
����������
�������

Citation: Kraft, B.; Achenbach, R.;

Ludwig, H.-M.; Raupach, M.

Hydration and Carbonation of

Alternative Binders. Corros. Mater.

Degrad. 2022, 3, 19–52. https://

doi.org/10.3390/cmd3010003

Academic Editors:

Miguel-Ángel Climent and

Carmen Andrade

Received: 30 December 2021

Accepted: 7 February 2022

Published: 10 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

corrosion and 
materials degradation

Article

Hydration and Carbonation of Alternative Binders
Bettina Kraft 1,*, Rebecca Achenbach 2 , Horst-Michael Ludwig 1 and Michael Raupach 2

1 Finger-Institute for Building Materials Science, Bauhaus-Universität Weimar, 99421 Weimar, Germany;
horst-michael.ludwig@uni-weimar.de

2 Institute of Building Materials Research (IBAC), RWTH Aachen University, Schinkelstr. 3,
52062 Aachen, Germany; achenbach@ibac.rwth-aachen.de (R.A.); raupach@ibac.rwth-aachen.de (M.R.)

* Correspondence: bettina.ines.elisabeth.kraft@uni-weimar.de

Abstract: The cement industry gains increasing public attention because of the high CO2 emissions
for which it is accountable. One approach to improve the carbon footprint of cement production is
the development of alternative binders, which can be produced with less energy consumption. These
alternative binders have a reduced clinker to cement ratio or contain no Portland cement at all. For
the corrosion protection of the reinforcement, the same requirements apply as for standardized types
of cement. To perform this evaluation, a basic understanding is necessary of the products formed
during hydration, the composition of the pore solutions and pore structure, and their influence on the
resistance to carbonation. In this study, various alternative binders, such as novel types of composite
cement with calcined clays or modified steel mill slag, alkali-activated materials, CSA cement, and a
C-S-H binder, are presented. The conducted investigations at mortars and cement pastes show the
differences in hydration, microstructure development, and pH. The changes in microstructure and
phase assemblage due to carbonation and the suitability of carbonation testing at an elevated CO2

content of 1 vol.-% for the different binders are also presented.

Keywords: SCMs; calcined clays; BOF slag; CSA; geopolymers; alkali-activated slag; hybrid alka-
line cement

1. Introduction

Newly developed alternative binders that can be produced with lower CO2 emissions
must be tested for their suitability for use in reinforced concrete components. The same
durability requirements are placed on them as on standardized types of cement. In this
study, various alternative binders from the groups of alternative supplementary cemen-
titious materials (SCMs), calcium sulfoaluminate (CSA) cement, calcium silicate hydrate
(C-S-H) binders, and alkali-activated materials (AAMs) are investigated. To get closer
to their widespread use in reinforced concrete structures, a detailed understanding of
hydration and carbonation is essential. Based on the investigations presented here, further
publications are planned, in particular on the influence of the various alternative binders
on the corrosion behavior of embedded steel reinforcement.

In the first days after the production of a reinforced, Portland cement (OPC)-based,
concrete component, the steel passivates due to the high pH value (usually between 12.5
and 13.8) of the concrete pore solution and is thus protected against corrosion, under the
condition that no interfering ions, such as chloride ions, prevent the passivation [1]. The
passive layer, which is only a few atomic layers thin, has a two-layer structure and consists
of a dense layer of Fe3O4 on the steel side, which oxidizes further in the direction of the
electrolyte, mainly to Fe2O3. The exact chemical composition depends mainly on the pH of
the concrete pore solution and the availability of oxygen [2,3]. According to the Pourbaix
diagram for iron in water, the oxidation products formed are only stable at a pH value
approximately greater than 9 [4].

Corros. Mater. Degrad. 2022, 3, 19–52. https://doi.org/10.3390/cmd3010003 https://www.mdpi.com/journal/cmd

https://doi.org/10.3390/cmd3010003
https://doi.org/10.3390/cmd3010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cmd
https://www.mdpi.com
https://orcid.org/0000-0001-5367-8075
https://orcid.org/0000-0003-0688-3839
https://doi.org/10.3390/cmd3010003
https://www.mdpi.com/journal/cmd
https://www.mdpi.com/article/10.3390/cmd3010003?type=check_update&version=2


Corros. Mater. Degrad. 2022, 3 20

In the process of carbonation of OPC-based mortars and concretes, the CO2 from the
air diffuses into the pore structure of the material and dissolves in the alkaline pore solution,
forming weak acidic ionic species [5]. The dissolved carbonates react in a multistage process
with the calcium ions from the hydrate phases of the cement matrix, summarized by [6] as:

CO2 + OH− → HCO−3 → CO2−
3 + H+ (1)

In the investigation of Pu et al. [7] the pH of pore solutions of different OPC and OPC
fly ash concretes drops from values between 13.0 and 13.4 to 7.2.

Once the carbonation front reaches the surface of the reinforcing steel the protective
passive film breaks down and significant corrosion may be initiated [1,8].

At pH < 8 the direct hydration of CO2 is predominant [9]:

CO2 + H2O → H2CO3 (2)

H2CO3 + OH− → HCO3 + H2O (3)

In the range of pH 8–10 both reactions are relevant [6,9].
The alkaline components of the concrete are mainly found in the pore solution, mostly

in the form of sodium and potassium hydroxides. But also the solid hydration products
like CaOH2 and C-S-H react with CO2 [1]. The main carbonation product is calcium
carbonate, which, depending on internal and external influences (pH, temperature, super-
saturation [10], humidity, CO2-concentration [11], and surface of nucleation [12]), can occur
as one of three CaCO3 polymorphs: calcite, aragonite, and vaterite [13–15]. Furthermore,
the occurrence of amorphous calcium carbonate was also observed [14]. The formation
of acidic H+ causes a decrease in the alkalinity of the pore solution and dissolves the
Ca-rich hydration products, such as portlandite, C-(A)-S-H phases, AFm, and ettringite.
As the first hydrate phase, carbonation converts portlandite to calcium carbonate. Dur-
ing the carbonation of C-S-H phases, a Ca-modified silica gel is formed in addition to
calcium carbonates.

For C-A-S-H phases, it was observed that an Al-enriched silicate gel is formed during
carbonation [16,17]. Carbonation of ettringite releases aluminum and sulfur, which in
turn is converted into aluminum hydroxide or zeolites [18] and gypsum, respectively.
Monosulfate and hemicarbonate AFm phases destabilize to monocarbonate AFm. This in
turn decomposes to strätlingite, which absorbs the liberated aluminum and silicon of the
carbonated C-(A)-S-H phases [6,19]. Carbonation of pure N(K)-A-S-H phases has not yet
been investigated. Yamazaki et al. observed for alkali-activated binders that carbonation
reduced the proportion of C-(N)-A-S-H phases and calcium carbonate was formed. For
high Na+ concentrations, the formation of sodium hydrogen carbonate (NaHCO3) was
further observed. A change in the C-(N)-A-S-H structure was also detected by 29Si MAS
NMR [20]. Bernal describes that in the decalcification of C-(N)-A-S-H phases, N-A-S-H
phases were found to be the main reaction products [21].

The change in microstructure due to carbonation of OPC with and without SCMs is
controversially discussed [15,22–24]. The conversion of portlandite to calcium carbonate
leads to an increase in volume of the solids of 11 to 14%, depending on the calcium
carbonate polymorphs formed [25,26]. The formation of the Ca- (and Al-) modified silica
gel from C-(A)-S-H phases is accompanied by a reduction in the volume of the solids,
which is also widely referred to as carbonation shrinkage [27,28]. However, the change in
solids volume cannot be quantified because the reaction stoichiometry has not yet been
clearly clarified [13,15,26]. These inaccuracies make it difficult to determine the change
in microstructure [15]. It is however already known that the carbonation of C-(A)-S-H
phases leads to a microstructural coarsening with a significant increase in capillary porosity,
whereas the carbonation of portlandite rather has a microstructural densifying effect [29].
During the transformation of C-(A)-S-H, the occurrence of metastable calcium carbonates,
such as vaterite and aragonite, is also frequently observed, which are obviously stabilized
here by hitherto unknown processes [13,29].
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The structural change of alkali-activated binders due to carbonation strongly depends
on the materials used as well as activators. Contrary results of mortar and concrete samples
were also found. Park et al. found a densification of the microstructure by carbonation
for alkali-activated fly ashes [30]. Puertas et al. found for alkali-activated slags that the
change in microstructure due to carbonation depends primarily on the activator; water
glass as an activator leads to an increase in porosity, while NaOH leads to a decrease
in porosity [31]. Bernal et al. observed a decrease in capillary porosity for AAS with
metakaolin in mortars, while they observed an increase for concrete specimens with a
similar binder composition [21].

