of a typical sewer are forecasted. The document is organized
in seven sections. Section 2 presents some topics related to the effects of biodeterioration on
the material properties. Section 3 summarizes the fundamentals and procedures currently
used in the structural design of sewers. Section 4 describes a proposal to incorporate the
effect of biogenic activity in the structural design of sewers. In Section 5, a practical example
of the proposed methodology is solved. Finally, Sections 6 and 7 state the conclusions and
recommendations.

2. Influence of Biodeterioration on Concrete Properties

Biodeterioration kinematics can accelerate harmful effects on concrete such as carbon-
ation and cracking in sewers [5,42,43]. On the other hand, the ecology of the microbial
communities is highly dependent on the concrete pH [12,16]. The high alkalinity of new
concrete (a pH of about 12) inhibits microbial development upon the inner surfaces. How-
ever, carbonation and exposure to hydrogen sulfide reduce the concrete pH to a point at
which neutrophilic bacteria and fungi can thrive, producing acidic metabolites which in
turn lower the pH to a point at which acidophilic bacteria appear [44]. The porosity increase
and strength and weight losses have been associated mainly to sulfur oxidizing bacteria
(SOB) and the activity of some fungi [45,46]. SOB oxidize hydrogen sulfide or reduced
sulfur compounds and produce sulfate or sulfuric acid [47–49]. Sulfuric acid reacts with
the calcium hydroxide of the cement matrix, forming calcium sulfate. In turn, the calcium
sulfate reacts with calcium aluminate hydrate to form ettringite, which is an expansive
material capable of breaking the superficial concrete layers [50–52]. Acidithiobacillus thiooxi-
dans, Halothiobacillus neapolitanus, Starkeya novella, and Thiomonas intermedia are SOB which
are widely known as promoters of concrete biodeterioration. Furthermore, the fungus
Fusarium has been found to be capable of concrete deterioration, but the most aggressive
strains are all SOB members of the phylum proteobacteria [3,12,53–57].

Concrete sewer maintenance and reparation activities related to the durability detri-
ment due to biodeterioration effects are costly [26,58,59]. In biodeterioration processes,
the durability detriment is mainly related to the development of a layer of high porosity
produced by acid attack. This layer makes the concrete more permeable, less resistant,
and susceptible to the greater diffusion of nocuous agents [60–64]. Three stages which are
dependent on the pH of wet sewer surfaces have been proposed to describe the chronology
of biodeterioration [11,54]. In the first stage, high alkalinity (pH > 9) significantly inhibits
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the microbial activity, and no deterioration is observed. Nonetheless, carbonation and the
presence of hydrogen sulfide cause the pH to decay continuously. In the second stage (pH
ranging from 9 to 4), neutrophilic organisms are responsible for medium-to-high thickness
losses. Recently, the fungus Fusarium was found to be capable of producing thickness losses
of up to 2.3 mm/year during the first year [16,46]. In the third stage, acidophilic bacteria
produce severe thickness losses and rapid acidification (pH < 4). Each stage has a high
uncertainty and can take months or years to develop. For this reason, biodeterioration
must be modeled as a time-variant process throughout the structural lifetime [65].

A wide range of concrete weight and thickness losses produced by SOB and other
microorganisms has been reported in the literature. Table 1 presents a summary of such
findings. The large variation in measurements related to biodeterioration and its effect
upon the durability of reinforced concrete sewers can be explained by considering the
following facts:

Table 1. Concrete losses produced by biodeterioration according to the literature.

Exposure
Time (Days) Weight Loss Thickness Loss

(mm/Year) Environment Experimental Conditions Ref.