The evolution of the carbonation depth (dACC) of cementitious systems under stan-
dardized test conditions over time follows a

√
t—characteristic and can be described as

follows [1]:
dACC(t) = KACC·

√
t (4)

KACC is the carbonation rate in mm·days−0.5 under standardized test conditions with
an elevated CO2-content compared to natural carbonation and t is the test duration in days.

In the case of real exposure, Equation (4) can be extended by further factors to take
into account a deviating relative humidity, the duration of curing and the influence of the
degree of wetting with water [32]. To calculate the carbonation rate in air (dNAC) from test
results obtained at elevated CO2, the factor ka, as the ratio of the CO2 content during the
test to the CO2 content of the air, can be considered [32,33]:

dNAC(t) =
KACC·

√
t

c ·
√

ka
(5)

According to [32,34], the correction factor c is necessary for strongly increased CO2
contents during the accelerated test. This considers that the accelerating effect of the
increased CO2 content, is stronger than described by the factor ka at high CO2 levels.
In [34], c was determined to the following values in tests on several CEM I, CEM II and
CEM III concretes:

CO2 < 1%→ c = 1.00

CO2 = 4%→ c = 1.36

In order to apply the accelerated method and use the modeling described in Equations (4) and (5)
to extrapolate the carbonation depth, two conditions must be met: The carbonation coeffi-
cient (KACC) should be constant and not time dependent and the investigated binder type
should be suitable for the accelerated method.

In the following, the alternative binder types investigated here are presented and
the state of research regarding their hydration and carbonation is outlined. The use of
SCMs has made significant progress in reducing the clinker factor in cement. In Europe,
mainly the composite materials blast furnace slag (BFS), fly ash and limestone powder
are used and the cement type is referred to as CEM II. Decades of practical experience
already exist for these types of cement in terms of durability and corrosion protection
of steel reinforcement. However, it is expected that the conventional reactive composite
materials fly ash and granulated blast furnace slag (GBFS) will not be available in sufficient
quantities in the future [35,36]. Therefore, an intensive search for alternatives is being
conducted worldwide. Promising materials include calcined clays and steel mill slags. The
calcined clays metakaolin and metaillite belong to the natural, tempered pozzolans and are
produced by calcination of kaolin and illite-based clay minerals, respectively. Metakaolin
is best known because it is used industrially in large quantities (paper industry, ceramics
industry, etc.). Metakaolin is also already widely used in the construction industry as
a concrete additive, although its use is limited to special applications such as increased
chemical resistance. Metaillite has so far been used exclusively in the research field as a
composite material. Due to its good availability and favorable price, it represents a possible
alternative to metakaolin [37]. It is well-known that the main hydration phases of OPC are
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C-S-H phases, ettringite, and portlandite. If calcined clays are added as composite materials,
they react with the existing portlandite to form C-S-H and C-A-S-H phases. The portlandite
consumption depends on the type of clay: metakaolin has a higher portlandite consumption
than metaillite [37]. Composite cement usually has a lower carbonation resistance than
OPC because the proportionate replacement reduces the portlandite content [38–40]. In
the literature, a higher carbonation rate is also observed for SCMs containing metakaolin,
especially for accelerated carbonation [38–41]. For natural carbonation, the observed
carbonation rates are approximately comparable at low clinker replacement rates [40].
Lower carbonation resistance is also reported when metaillite is used [42]. With natural
carbonation, Achenbach et al. [43] observe a carbonation rate equivalent to OPC.

Another alternative composite material is modified steel mill slag. It is produced in
steel mills during the further processing of pig iron into steel, and potentially exhibits
high hydraulicity, which usually cannot be retrieved in non-modified slags. However, the
hydraulicity of steel mill slags can be activated by specific modifications so that they can be
used as a reactive component in cement [44–46]. Most of the steel mill slag originate from
the Linz-Donawitz (LD) process, also referred to as basic oxygen furnace (BOF) process.
The leaching of heavy metals can be problematic when using steel mill slags [47]. However,
most heavy metals are firmly bound in the cementitious system and do not pose a problem
for the environment [48]. If LD slags are added as a composite material, the hydration
behavior does not change compared to pure OPC, since the reactive part of LD slags consists
of C2S, which mainly forms C-S-H phases during hydration [49]. Modified steel mill slags
have shown low carbonation rates so far [50].

In CSA cement, a calcium sulfate component is used instead of limestone. Therefore,
the CO2 emissions during the burning process can be significantly reduced with this type
of cement. In addition, the burning temperature is lower than for OPC, so less energy is
required for production. In concrete practice, CSA cement is used in particular in China.
The production of CSA cement requires bauxite, of which reserves worldwide are limited
and which is also needed for aluminum production. Alternative sources of aluminum have
not yet been established. The need to use bauxite to produce CSA cement already leads to
limited use because of the high price. Against this background, the classical CSA concept
has been increasingly modified in recent years, with particular reference to the so-called
belite- CSA cement, the main phase of which is belite, resulting in higher final strengths
and lower aluminum requirements [51]. During the hydration of CSA cement, ettringite
is formed as the main hydration product of ye’elemite. X-ray amorphous Al(OH)3 is also
formed, as well as monosulfate, as soon as the available calcium sulfate is used up [52].
Furthermore, Telesca et al. [53] observed that monosulfate does not form in the absence of
calcium sulfate or limestone. The formation of ettringite depends on the curing conditions
and therefore the total porosity of CSA cement pastes. The highest porosity was observed
after curing at low relative humidity and high temperatures. With curing underwater at
low temperatures a very dense structure with higher content of ettringite was observed [54].
The dense microstructure is also reported in [52]. The pH of the pore solution is reported to
be around 11 at an early age and increases during hydration [52]. A characteristic feature of
CSA cement is its tendency to self-desiccate during hydration at low water/binder ratios.
This could lead to a lower amount of pore solution and thus a lower ability to dissolve CO2
and undergo carbonation [55]. However, regarding the effect of CSA cement on carbonation
and durability, different authors come to very different conclusions. Tan et al. [55] provide
an overview of the range of different results, sometimes describing the durability of CSA
concretes as similar to OPC, and also indicating positive or negative effects.

Another approach of a new binder type is the group of low-temperature C-S-H binders.
They are produced in a two-stage process. First, a non-reactive intermediate is produced
hydrothermally. In the case of Celitement® used here, the precursor material is then
mechanochemically activated by high-energy grinding. During the hydration of C-S-H
binders, only C-S-H phases are formed, and no portlandite. The formed C-S-H phases
rather resemble honeycombs in their structure, in contrast to the fibrous-needled C-S-H
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phases common for OPC [56]. Celitement® is currently only being produced on a smaller
scale in a pilot plant. First results of carbonation tests show a high carbonation resistance at
natural carbonation of 110 days [43].

AAMs are typically metakaolin, fly ash, or BFS, activated by an alkaline solution. The
activators can be water glasses or other alkalis. AAMs are divided into geopolymers and
alkali-activated slags (AAS) [57]. The differentiation is based on the fact that the geopoly-
mers can be regarded as low in calcium and the alkali-activated slags as high in calcium,
resulting in different hydration products. During the solidification of the geopolymers, an
“inorganic polymer” is formed, which consists mainly of a highly disordered and strongly
cross-linked alumino-silicate hydrate gel, the so-called N(K)-A-S-H phases [58]. Similarities
between the gel structure and the structure of zeolites have been observed in a large number
of publications [59]. When considering alkali-activated slags, a distinction must be made
again as to whether it is a pure system or a hybrid system (slag and OPC) [60]. When
Ca-rich slags react with an alkaline activator, primary C-A-S-H phases are formed. Secon-
darily, Al-rich phases are formed, such as layered double hydroxides, often resembling the
hydrotalcite group, and calcium (silico-)aluminate hydrates [61]. Due to the highly alkaline
activators, the pore solutions of AAMs also exhibit high pH values. General statements
about the carbonation of AAMs are difficult due to the many influencing factors from
different precursors, different activators, and different test methods. A broad overview has
been prepared by Zhang et al. [62]. In their study of AAS and OPC [63], Bernal et al. point
out that testing by rapid carbonation significantly underestimates the durability of AAS
regarding carbonation. Due to the higher partial pressure of the CO2 and thus deviating
alkali carbonate phase equilibria, different phases are formed than in natural carbonation
and the pH drops further than it would in natural carbonation. In a round-robin test [64],
the carbonation of AAS, fly ashes, and metakaolin was investigated in different laboratories,
each comparatively using different test methods. The authors concluded that the acceler-
ated method is basically suitable for comparative investigation of carbonation on the same
binder type, however, natural carbonation allows a more realistic assessment of durability
under real exposure, which is in accordance with [63,65]. Pouhet et al. investigated the
carbonation of a pore solution of metakaolin-based geo-polymer activated by sodium
silicate and reported much faster carbonation than for the pore solution of OPC. However,
the pH of the naturally carbonated geopolymer pore solution only dropped to 10.5, which
could still be sufficient for the passivity of embedded steel depending on the pore solution
composition [65,66].

Several studies have shown that alkali-activated binders are suitable for new manufac-
turing techniques, especially for 3D printing [67,68].

In summary, this raises several relevant issues that are examined here in detail for the
alternative binders mentioned above:

• Which products are formed during hydration/solidification and how does the pore
structure develop?

• What is the pH value of the pore solution after hydration/solidification?
• Which phases are formed during carbonation?
• How is the pore structure affected by the carbonation process?
• Is the accelerated carbonation test applicable to the investigated binders?

2. Materials and Methods

This study was carried out on binders from each group mentioned above. Additionally,
a standardized cement was tested as a reference material for comparison. Table 1 gives an
overview of the tested binders and their w/b ratios.
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Table 1. Overview of the binders investigated and w/b ratios.

Group Identifier Description w/b

Reference Ref I CEM I 42.5 N 0.50

SCMs
CC I 30% Metaillite, 70% Ref I 0.50
CC II 30% Metakaolin, 70% Ref I 0.50
LD 30% LD slag, 70% Ref I 0.49

CSA CSA CSA with tartaric acid as
retarder

0.50

C-S-H C-S-H Celitement® 0.40

AAMs

Geo MK Metakaolin activated by
potassium silicate 0.50

Geo FA Fly ash activated by NaOH
and sodium silicate 0.34

AAS I GGBFS 1 activated by
sodium silicate 0.38

AAS II GGBFS 2 activated by CEM I
and Na2SO4

0.39

The abbreviations used are summarized in Table A1 in the Appendix A.
The w/b value of alkali-activated binders is calculated from the added water plus

the liquid portion of the activator. Since Celitement® is a pre-hydrated binder, the w/b
value must be assessed differently than for the other binders and is therefore lower. It was
produced with the addition of a superplasticizer to ensure the necessary workability.

The reference cement used was a commercial CEM I 42.5 N (Ref I). Ref I was used
to producing further types of composite cement in a 70/30 ratio with calcined clays and
with a steel mill slag, respectively. The calcined clays used were a self-made metaillite
and a commercially available metakaolin. The steel mill slag was a modified LD slag. The
CSA was a commercially available CSA with tartaric acid as a retarder. A fly ash based
geopolymer with NaOH as activator (concentration 19.068 M) (Geo FA) and a metakaolin
based geopolymer with potassium water glass as activator (silicate modulus 1.1) were
prepared. AAS I was activated with sodium silicate (silicate modulus 2.0) while AAS II
was activated with a mixture of CEM I and Na2SO4. AAS II thus belongs to the group of
hybrid alkaline cement [60,69]. Furthermore, for AAS II limestone powder was added as
filler material.

The initial materials were analyzed by X-ray diffraction (XRD) to determine the phase
composition and the X-ray amorphous amount. Quantitative XRD (QXRD) analyses were
performed using a Siemens D5000 diffractometer (Munich, Germany) operating with copper
radiation at 40 kV and 40 mA. The scanning was done at a step width of 0.02◦ 2 θ over an
angular range from 5 to 70◦ 2 θ with 4 s counting time per step. For the determination of
the X-ray amorphous amount, zincite was used as an external standard. Profex (Solothurn,
Switzerland) was used for Rietveld refinement.

Most of the investigations described in the following section were carried out at cement
paste samples prepared with the binders shown in Table 1. For additional investigations
also mortar specimens were prepared with the same w/b ratio and a binder/sand ratio of
1:3. After the analysis of the initial materials, the following investigations were carried out
to study the changes in the different materials during hydration and carbonation.
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2.1. Investigation of the Hydration Progress

To determine the hydration progress, cement paste samples were prepared from the
different binders and stored in closed containers at laboratory temperature (20 ◦C, 65%
relative humidity) until the time of testing. At the age of 7 and 28 days, specimens were
stopped with isopropanol and then dried for 24 h at 40 ◦C. The dried specimens were
impregnated with resin and polished stepwise mechanically with diamond oil suspensions
of particle size 15, 3, 1, and 0.25 µm. A carbon coating of approximately 8–10 nm thickness
was applied to the specimens (SCD 500, Baltec, Germany). The surfaces of the prepared
samples were viewed by ultra-high resolution SEM (Helios Nanolab G4 UX, Thermo Fisher
Scientific, Eindhoven, The Netherlands) at 12 kV.

For a quantitative evaluation of the phase change due to hydration, QXRD analyses
were performed on paste samples, as described above. The paste samples were stored in
sealed containers at laboratory climate. At the age of 1, 7, 28, and 56 days the hydration
was stopped, and the samples were ground <63 µm for analysis.

To determine the pH values of the pore solutions of all mixtures, the pore solutions
were obtained by the leaching method [70,71]. For this purpose, the cement paste samples
were taken from the containers at the age of 7 and 28 days. The samples were dried for
24 h at 60 ◦C. When dry, they were crushed and ground in a mortar grinder <100 µm. The
powder was mixed in a 1:1 ratio with deionized water for 5 min and then centrifuged. The
supernatant was carefully removed, and the pH was measured.

2.2. Investigation of Carbonation Depth due to Natural and Accelerated Carbonation

Investigations of carbonation depths due to natural and accelerated carbonation were
carried out on mortar prisms produced analogously to DIN EN 196-1 (2016-11) with the
w/b ratios given above. The samples with alkali-activated binders (AAS I and II, Geo MK,
and Geo FA) were stored at laboratory climate after demolding, as water storage at a very
early hydration stage can lead to dissolution phenomena at the edges of the sample. All
other samples were stored underwater until 28 days of age. The possible differences in the
initial carbonation depth due to the different storage were not measured.

To determine the depth of carbonation by natural carbonation, the samples were stored
after these 28 days for one year at 20 ◦C and 65% relative humidity.

In preparation for accelerated carbonation, after water storage, the mortar prisms were
first stored for drying at laboratory climate (20 ◦C and 65% relative humidity) for 14 days.
Then, they were stored in a storage chamber at 1 vol.-% CO2 at 20 ◦C and 65% rel. humidity
for one year. To determine the progress of carbonation, the specimens were split, and the
broken surfaces were sprayed with 1% phenolphthalein solution. Since the carbonated area
is indicated by a color change from red-violet to colorless, the carbonation progress could
be detected optically.

2.3. Investigation of Structural Changes due to Accelerated Carbonation at 1% CO2

To assess the structural changes of the materials due to carbonation by SEM and EDX,
mortar samples were prepared. After 180 days of storage at 1 vol.-% CO2 they were sawn
and prepared as described above. When sawing out, the focus was on the carbonated
surfaces, which were marked beforehand.

For a quantitative evaluation of the phase change due to carbonation, QXRD analyses
were performed on paste samples, as described above. The paste samples were stored in
sealed containers at laboratory climate until 56 d. Subsequently, the samples were ground
< 63 µm and stored at 1 vol.-% CO2 for a further 56 and 180 days respectively.

2.4. Investigation of the Pore Structures

The pore radius distribution was measured by mercury high pressure porosimetry
(MIP) according to DIN ISO 15901-1. The mercury used had a density of 13.54 g/mL and a
wetting angle of 141.3◦. With the applied pressure range between 0.0031–206.0 N/mm2,
pore radii between 244 µm and 4 nm could be detected.
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The investigation of pore size distribution and density was carried out at pastes to be
able to describe the influence of binder hydration and carbonation on the microstructure
without effects from sands or aggregates. To determine the effect of hydration on pore
structure, paste samples were stored in closed containers for 1, 28, and 56 days. The
sample material was crushed into regular fragments. The material was then stopped
in isopropanol for about 15–20 min and dried at 35 ◦C. The samples of Geo FA series
could not be examined at the age of one day because the curing had not yet progressed
sufficiently. For the influence of accelerated carbonation, the samples were also stored in
closed containers for 56 days and then stored at 1 vol.-% CO2 for another 56 days. The
further procedure was the same as for the hydration samples.