20 N.A. 3.50 1100 ppm H2S, 21.5 ◦C Pilot-scale sewer pipe [66]
40 N.A. 10 89 ppm H2S, 17 ◦C In situ (real env.) [13]
68 N.A. 5.37 250 ppm H2S Experimental apparatus [67]
81 N.A. 2.59 N.A. Experimental apparatus [68]
120 1.6% 0.16 a 100–200 ppm H2S, 25–30 ◦C In situ (real env.) [14]
180 N.A. 20 700–1000 ppm H2S, 20–35 ◦C Pilot scale system [17]
227 N.A. 0.21 300–600 ppm H2S, 23 ◦C Reactor in laboratory [69]
270 5.8% 0.20 a 12–18 ppm H2S Simulation chamber [53]
300 6.8% 0.30 a 8–15 ppm H2S, 30 ◦C Experimental apparatus [6]
350 100% 20 5–15 ppm H2S, 30 ◦C Simulation chamber [70]
360 37.0% 10 10–50 ppm H2S In situ (real env.) [12]
930 N.A. 12 79 ppm H2S In situ (real env.) [11]
960 N.A. 8.9 50 ppm H2S, 30 ◦C Corrosion Chamber [27]

1350 N.A. 1.0 5–50 ppm H2S, Corrosion Chamber [18]
1460 N.A. 1.0 5 ppm H2S, 21 ◦C In situ (real env.) [10]
1460 N.A. 0.5 68 ppm H2S, 27 ◦C In situ (real env.) [10]
1460 N.A. 0.1 650 ppm H2S, 27 ◦C In situ (real env.) [10]
1620 N.A. 0.19 5–50 ppm H2S, 25 ◦C Corrosion Chamber [19]

a Thickness loss computed from data considering a uniform thickness loss around the sample.

• Biodeterioration can reduce the expected service life span from 50–100 years to less
than 10 years [17].

• Biodeterioration initiation can take 0.3 to 2.2 years to occur [6,11,12,71]. This lapse
has been associated with the environmental conditioning needed for living organisms’
adaptation.

• Temperature and relative humidity variations in the headspace can modify the sulfide
uptake and lead to important variations in biodeterioration dynamics [27].

• Real H2S concentrations can vary from a few to hundreds of ppm. It has been observed
that concrete deterioration increases when the H2S concentration becomes higher [66].
The biological and chemical nature of deterioration processes impose high variability
in the sewer behavior, such that the use of analysis with probabilistic models is highly
recommended [6,18,27,71].

• Old concrete surfaces tend to deteriorate more rapidly than new ones. In similar
environmental conditions, old concrete surfaces can deteriorate seven to 80 times
faster than new ones [10,19].

• Biodeterioration effects are typically concentrated in zones located in crown and
waterline walls. The washing effect produced by running water and temperature and
relative humidity variations lead to larger thickness losses in the waterline walls than
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in the crown. Thickness losses in the waterline walls can vary from two to four times
those in the crown [16–19].

• The bending capacity of reinforced concrete is reduced rapidly because of rebar steel
corrosion produced by hydrogen sulfide attack. Steel thickness losses of 0.30 to 85 mm/year
have been reported for environments containing up to 850 ppm H2S [17,71–74].

• Rapid concrete strength losses produce cross-section reduction due to the drop off or
remotion of superficial deteriorated concrete layers [5–9]

The facts previously exposed and the data from Table 1 were used to compute the
numerical ranges of some of the variables described in Section 5.

3. Current Practice in the Structural Design of Sewers

Most reinforced concrete sewer facilities are built underground. Hydraulic demands,
the structural stiffness of the conduits, the surrounding infill, soil heterogeneity, seismic
events and overlaid traffic are important aspects to consider when designing a sewer
pipe [32]. A typical structural design approach considers the following: (a) hydraulic
design is an input; (b) short-duration overpressure or vacuum loading are not generated;
(c) soil–structure interaction analysis is used to infer how the pipes and surrounding soil
move together [1,75,76]; (d) lateral earth loads, soil reactions, friction loads and settlements
and other displacements can be obtained from static analysis; (e) gravity loads from traffic,
soil fill weight, the weight of the pipe, and wastewater weight are static actions applied
in varying locations and forms [77]; (f) reinforced concrete lines show low vulnerability
to seismic demands because they are built connecting short rigid spans of pipe by means
of unrestrained joints; (g) for partially or totally buried pipes, the low probability of the
coincidence of seismic loads and larger values of gravity or lateral earth loads allow us to
obviate the seismic considerations in the structural design [78–80].