3. Results

In this section, the results from the investigations described above are shown in the
same order.

3.1. Phase Compositions of the Initial Materials (XRD)

The main characteristics of the phase composition of the initial materials are given
below.

Ref I consists of about 50% C3S. The C2S content is about 20%, while C3A accounts
for around 5% of Ref I. The metaillite (CC I) contains mainly quartz and X-ray amorphous
phases, while the metakaolin (CC II) consists almost exclusively of X-ray amorphous phases.
Half of the modified LD slag consists of C2S. Other notable constituents (>5%) are bredigite
(Ca7Mg[SiO4]4), wüstite ([Mg,Fe]O) and dicalcium ferrite (CaO Fe2O3 in short: C2F).

The CSA cement used, consists of around 47% ye’elemite. Other constituents are
anhydrite (24%), C2S (16%) and C3A (7%).

The C-S-H binder is a prehydrated binder. By means of XRD, an X-ray amorphous
fraction of about 88% could be determined. Another phase constituent is quartz.

For the different AAMs the precursors were investigated: The fly ash is mainly X-ray
amorphous with small amounts of quartz, periclase and mullite. Elemental analysis showed
that it contains 56% SiO2, 22% Al2O3, 8% Fe2O3,6% CaO and 2% each of MgO and K2O. The
metakaolin used for geopolymer production is 30% X-ray amorphous, the main component
with about 70% is quartz. Both BFSs are, as expected, completely X-ray amorphous. In
addition to large amounts of SiO2 and CaO, GGBFS 1 has about 20% and GGBFS 2 about
10% Al2O3. Furthermore, both BFSs contain about 6% MgO.

The graphical representations of the XRD measurements are to find in Figures A1–A5
in the Appendix A.

3.2. Hydration Process (SEM and XRD at Cement Paste Samples)

In the Figure 1, the SEM images with element mappings at the age of seven days of
cement pastes of each binder are shown.

3.2.1. Reference Cements and SCMs

By means of the SEM image as well as the elemental mapping of sample CC I after
seven days hydration, it was found that the space between the coarser particles appears
very porous and consists mainly of Ca-Si and Ca-Si-Al-containing phases, see Figure 1.
This suggests that C-S-H and C-A-S-H phases were formed during hydration. The coarser
particles consist mainly of Si and Al, suggesting unreacted clay particles. The overall
picture for CC II is very similar. The sample of LD shows only minor differences to Ref I. In
LD, coarser particles with Al or Fe inclusions appear more frequently, indicating unreacted
slag particles, see Figure 1B. Otherwise, the interparticle space consists of a mainly Ca and
Si containing phase. This suggests C-S-H phases as described by Jiang et al. [49].
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Figure 1. Layer images after seven days of hydration. (A) layer image CC I after 7 d hydration on
paste samples; (B) layer image LD I after 7 d hydration on paste samples; (C) layer image CSA I
after 7 d hydration on paste samples; (D) layer image C-S-H I after 7 d hydration on paste samples;
(E) layer image Geo FA I after 7 d hydration on paste samples; (F) layer image Geo MK I after 7 d
hydration on paste samples; (G) layer image AAS I after 7 d hydration on paste samples; (H) layer
image AAS II I after 7 d hydration on paste samples.

The reference and composite cements show streaky appearing areas of high Ca content,
which were identified as portlandite also by XRD. For LD the content remains constant
over the measurement period, while it decreases at CC I and CC II (Table 2). However, at
the beginning of the measurement, the portlandite content in CC II is already lower at 14%
than in CC I at 18%. After 56 d of hydration, sample CC I still shows 11% and sample CC II
still 4% portlandite. An increase of the X-ray amorphous fraction over a hydration time of
56 days is indicates the formation of C-(A)-S-H phases. This is in good agreement with the
elemental mappings.
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Table 2. Change in portlandite, ettringite and x-ray amorphous amount over 56 d hydration.

Portlandite (wt.-%) Ettringite (wt.-%) X-ray Amorphous (wt.-%)

1 d 7 d 28 d 56 d 1 d 7 d 28 d 56 d 1 d 7 d 28 d 56 d

Ref I 18 24 26 20 7 8 7 5 15 32 34 50
CC I 18 14 13 11 7 2 3 4 17 52 50 53
CC II 14 7 6 4 4 2 3 4 48 70 71 74
LD 13 19 21 19 6 4 3 2 25 36 41 52
CA <1 <1 <1 <1 34 50 52 40 15 2 0 26

C-S-H n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 85 85 90 88
Geo
MK n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 50 50 49 54

Geo
FA - n.d. n.d. n.d. - n.d. n.d. n.d. - 75 80 78

AAS I n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 57 52 51 54
AAS II n.d. n.d. n.d. n.d. 8 8 10 13 13 19 22 32

3.2.2. CSA

Element mapping of a 7-days-old CSA sample revealed primarily Ca, S, and Al-bearing
phases, see Figure 1C. EDX point analyses showed that ettringite, aluminum hydroxide
(AH), monosulfate and anhydrite were formed. Furthermore, smaller particles containing
Ca and Si can be seen. This suggests unreacted C2S.

For CSA, there was a tendency for the X-ray amorphous fraction to decrease; the
hydration products are mainly crystalline. Furthermore, small amounts of monosulfate
are detectable in the sample already after 1 day of hydration time, which do not increase
significantly over the entire measurement time. The content of portlandite was <1%
independent of the degree of hydration.

3.2.3. C-S-H

In the mapping of the C-S-H sample, no difference can be seen between the individual
particles and their interstitial space on the basis of the Ca and Si distribution, see Figure 1D.
Sporadically, small particles are recognizable, which consist mainly of Si and a little Al.
These are most likely quartz.

No change in phase composition was detected by XRD either. Quartz was the only crys-
talline phase detected for C-S-H. This is in agreement with the mappings and with [56,72].

3.2.4. AAMs

The image of the sample from the Geo FA series clearly shows the fly ash particles, see
Figure 1E. The intermediate space is filled by a strong Na-containing phase. Furthermore,
Al and Si can be detected in the intermediate phase, so that N-A-S-H phases can be assumed
here. In addition, a small amount of Ca was measured, which again indicates the formation
of C-A-S-H phases. The mapping of the Geo MK sample shows a homogeneous picture;
sporadically, strongly Si-containing particles are visible, which are probably quartz, see
Figure 1F. The interstitial space contains K, Al and Si, which suggests the formation of
K-A-S-H phases.

For the samples Geo MK and Geo FA no change of the phase assemblage was detected
for the whole measuring period of the solidification by XRD. Quartz was the only crystalline
phase detected for Geo MK. This is in agreement with the mappings and with [56,72]. Geo
FA exhibits periclase and mullite in addition to quartz, which are the phases also present in
the pure fly ash.

For the AAS I sample, the elemental mapping for the interstitial space between indi-
vidual GBFS particles shows a composition of Ca, Al, Na, Mg, and Si, see Figure 1G. This
indicates the formation of both C-A-S-H and N-A-S-H phases. A clear distinct demarca-
tion between the individual phases is not evident. The Mg-containing regions between
the GBFS particles indicate hydrotalcite. This was confirmed by XRD. 5% hydrotalcite
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is formed between one and seven days of hydration. This amount remains stable over
the further measuring period. Quartz occurs as the main crystalline phase, with about
43%. The element mapping of AAS II, which was activated with OPC and NaSO4, shows
after seven days mainly Mg, Al and Ca containing particles, which are according to the
composition limestone and BFS, see Figure 1H. The interstitial spaces are very porous and
only slightly Ca-, Si-, S- and Al-containing, indicating that at this time the hydrate phases
are not very dominant. XRD shows the formation of ettringite. In addition, the X-ray
amorphous fraction increases. In connection with the element mapping, this indicates the
formation of C-(A)-S-H phases.

Table 2 shows the change in portlandite, ettringite and x-ray amorphous amount over
56 d hydration, for the benefit of clarity, further phases are not shown in Table 2 and can
be taken from the previous section. Only the reference and cement pastes with SCMs
show portlandite as hydration product. Note again the difference between the portlandite
contents of CCI and CCII. The portlandite contents of Ref I and LD are very similar. A
differentiation between X-ray amorphous starting materials and C-(A)-S-H or N-A-S-H
phases is not possible with the applied method, which means that a quantification of these
phases is not possible here. After 56 days, CSA shows a sudden increase in the X-ray
amorphous fraction. However, this does not indicate a phase transformation, but rather
a destruction of the unstable ettringite in the course of sample preparation. AAS II is the
only one of the AAM samples to show ettringite as a hydration product. This is due to the
hydration of the cement and NaSO4 selected as activator.

3.3. Influence of Hydration on the pH of the Pore Solution

Figure 2 shows the pH values of the solutions obtained by leaching from pastes at
different ages.

Figure 2. pH of the pore solution at age 7 d and 28 d.

During hydration, there is only a slight decrease in pH for all binders, with the
exception of Geo MK. The pH values of the composite cements are comparable to those of
the reference sample and thus range between 12.9 and 13.9. CSA shows the lowest value
with a pH of 11.2, this is in good agreement with [73]. In the range between composite
cements and CSA, C-S-H ranks with 12.7 (7 d) and 12.6 (28 d), respectively. The alkali-
activated binders all have comparable pH to those of the reference. For Geo MK, a sharp
drop in pH from 13.1 to 12.1 between seven and 28 days is observed. In contrast, the
pH of Geo FA remains stable over the measured period at 13.2 (7 d) and 13.0 (28 d). The
same applies to the AAS, whose pH values remain equally stable at 13.2/13.2 (AAS I) and
12.8/12.7 (AAS II).
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3.4. Influence of Hydration on the Pore Structure

The measured pore volume at different ages is shown in Figure 3. Up to the age of 28 d,
the pore volume of the investigated samples decreases continuously. After that, significant
decreases are only seen for CC I, Geo FA and AAS II.

Figure 3. Pore volume of hydrated and carbonated paste samples.

The only exception is Geo MK. For this sample, a steady increase in pore volume is
observed in the period from 1 d to 56 d.

Following Setzer [74], the pore distributions are likewise divided into (meso)gel pores
(<0.03 µm) and capillary pores (0.03 µm to 30 µm).

For cement-based samples, the analyses of the pore size distribution show a refinement
of the pore structure between 1 and 56 days. After 56 days, most of the pore sizes are
<0.03 µm.

CSA has a very uniform distribution of pores that hardly changed over the 56-d period.
The percentage of gel pores is 32%. In the case of C-S-H, the pore structure is refined over
the entire period of observation whereas the percentage of gel pores is 60% already after 1 d.
Geo MK shows an unimodal course of the pore size distribution, in this case, the proportion
of gel pores is already 91% after 1d. For Geo FA, a coarsening of the microstructure is seen
between 28 and 56 d, with the percentage of gel pores decreasing dramatically from 79%
to 12%. For AAS I, the gel pore range between 1 d and 56 d is stable between 72% and
81%, reaching 72% after 28 d and 81% after 1 d. The structure of AAS II refines significantly
between 1 and 56 days. After 56 d, half of the measured pore volume has gel pores.

The pore size distribution is given in Table 3.
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Table 3. Pore size distribution.

Percentage (%)

Gel Pores (<0.03 µm) Capillary Pores (0.03 µm to 30 µm)

1 d 28 d 56 d 56 d + 56 d Carbo 1 d 28 d 56 d 56 d + 56 d Carbo

Ref I 14 62 49 53 86 38 51 47
CC I 17 56 63 52 83 44 37 48
CC II 21 91 87 51 79 9 13 49
LD 15 45 55 62 85 55 45 38
CA 29 35 34 32 71 65 66 68

C-S-H 60 74 74 62 40 26 26 38
Geo MK 91 89 95 92 9 11 5 8
Geo FA n.d. 79 12 68 n.d. 21 88 32
AAS I 81 72 77 53 19 28 23 47
AAS II 11 23 50 25 89 77 50 75

3.5. Carbonation Process at Cement Paste Samples

Since C-(A)-S-H phases and N(K)-A-S-H phases are X-ray amorphous, this allows for
conclusions to be made about the progress of hydration. When these phases carbonate,
crystalline carbonates are formed, which in turn can be quantified by QXRD, allowing
conclusions to be drawn about the carbonation processes.

Figure 4 shows the content of carbonate phases of cement paste samples at the age of
56 days and the age of 112 and 236 days with 56 and 180 days respectively, of storage in 1%
CO2 climate measured by XRD.

Figure 4. Carbonate phase content during carbonation of cement paste samples.
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For all samples, except Geo MK, storage at elevated CO2 leads to an increase of the
crystalline carbonate phases, as shown in Figure 4. For the sample Geo MK, no change of the
phase assemblage can be observed. In the SCMs, the main crystalline carbonate phases are
calcite and vaterite. It can be assumed that both the existing portlandite and the C-(A)-S-H
phases carbonate. Decalcification results in calcium carbonates and amorphous SiO2 [16]. A
significant increase in gypsum content was observed in the CSA sample. This is indicative of
carbonation of the ettringite. The water released during carbonation reacts with the anhydrite
present to form further gypsum. Furthermore, the carbonate phase aragonite could be detected.
For sample C-S-H, a significant increase in the carbonate phases in the form of calcite (25%),
aragonite (33%) and vaterite (2%) is visible. For Geo FA, a minimal increase in carbonate
phases is observed. Sodium hydrogen carbonate (NaHCO3) were detected. Furthermore,
phases of unreacted FA particles were detected, as well as a small amount of calcite (2%).
For AAS I, it was observed that in addition to calcite, mainly vaterite and small amounts
of aragonite were formed. The hydrotalcite content remained stable. Sodium hydrogen
carbonate could not be detected. AAS II exhibits a high proportion of carbonate phases in the
form of calcite and dolomite even before storage at 1 vol.-% CO2. This is a result of the mixture
composition. The content of dolomite and calcite remains stable during the measuring period,
aragonite and small amounts of vaterite, gypsum and hydrotalcites were also formed.

3.6. Influence of Carbonation on the Pore Structure

To evaluate the influence of carbonation on the microstructure, the pore volume of
the samples before exposure to elevated CO2 concentration is compared with that of the
sample after 56 days of storage at 1 vol.-% CO2. Following this, the pore distribution is
evaluated with respect to the development of the proportion of gel or capillary pores.

Storage at 1 vol.-% CO2 decreases the pore volume of all samples. This indicates
that the phases formed by carbonation occupy a larger volume, reducing the overall pore
volume [19,26,31]. CC I is an exception, where the pore volume increases significantly
compared to the non-carbonated 56 d sample.

The change in pore volume is not necessarily reflected in the pore size distribution.
Figure 5 shows the pore size distribution of the cement paste samples at the different ages
and at additional storage at 1 vol.-% CO2 for 56 days.

Ref I and LD show similar curves of pore distribution after 56 d and after storage at
1 vol.-% CO2, see Figure 5A,B. An increase in gel pores can be observed for both series
of samples.

CC II (Figure 5D) shows a coarsening of the pore structure in the range of 0.01 µm
to 0.09 µm, which is also reflected in the percentage of gel pores; after 56 d, the sample
shows 87%, which is reduced to 51% by storage at 1 vol.-% CO2. CC I also shows a similar
course, but the proportion of gel pores changes more slightly, see Figure 5C. The uniform
pore distribution of CSA observed during hydration is not significantly changed by storage
at 1 vol.-% CO2, see Figure 5E. The percentage of gel pores also remains stable at 32%. In
the case of C-S-H, the pore structure is refined by storage at 1 vol.-% CO2, see Figure 5F.
However, an accumulation of pores between 0.3 and 3 µm is observed at the same time,
which is again reflected in a decrease in the proportion of gel pores. Geo MK shows a
unimodal course of the pore size distribution, which slightly shifts into the coarser range,
see Figure 5H. In comparison, Geo FA shows a significant refinement of the microstructure
due to storage at 1 vol.-% CO2, see Figure 5G. Here, the proportion of gel pores increases
from 12% to 68%. For AAS I, the structure becomes coarser due to storage at 1 vol.-% CO2,
see Figure 5I. It is particularly noticeable that the pore fraction >0.01 µm increases, which is
again reflected in a decrease in the proportion of gel pores. Storage at 1 vol.-% CO2 causes
a coarsening of the microstructure for AAS II, see Figure 5J.
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Figure 5. Cont.
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Figure 5. Pore size distributions of hydrated and carbonated alternative binders. (A) Pore size
distribution of hydrated and carbonated reference cement (Ref I); (B) Pore size distribution of hydrated
and carbonated composite cements (LD); (C) Pore size distribution of hydrated and carbonated
composite cements (CC I); (D) Pore size distribution of hydrated and carbonated composite cements
(CC II); (E) Pore size distribution of hydrated and carbonated CSA cement; (F) Pore size distribution
of hydrated and carbonated C-S-H binder; (G) Pore size distribution of hydrated and carbonated
AAMs (Geo FA); (H) Pore size distribution of hydrated and carbonated AAMs (Geo MK); (I) Pore
size distribution of hydrated and carbonated AAMs (AAS I); (J) Pore size distribution of hydrated
and carbonated AAMs (AAS II).