Some particularities used in the load analysis within the current practice for the
structural design of reinforced concrete sewers can be summarized as follows:

• Pipes are placed underground following two configurations: trench and positive
embankment. In the trench case, due to the backfill settlement, friction forces at the
backfill–in situ material interface will reduce the gravity effects upon the pipe. In the
embankment case, the soil placed on the sides of the pipe will settle more than the soil
above the pipe, imposing larger gravity loads above the pipe. In both cases, gravity
and lateral thrust effects are included in the structural analysis. This paper deals only
with the trench condition [77,81].

• The traffic load magnitude is a function of the type of superficial cover (flexible or rigid
pavements, or unsurfaced cover), the depth at which the pipe is set, the class of vehicle
(trucks, aircrafts, or others) and the direction of travel (parallel or perpendicular to the
pipe axis). In general, the deeper the pipe location the lower the traffic effects [77,82].

• The fluid weight will vary depending on the hydraulic problems arising from the
inadequate size or gradient of pipe, infiltration (from groundwater) and inflow (from
surface runoff) [20,83–86].

• Figure 1 shows the typical loads upon a buried sewer pipe. WS is the backfill pressure
(kN/m2), WL is the effective traffic load (kN/m2), WP is the weight of the pipe
(kN/m2), WF is the fluid (water weight) pressure (kN/m2), and ET and EB are the
lateral thrust pressure at the top and bottom of the pipe, respectively (kN/m2). There is
a load-spreading configuration along a pipe that is laid parallel to the traffic direction
and the so called “effective supporting length of pipe (Le)”. The bedding angle α
defines the arc length where the pipe is effectively supported. The α value and reaction
pressure form depend on the bedding material properties [81].
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Figure 1. Typical loads demanding a buried sewer pipe (based on information available in [81]).

The reinforced concrete pipes used as sewers typically have a low reinforcement
steel ratio and thick concrete thickness which guarantee a greater shear capacity. For this
reason, in this work only the bending moment capacity is considered. The bending moment
capacity for singly reinforced normal-weight concrete elements can be computed using
Equation (1) [87]:

Mn = ρ fy

(
1−

ρ fy

1.7ρ f ′c

)
bd2, (1)

where Mn is the nominal bending capacity (KN-m), ρ is the reinforcement steel ratio, fy is
the steel yield strength (KN/m2), f ′c is the compressive strength of the concrete (KN/m2),
b the cross-section width (m), and d is the internal lever arm (m).

4. Structural Design of Sewers Considering Biodeterioration

Unexpected changes in the deterioration patterns make the inclusion of deterioration
effects in the sewer’s structural design a complex task. Factors such as age, pipe charac-
teristics, the existence of underground water, chemical and physical soil properties, the
proximity of other installations, the sewer slope, and the sewer water quality can bring a
high degree of uncertainty to the processes of the analysis and design of sewers [34,84].
In order to counteract such uncertainty in the sewers’ structural design practice, methods
such as the addition of sacrificial thickness and the definition of allowable crack widths in
the inner walls were implemented [81,88]. Furthermore, although several models using
different biodeterioration rates were used, their predictions failed when compared to real
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measurements. For example, some models have fitted rather well up to 20 years uptime
but forecasted thickness losses of about one quarter to one third of the measured thickness
changes 15 years later [34]. Indeed, thickness losses produced by biodeterioration increase
the probability of failure of sewer pipes. To confront this hazard, a typical factor of safety of
1.3 is used for reinforced concrete pipes when no sacrificial layer is used [81]. Although this
methodology is amicable to the designers, the uncertainty associated with the load–capacity
relations demand a comprehensive methodology which considers the randomness of the
process. To attend to this need, a probabilistic approach to the determination of the bending
strength of a sewer is proposed and presented in this section. A summary of the approach
for structural analysis is shown in Figure 2.
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Figure 2. Flowchart of the proposed model for the structural analysis of a reinforced concrete sewer.

4.1. Structural Analysis

Typical models of sewer failure consider two critical zones in a cross section of the
pipe: the crown and the waterline walls. When studying the biodeterioration effects on
the structural integrity, a thickness reduction is considered in such places. In this work the
direct stiffness method was used to analyze a typical sewer pipe in which the thickness at
the crown and waterline walls is reduced during successive stages. Quadrangular thick
plate elements are jointed to form a quasi-cylindrical duct, as shown in Figure 3. In order to
compute the inner forces and nodal displacements, a MATLAB® code (R2014A, MathWorks,
Natick, MA,USA) was written and then validated using the software SAP2000® (V.17.1.1,
Computers and Structures Inc, Berkeley, CA) [76,89–93]. During the validation process, the
lower elements of the pipe section were supported on springs to simulate the soil reactions.
The spring constants were computed by multiplying the modulus of the subgrade reaction
by the afferent area around the joint [75,94–96]. The structural analysis developed using
the MATLAB® code was appropriate to simulate the inner forces’ distribution.
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4.2. Probabilistic Approach

To investigate how the biodeterioration influences the structural capacity of a sewer,
in this study several sources of uncertainty were considered. Lognormal or uniform
probability distributions were adopted for each variable. The load mean values were
calculated as indicated in Section 2, and the geometrical mean values were taken from the
nominal commercial values required by the ASTM standards [97]. The resistance mean
values were computed using Equations (2) and (3):

µMn = µρµ fy

(
1−

µρµ fy

1.7µ f ′c

)
bµd

2 (2)

µd =

(
d− tµ∆t

1000

)
, (3)

where µMn is the mean value of the bending moment capacity (kN-m), µρ is the mean value
of the steel ratio (cm2/cm2), t is the elapsed time from the biodeterioration initiation (years),
µd is the mean value of the reduced internal lever arm at time t (m), µ∆t is the mean value
of the thickness loss rate at time t (mm/year), µ fy is the mean value of the steel strength
(kN/m2), and µ f ′c is the mean value of the concrete strength (kN/m2).

To study how the probability of failure of the sewer pipe system behaves, a system
limit state function was defined [98]:

g(R, S) = R− S = Z (4)

where g(R,S) is the limit state function, R is the system resistance, and S is the load demand
on the system. When the g(R,S) value is negative, system failure is expected. On the
contrary, if the g(R,S) value is positive or zero, the system will show safe behavior. In this
work, the R and S values are obtained from the vector of capacities linked to the mean
values given by Equations (2) and (3) and from the vector of effects (internal bending
moments) produced by the loads defined in Section 2, respectively. The probability of
failure can be estimated as [98]

p f = Φ
(
−µZ

σZ

)
= Φ(−β) (5)
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where p f is the probability of failure, Φ(·) is the standard normal probability distribution
with an expected value equal to 0 and a standard deviation equal to 1, µZ is the mean value
of Z, and σZ is the standard deviation of Z. Crude Monte Carlo simulations were used to
propagate uncertainties in the deterministic model in order to estimate the probability of
failure [98–100]. Random values were first generated. They were then propagated in the
mechanical model to evaluate the limit state functions. The number of fails was finally
counted to estimate the probability of failure.

5. Example: Reliability Assessment of Sewers Considering Biodeterioration
5.1. Description

A reinforced concrete pipe will be placed under a road with a high traffic of trucks
into a 3.60 m × 6.57 m (width × depth) trench. The pipe’s inner diameter and thickness
wall are 2.13 m and 0.22 m, respectively. Ordinary granular material will be used in the
backfill, and a granular cradle 50 mm thick will be compacted under the pipe’s invert. The
reinforcement configuration is shown in Figure 4 and was determined from the results
of a classic analysis (considering a factor of safety of 1.30). The geometrical requirements
stated in the ASTM standards were fulfilled [97,101–103]. A triple cage was specified,
but an elliptical cage must not be considered when computing the bending strength. The
bending moment strength can be computed following the classical reinforced concrete
design theory using the characteristics of the variables described in Table 2. To study
how biodeterioration influences the structural behavior, the probability of failure of the
system will be determined, taking in consideration the influence of thickness losses and
steel reinforcement corrosion upon the bending capacity throughout the time.
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In this example, H2S concentrations of 25, 50, 100, 200 and 400 ppm were used to
include a wide range of real environments in the MATLAB® code computations. The
probability of failure was calculated using Monte Carlo simulation for the crown and the
waterline walls separately. The probability distribution, the mean value and coefficient of
variation of the variables used in this work were obtained from the literature and are shown
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in Table 2. The selection of lognormal and uniform distributions was produced based
on a literature review [100,104–111]. The lognormal distributions were appropriate for
parameters that cannot be physically negative, while uniform distributions were selected
when the range of variation of the parameter was known.