3.7. Carbonation of Mortar Specimens

In addition, SEM images and elemental mappings were taken of the mortar samples
at 28 days of age and in the carbonated state. The resulting images are shown in Figure 6.

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. SEM images of the mortar samples at the age of 28 days and carbonated. (A) Hydrated
(28 d) Ref I; (B) Carbonated Ref I; (C) Hydrated (28 d) LD; (D) Carbonated LD; (E) Hydrated (28 d)
CC I; (F) Carbonated CC I; (G) Hydrated (28 d) CC II; (H) Carbonated CC II; (I) Hydrated (28 d) CSA;
(J) Carbonated CSA; (K) Hydrated (28 d) C-S-H; (L) Carbonated C-S-H; (M) Hydrated (28 d) Geo
MK; (N) Carbonated Geo MK; (O) Hydrated (28 d) Geo FA; (P) Carbonated Geo FA; (Q) Hydrated
(28 d) AAS I; (R) Carbonated AAS I; (S) Hydrated (28 d) AAS II; (T) Carbonated AAS II.
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In the carbonated reference sample (Figure 6B) the hydrate phases look more frayed
compared to the 28 days old sample (Figure 6A) and the microstructure appears coarser.
This indicates a decalcification of the C-(A)-S-H phases. Furthermore, streaky areas that
can be assigned to portlandite are missing. In carbonated LD, frayed and intact hydrate
phases can also be easily recognized (Figure 6C,D). This again suggests carbonation of
the C-(A)-S-H phases. Furthermore, unhydrated C2S particles, as well as iron-containing
slag particles are visible. Clay minerals are also still visible in hydrated as well as in
carbonated CC I (Figure 6E,F). The matrix is composed of intact and carbonated C-(A)-S-H
phases. In the case of CC I, the carbonated phases could not be determined by habit, but by
chemical composition using EDX, because the visual difference to the 28 days sample is too
small. Furthermore, the carbonated sample of CC I appears more porous than the 28 days
old sample. Remnants of metakaolin particles are also visible in CC II (Figure 6G,H). As
with the reference and LD, the hydrate phases look frayed, indicating carbonation of the
C-(A)-S-H phases. For CSA, mainly anhydrite, gypsum and aluminum hydroxide could
be detected (Figure 6J) Furthermore, monosulfate, as well as residues of ettringite and
C-(A)-S-H phases were determined by EDX. Compared to the corresponding 28-day sample
(Figure 6I), a densification of the microstructure is visible. For the C-S-H sample, no effect
of carbonation can be seen from the SEM images (Figure 6L) The structure of the particles in
larger particles has not changed compared to 28 days (Figure 6K). When looking at Geo MK
(Figure 6M,N), only a slight coarsening of the microstructure can be detected, an optical
change of the hydrate phases, as for example in Ref I cannot be recognized. The situation
is similar for Geo FA. Here, too, a change compared to 28 d in the microstructure is not
visually detectable (Figure 6O,P). However, carbonation of C-A-S-H and N-A-S-H phases
could be detected by EDX. The nahcolite measured by XRD was not found in the SEM
images. Based on the SEM image, an increase in the hydrate hemming the slag particles
can be detected for AAS I as well as for AAS II (Figure 6Q,T). This difference between the
28 day old and the carbonated samples can be interpreted as a progression of hydration. By
EDX, N-A-S-H and C-A-S-H phases were detected for AAS I, and Mg-containing C-A-S-H
phases were detected. For AAS II large amounts of calcite and dolomite could be detected,
which was analogous to the XRD investigation. The hydrate phases between the individual
slag particles are also not very distinct in the carbonized sample.

The carbonation depths shown in Figure 7 were observed at mortar specimens, stored
at 1 vol.-% CO2 from the age of 42 days.

Figure 7. Carbonation depth, samples stored at 1 vol.-% CO2.
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LD shows a similar behavior to the reference sample and reaches a carbonation depth
of 6 mm after one year. The carbonation depth of CC I with 16 mm after one year is
clearly higher than that of CC II, with 11 mm. Based on the carbonation depth of 13 mm
after 190 days, it can be assumed for sample CSA that it reaches a carbonation depth of
20 mm between 190 and 365 days and is thus carbonated completely. The behavior of
alkali-activated binders during accelerated carbonation, which is described as problematic
in the literature, is also reflected in these investigations [66,75,76]. Geo MK is already
completely carbonated after 28 days, followed by AAS II, which is completely carbonated
after 56 days. Geo FA and AAS I are both completely carbonated after 190 days.

The carbonation depths are plotted against
√

t in Figure 8, according to DIN EN
12390-12 (2020-01). All the binders investigated show an approximately linear increase
in carbonation depth here, so that it can be assumed that the carbonation coefficients do
not vary as a function of time and that the carbonation depths follow the

√
t-characteristic.

Geo MK is not included in this graph as the specimens were completely carbonated after
28 days. The carbonation coefficients for 1 vol.-% CO2 were calculated by linear regression
to the values shown in Table 4 according to DIN EN 12390-12 (2020-01).

Figure 8. Carbonation depths at cement lime specimens over one year from accelerated test (1 vol.-%
CO2) and regression.

Table 4. Carbonation coefficients for acc. carbonation (1 vol.-% CO2), coefficient of determination
and calculated carbonation coefficient for natural carbonation (400 ppm).

KACC R2 KNAC
mm√

a - mm√
a

Ref I 4.8 0.97 1.0
LD 4.7 0.96 0.9

CC I 15.9 1.0 3.2
CC II 10.3 1.0 2.1
CA 25.2 0.99 5.0

C-S-H 19.1 0.98 3.8
Geo MK - - -
Geo FA 22.5 0.99 4.5
AAS I 37.4 1.0 7.5
AAS II 61.1 - 12.2
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According to Equation (5) the carbonation rates for carbonation in standardized test
conditions with a CO2 content comparable to air (400 ppm) were calculated (c = 1). To
verify the calculated values from the accelerated test, the measured values after 365 days of
natural carbonation are compared in Figure 9. The values for Ref I, LD and CC II show very
good agreement, with the calculated values slightly overestimating the carbonation depth.
The values for AAS I, CSA and C-S-H also show good agreement, with the accelerated
method slightly underestimating the actual carbonation depth of the latter two. A clear
deviation with strong overestimation by the accelerated method is shown by CC I and
AAS II. This behavior was expected for the alkali-activated ones. Particularly noteworthy
here is the Geo MK series: at 365 days of natural carbonation, no carbonation was detected
(<0.1 mm) using the phenolphthalein test, whereas the accelerated samples were fully
carbonated at 28 days, so that KACC could not be determined.

Figure 9. Comparison of calculated carbonation depths from accelerated test and measured values
from air storage.

4. Discussion
4.1. CEM I (Ref I)

The reference sample shows the generally known hydration and carbonation behavior.
During hydration, mainly C-(A)-S-H phases and portlandite are formed. Furthermore, the
microstructure densifies due to the formation of the hydrate phases. As expected, the pH is
13.2 after seven days and 13.1 after 28 d. When the reference is exposed to an increased
volume of CO2, portlandite and C-(A)-S-H phases are carbonated and amorphous SiO2 and
mainly calcite is formed, as well as small amounts of vaterite as previously described by Li
et al. [13]. In addition, a decrease in the pore volume, is also evident. This is accompanied
by the increase in volume due to the formation of calcium carbonate [25,26]. The decrease
in the percentage of gel pores reflects the decalcification of the C-(A)-S-H phases. The
carbonation depths after 365 d storage in 1 vol.-% CO2 is 5 mm. The comparison of the
calculated carbonation depth at a CO2-concentration of 400 ppm, based on the accelerated
test at 1 vol.-% CO2, shows a good suitability of this method for OPC. This was expected,
as this method was designed for OPCs.
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4.2. SCM with LD Slag (LD)

When looking at the hydration results for the sample of the composite cement with LD
slag, it is particularly noticeable that they deviate only to a small extent from the reference
sample with regard to both the phase composition and the pore size distribution as well
as the pH value of the pore solution. The unreacted slag particles are only noticeable in
the XRD and on the SEM images. This is in good agreement with the results of Jiang et al.
and Kourounis et al. [49,77]. The carbonation behavior of LD is also similar to that of Ref
I, concerning carbonation phases and pore structure. However, a faster increase of the
carbonate phases, can be observed. The carbonation depths of 5 mm for Ref I and 6 mm for
LD are also close to each other. Palod et al. have obtained similar results for concretes with
steel slags [78]. Based on the comparison of the accelerated and natural carbonation test,
the accelerated test with 1 vol.-% CO2 seems to be suitable for the SCM with LD slag.