To consider the effect of aging upon the concrete thickness loss associated to biode-
terioration, a loss increment of 6.6%/year was computed from data reported in the liter-
ature [10,19]. Concrete strength losses were considered as an equivalent thickness loss,
subtracting the low concrete strength thickness from the initial concrete thickness. On
the other hand, the thickness loss of the steel reinforcing bars was taken as half of that
calculated at any time for the concrete thickness loss at the crown. This steel/concrete
loss ratio describes appropriately the remaining protection given by partially deteriorated
surrounding concrete and fits well with the data reported in previous studies [24,42,71–74].

Table 2. Variables for the numerical example (references: [81,112]).

Variable Mean Value COV Distribution

Concrete compressive strength, f ′c (MPa) 28 19% Lognormal
Reinforcement steel yield strength, fy (MPa) 420 10% Lognormal
Modulus of elasticity of steel, Es (MPa) 200,000 6% Lognormal
Concrete cover to reinforcement (mm) 25 10% Lognormal
Reinforcement steel ratio, r (cm2/cm2) 0.0088 5% Lognormal
Thickness loss at the crown, Dtc (mm/year) a:

H2S concentrations up to 50 ppm 0.52 202% Lognormal
H2S concentration of 100 ppm 0.74 63% Lognormal
H2S concentration of 200 ppm 1.07 35% Lognormal
H2S concentration of 400 ppm 1.54 20% Lognormal

Thickness loss ratio, Dtw/Dtc (mm/mm) 3 19% Uniform
Biodeterioration initiation lapse (years), ti 1.38 57% Lognormal
Soil unit weight, γ (kN/m3) 20 10% Lognormal
Backfill height, H (m) 4 15% Uniform
Traffic (live) load, P (kN) b 223 30% Lognormal
Coefficient, Ku (gravel) c 0.165 - Deterministic
Trench load coefficient, C c 0.85 - Deterministic
Wheel load area, a × b (m ×m) 0.51 × 0.25 - Deterministic
Spread area a × b (m ×m) 7.48 × 7.22 - Deterministic

a A high COV suggests that biological processes (important even at low H2S concentrations) lead to higher
uncertainty that chemical processes (important at high H2S concentrations). b Computed considering
WL = P/Spread area (Section 2). c C and Ku are used to compute WS, as defined in Section 2.

5.2. Description of the Failure Modes

Current commercial reinforced concrete pipes have nominal diameters varying from
225 to 3600 mm, and typical lengths of 2440 mm. In most cases, sections of pipe are usually
connected using a flexible ring capable of allowing movements in the joint. This configura-
tion facilitates stress relief due to accommodation during a seismic event. Nevertheless,
settlements could occur under the same stretch, producing stress changes within the struc-
ture. Wastewater leaks, weak bedding compaction or affectations during construction
could be cited as possible causes of settlement near the ends of the pipe. However, in this
work an idealized external environment where no settlements occur was considered, and
two main failure modes related with concrete biodeterioration were studied: failure at the
crown and failure at the waterline walls.