4.3. SCM with Metaillite (CC I)

The same hydration phases can also be observed for CC I as for Ref I. However, the
pozzolanic reaction of the clay minerals showed a consumption of the portlandite. This is
in good agreement with [37]. Nevertheless, the pH of the pore solution remains stable at
13.2 and 13.1, respectively, and is thus comparable to that of the reference. The distribution
of the pore radii is coarser in CC I than in the reference cement. Thus, in the range of 0.1 to
0.5 µm, more pores occurred.

Due to storage at 1 vol.-% CO, no change in the C-(A)-S-H phases was detected from
the SEM images alone in contrast to the reference. From an optical point of view, they are
similar to uncarbonated phases. However, both EDX and XRD analyses showed that also in
CC I the C-(A)-S-H phases carbonate and transform into amorphous SiO2 and polymorphs
of calcium carbonate. Mainly calcite is formed, vaterite only occurs in small amounts.
As already observed for LC3 systems, the pore volume of CC I increases upon storage at
1 vol.-% [15] and the amount of gel pores decreases. In connection with the low portlandite
content, this explains the higher carbonation depths of the CC I specimens compared to
the reference. Trümer showed previously that composite cement with metaillite exhibits a
significantly increased carbonation depth compared to OPC [37]. Although CC I is also an
OPC-based material, it showed a significant overestimation of the carbonation depth with
the accelerated method at 1 vol.-% CO2.

4.4. SCM with Metakaolin (CC II)

CC II is similar to CC I and Ref I in hydration behavior. By means of SEM and EDX
analyses, C-(A)-S-H phases and portlandite were observed as the main hydration phase.
Furthermore, unreacted metakaolin particles were detected. As determined by XRD, the
portlandite content is lower than that of CC I and decreases sharply over the observed
period. Furthermore, the pore volume decreased, and CC II formed a finer pore structure
than Ref I. The pH of the pore solution remained stable at 13.1 and 13.0

When examining CC II specimens stored at 1 vol.-% CO2 by volume, it was noticeable
that the crystalline carbonate phases calcite and vaterite were formed. Due to the more
voluminous carbonate phases, the pore volume decreased, with an increase in pores in the
range of 0.01 µm to 0.09 µm. Among others, Shi et al. investigated composite cements with
about 32% metakaolin with respect to the influence of 1 vol.-% CO2 on the pore and phase
composition [22]. Their results are in good agreement with the present results regarding
the pore structure of (un)carbonated samples, the phase assemblage and the carbonation
depth. In contrast to CC I, the accelerated carbonation of CC II at 1 vol.-% CO2 showed
good agreement with the values determined by natural carbonation.
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4.5. CSA

During the hydration of CSA, ettringite, C-(A)-S-H phases, as well as amorphous
aluminum hydroxide and monosulfates were detected by XRD and EDX analyses. Further-
more, residues of C2S and clinker particles were found. These observations are in good
agreement with those of Winnefeld et al. [52]. Although the measured pH is lower than
those of Winnefeld et al. and Ma et al. [52,79] but it is in good agreement with [73]. The
decrease in pore volume, as well as the steady change in pore distribution, is in agreement
with the observations of Ma et al. [79]. When CSA is exposed to a CO2 content of 1 vol.-%,
the pore distribution coarsens to resemble that of day 1. This is similar to the observations
of Gastaldi et al. that microstructure of a sample stored for 28 days under water is coarser
than that of a sample stored for 28 days at 4 vol.-% CO2 [80]. The observations of Hargis
for a w/b of 0.65 are in agreement with the results presented here [19].

Furthermore, carbonation results in an increase in gypsum content with a concomitant
decrease in ettringite. As observed by Tan et al. and by Hargis et al. the calcium carbonate
polymorph aragonite is formed [19,55]. By EDX analyses, C-(A)-S-H phases were found,
although partially carbonated. The mortar prisms prepared to determine the carbonation
depth are fully carbonated between 190 and 365 days. It is difficult to find suitable compar-
ative data for this since all carbonation tests to date have been run with more than 1 % CO2
by volume. Gastaldi et al. achieved complete carbonation of their specimens after 120 days
for the same specimen geometry at 4 vol.-% CO2 [80]. The determined carbonation coeffi-
cient was higher for CSA than for OPC and it showed a good applicability of accelerated
carbonation, even if this slightly underestimated the actual values.

4.6. C-S-H

As described by Möller, the hydration of C-S-H binders produces exclusively X-ray
amorphous C-S-H phases and, unlike OPC, no portlandite or ettringite [56]. SEM images
show a structure of agglomerates of small particles within larger particles. The pore volume
is lower than that of OPC, while the amount of gel pores is significantly higher. The pH of
the pore solution is lower, which can be contributed by the absence of portlandite.

In general, little is known about the carbonation of C-S-H; data on carbonation is only
available for air storage investigated by Achenbach et al. [43]. XRD shows a significant
increase of calcium carbonates in the form of mainly calcite and aragonite. This indicates
a decalcification of the C-S-H phases, which is also reflected in the pore distribution. Al-
though the pore volume decreases overall, the number of pores between 0.3 and 3 µm
increases. SEM images show a densification of the microstructure, but it cannot be ex-
cluded that it depends on the progress of hydration and is not necessarily related to the
carbonation of the binder. Measurements of the carbonation depth showed that C-S-H
is completely carbonated at the latest after 365 days of storage at 1 vol.-% CO2. How
the observed decalcification by carbonation of the C-S-H phases affects the durability of
possibly embedded steel reinforcement requires further investigation. Although C-S-H
binders, such as OPC, form C-S-H phases, the absence of portlandite is noticeable from the
rapid progress of carbonation. The determined carbonation coefficient was higher than for
OPC, but lower than for CSA. C-S-H showed good applicability of accelerated carbonation,
when compared to the values gained from natural carbonation, even if the accelerated test
slightly underestimated the actual values.
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4.7. Alkali-Activated Metakaolin (Geo MK)

Mainly N(K)-A-S-H phases are formed during the hydration of Geo MK, and in this
case, based on potassium silicate as activator and EDX images, it can be assumed that they
are K-A-S-H phases. This is in good agreement with Gracia-Lodeiro et al. and Granzio
et al. [58,72]. However, based on XRD and SEM/EDX, no change in microstructure or
phase composition is detectable over a hydration period of 56 days. The SEM images are
comparable to those of Si et al. [81]. During the measured hydration time, the pore volume
increases, but the pore distribution does not change in the range from 0.001 to 30 µm.
Therefore, it can be assumed that, as already reported by Perera et al. and Si et al. for
metakaolin-based geopolymers, Geo MK also tends to form shrinkage cracks [81,82]. The
pH of the pore solution decreases during solidification, as is typical for geopolymers [32].

Storage of mortar prisms made of Geo MK at 1 vol.-% CO2 shows complete carbonation
of the specimens after only 28 days, confirming once again that an accelerated carbonation
process is not suitable for geopolymers [66,75,76]. Interestingly, however, Geo MK does not
exhibit any change due to storage at 1 vol.-% CO2 that would be measurable by XRD or SEM.
The pore radius distribution also changes only marginally. In addition, the carbonation
depths measured at the age of 365 days of air storage was <0.1 mm.

4.8. Alkali-Activated Fly Ash (Geo FA)

EDX analyses reveal N(K)-A-S-H and C-A-S-H phases as hydration products between
the fly ash particles. A dissolution of the fly ash cannot be recognized. Only slight changes
due to hydration can be detected by XRD. A densification of the microstructure in the form
of a decrease in pore volume can be detected by MIP measurements, but this is not evident
from the pore radius distribution. Between 28 and 56 days, the microstructure undergoes
coarsening. However, the pH determined during hydration was higher than the value
determined by Law et al. [83].

Storing Geo FA in 1 vol.-% CO2 leads to a small structural change. The only carbon-
ate phase detected was sodium hydrogen carbonate (NaHCO3), which was also found
in several other studies during accelerated carbonation of geopolymers [76,84,85]. The
proportion of this carbonate phase is about 5%. As Bernal et al. described, this is due to
the fact that fly ash-based geopolymers carbonate by precipitation of alkali bicarbonate
salts from the pore solution [76], a change in the binder, as shown here, cannot be detected
by SEM images. Microstructural densification due to storage at 1 vol.-% CO2 was also
observed in the samples studied here. Park et al. were able to observe a densification of the
microstructure for fly ash-based geopolymers when they were exposed to an atmosphere
with a high CO2 content at an early age. This microstructural change was explained by the
fact that the aluminosilica gel changes to a Si-rich state due to carbonation [30]. Whether
this is also the case here could not be verified. As already observed for Geo MK, mortar
prisms made of Geo FA carbonate very rapidly. Thus, the specimens were carbonated
completely after only 190 days of storage at 1 vol.-% CO2. It was reported by Law et al.
and Pasupathy et al. that no clear carbonation front was determined by means of indicator
solution [83,86]—this was not observed here.

4.9. Alkali-Activated Slag; Activator Sodium Silicate (AAS I)

By means of SEM and EDX analyses Ca, Si, Al and Na containing hydrate products
were detected which are probably C-A-S-H and N(K)-A-S-H phases. Myers et al. simulated
and observed the development C-(N-)A-S-H gel for systems with sodium metasilicate and
GGBFS [87,88], while Li et al. postulated that with increasing Ca content a change from
N-A-S-H to C-A-S-H phases as the main hydration product takes place [89]. Hydrotalcites
were detected by XRD for AAS I as well as [87]. As a consequence of the hydration of AAS
I, the pore volume decreases, and the pore structure first refines and then coarsens again
after 56 d. Nevertheless, the pore structure is still very stable. Still, the pore structure is
finer than that of the reference cement, as already observed by Collins et al. [90]. The pH



Corros. Mater. Degrad. 2022, 3 43

values of the pore solution remain stable at one level during hydration, this is in good
agreement with Puertas et al. [91].

When the material is stored at 1 vol.-% CO2, calcite vaterite and a small amount of
aragonite are formed in addition to the carbonate phase. This is in good agreement with
Puertas et al. [31]. Further carbonate phases were not detected. Due to the formation of the
calcium carbonate polymorphs, the pore volume of AAS I decreases, while the proportion
of pores in the range of 0.03 to 0.3 µm increases, as already observed by Puertas et al. [31].
Mortar samples with AAS I were completely carbonated within 190 days of storage at
1% CO2 by volume. This is comparable to slags with low Mg content [92]. As already
described by Shi et al., AAS I showed a very different carbonation behavior from OPC [93].

Although it is known that the accelerated carbonation process for AAMs hardly
provides comparable results with natural carbonation, AAS I seems to be an exception: It
showed a significantly higher carbonation coefficient than OPC, but still a relatively good
agreement between the values from accelerated (1 vol.-% CO2) and natural carbonation. The
actual carbonation depth in air was only slightly overestimated by the accelerated method.

4.10. Hybrid Alkali-Activated Slag; Activator OPC and NaSO4 (AAS II)

AAS II is a so-called hybrid alkali-activated cement, which is activated with NaSO4 and
CEM I instead of NaOH or water glass. Little is known about the hydration and carbonation
behavior of such systems. In the case of AAS II, SEM images after 7 d of hydration show a
low-level hydrate phase consisting of Ca, Si, S, and Al. These hydrate phases remain little
distinct for all later images. Based on XRD, it was further determined that the crystalline
hydrate phase ettringite has formed. EDX analysis suggests the formation of additional
C-(A)-S-H phases. Angulo-Ramírez et al. were able to detect primarily C-(A)-S-H phases
and hydrated gehlenite for NaOH and waterglass activated systems. Ettringite was not
found. The formation of ettringite in the present case may be related to NaSO4 as activator.
In the course of hydration, the pore volume also decreases, and the microstructure becomes
denser. The pH of the pore solution of AAS II is lower compared to AAS I, again due to
different activators.

Under the influence of 1 vol.-% CO2, calcium carbonate polymorphs aragonite and,
in smaller amounts, vaterite, are formed in addition to the calcite and dolomite already
present. Also, gypsum and hydrotalcite were detected, which indicates a carbonation of
the ettringite. On the basis of SEM and EDX analyses, no further carbonate phases were
detected; however, in the carbonated sample the hydrate phases are not very pronounced.
The porous microstructure is also clearly indicated by an increase in the pore fraction with
a radius >0.03 µm. The corresponding mortar samples were carbonated completely within
56 days. Angulo-Ramirez observed a full carbonation of the specimens made of made of
alkali-hydrous hybrid concrete within 99 days when stored at 1 vol.-% CO2. As has been
shown for other AAMs, the accelerated carbonation at 1 vol.-% CO2 is not applicable to
the hybrid alkali-activated AAS II to determine values comparable to natural carbonation.
The values calculated from the accelerated procedure are more than twice as high as the
actual values.

Concerning the pH of the pore solutions, it can be summarized that at the age of 7 and
28 days, respectively, the pH of all investigated binders was higher than 11. Concerning the
passivation of steel in the investigated alternative binders initially all pore solutions show
pH values that allow passivation of the steel if no other components of the pore solution
prevent this. Further investigation on this topic are necessary.
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For the binder types, where the accelerated carbonation testing seems to be suitable, an
extrapolation of the carbonation depths for 50 years based on the calculated KNAC values
(Table 4) was made and the results are shown in Figure 10. Assuming a concrete cover of
25 mm the carbonation front in the AAS I, CSA and C-S-H should reach the steel surface,
considering that this is an ideal conception, which does not represent a real exposure.
However, this is just a first theoretical estimation, based on models developed on OPC
binders. To gain knowledge on the possible corrosion rates in carbonated material, further
research is needed for all of the investigated binder types.

Figure 10. Extrapolation of the natural carbonation depths, calculated from accelerated test.

5. Conclusions

The hydration and carbonation behavior of nine different alternative binders, from
the groups of SCMs, CSA, C-S-H and AAMs have been studied in detail in comparison
to an OPC as reference. The results presented on the investigations of the hydration and
carbonation behavior of alternative binders can be summarized as follows:

• The binders investigated differ fundamentally in their hydration and carbonation
behavior. Only the composite cements are comparable with the reference cement,
whereby in connection with the carbonation of the calcined clay cements, the con-
sumption of portlandite due to the pozzolanic reaction is clearly noticeable. The use
of LD slags has no unfavorable effect on the carbonation rate and does not noticeably
influence either the hydration or the carbonation reaction.

• The pH of all investigated binders is high enough to allow for a passivation of embed-
ded steel if no corrosive substances are present in the pore solution. Further research
of this topic is necessary.

• The accelerated carbonation testing at 1 vol.-% CO2 is applicable for OPC, SCMs with
LD slag or metakaolin, CSA, C-S-H, and the GGBFS 1 activated by sodium silicate
(AAS I).

• The accelerated carbonation testing at 1 vol.-% CO2 is not applicable to gain compa-
rable results to natural carbonation for the SCM with metaillite, the alkali-activated
metakaolin and the hybrid alkali-activated slag (AAS II), as the carbonation rates are
highly overestimated by the accelerated method.
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• The geopolymers show during carbonation little to no change in phase composition
by XRD and SEM. The alkali-activated metakaolin showed carbonation depth < 0.1
mm after one year of natural carbonation.

• To establish reliable correlations between the hydration, carbonation, and corrosion
behavior of these binders, various studies on corrosion behavior must be carried out.
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Appendix A

Table A1. List of abbreviations.

Abbreviation Explanation

AAM alkali-activated material
AAS alkali-activated slag
BOF basic oxygen furnace
CC calcined clay
CSA calcium sulfoaluminate
C-S-H calcium silicate hydrate
EDX energy dispersive X-ray spectroscopy
FA fly ash
Geo FA geopolymer with fly ash
Geo MK geopolymer with metakaolin
GGBFS ground granulated blast furnace slag
LD Linz-Donawitz
MK metakaolin
OPC ordinary portland cement
QXRD quantitative X-ray diffraction
SCM supplementary cementitious material
SEM scanning electron microscope
XRD X-ray diffraction
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Figure A1. Graphical representation of XRD measurements: Ref I and LD.

Figure A2. Graphical representation of XRD measurements: CC I and CC II.
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Figure A3. Graphical representation of XRD measurements: CSA and C-S-H.

Figure A4. Graphical representation of XRD measurements: Geopolymers.
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Figure A5. Graphical representation of XRD measurements: AAS.
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