Figure 5 describes the sequence of thickness and bending strength loss produced by
biodeterioration in sewers throughout the time. In buried sewer pipes, thickness loss from
biodeterioration makes the concrete thickness decrease throughout the time (Figure 5a).
The resultant smaller thickness leads to a lower inner lever arm that reduces the available
bending capacity (Mn). Furthermore, it produces a lower moment of inertia that makes the
bending moment (Mb) from loads change. The bending moment imposes tension stresses
on the inner face of the crown and the external face of the waterline walls. Biodeterioration
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attacks the inner face of the whole pipe, corroding the reinforcement steel in the crown
and reducing the available compressed concrete in the waterline walls. In the crown, the
tension capacity is rapidly lost due to the presence of corrosive gases which attack the
reinforcement bars [62,113]. The sequence of this first failure mode (at the crown) is shown
in Figure 5b. In the waterline walls, the bending capacity loss can occur more slowly
because of the inner lever arm reduction. The sequence of this second failure mode (at the
waterline walls) is shown in Figure 5c. In any event, there is a time t f when the capacity
can be lower than the demand and the pipe will fail. Then, a rational structural design
must be used to reduce the risk and extend the lifespan of the sewer.
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(a) thickness change, (b) first failure mode produced by variations of strength and demand at the
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5.3. Probability of Failure

Figure 6 shows the curves of the probability of failure obtained for the crown and the
waterline walls when exposed to different H2S concentrations. It is evident that the crown
will tend to fail before than waterline walls, leading to a ceiling failure that will change
the initial structural configuration drastically. In the case of crown failure (Figure 6a), the
high slope of each one of the curves shows that, once the concrete cover is lost, rapid steel
corrosion leads to a rapid bending strength loss. Indeed, concrete cover can significantly
delay the initiation of steel corrosion. If a low probability of failure value is chosen to
compute the service life of the sewer, for example p f = 0.10, the pipe will last in service up
to 55, 50, 46, 41 and 37 years when the H2S concentration is 25, 50, 100, 200 and 400 ppm,
respectively. Furthermore, the expected value (p f = 0.50) is typically 1 to 2 years longer
than the values associated to the chosen probability of failure. According to these findings,
the lifespan of a sewer could reach up to 55 years if the H2S concentration is low, and
up to 37 years if the H2S concentration is high. In the case of the waterline wall’s failure
(Figure 6b), for a low probability of failure (p f = 0.10) the service life will be about 67, 61,
58, 54 and 48 years for H2S concentrations of 25, 50, 100, 200 and 400 ppm, respectively.
This means that the waterline wall’s lifespan will be more than 10 years longer than that
of crown.
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6. Conclusions

In this work, biodeterioration measurements, mechanical models, and stochastic
simulations were used to describe how biodeterioration effects can affect the probability of
failure during the lifetime of sewers. The main conclusions are summarized as follows:

• The estimated probabilities of failure show that the crown will tend to fail before than
waterline walls. This finding is in accordance with the results reported in [16–21].

• A rapid bending strength loss produced by the steel corrosion at the crown or walls
generates sloped curves which forecast a rapid failure once the crown concrete cover
or most of the compressed concrete in the walls is lost. This conclusion coincides with
real failures reported in the literature after 9 to 70 years of service [62,113].

• If the crown failure is accepted as the limit condition related to the sewer pipe failure,
the expected service lifespan could be between 55 and 37 years for low and high H2S
concentrations, respectively.

7. Recommendations for Future Work

In small-diameter sewers, it is possible that the broken crown can be rearranged to
develop an arch system to bear the overlaying loads upon the ceiling. More research
is required to explain how this new configuration could be related to the extended life
observed in deteriorated pipes.

Typical experiments using humid samples subjected to gaseous environments describe
the crown environment well. However, more research is needed to understand better the
existing ratio between the thickness losses in the crown and those in the waterline walls of
sewers.

In sewers containing low H2S concentrations, it is recommendable to include the effect
of the inner temperature variation when modelling the biodeterioration dynamics.

Green pipes, antibacterial concrete pipes, and polyester resin concrete pipes (PRCP)
are some modern options to build and partially replace sewers pipes which offer durability,
wear resistance, appropriate strength, chemical resistance, and a soft inner texture. This is a
wide and interesting research field to be considered in future works [114–119].
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