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Abstract: The determination of the water chemistry for cooling systems of nuclear fusion plants is
under debate. It should be tailored for different types of fusion reactors: either experimental, e.g.,
ITER, JT-60SA, and DTT, or aimed at power generation, e.g., DEMO, given the different operation re-
quirements. This paper presents the dual approach involving experiments and computer simulations
chosen for the definition of DEMO water chemistry. Experimental work was performed to assess the
corrosion susceptibility of reduced activation ferritic martensitic EUROFER 97 and AISI 316L in differ-
ent water chemistry regimes. At the same time, the low corrosivity requirement brings an additional
safety aspect for the radiation protection since some neutron-activated corrosion products (ACPs)
create a gamma radiation when deposited outside the plasma chamber in components accessible
to operators and these must be minimized. To evaluate the ACP inventory for DEMO, assessments
were carried out using a reference computer code. Preliminary experimental activities to define the
water chemistry of DTT under construction at ENEA were also conducted. The comparison of code
results with experiments is two-fold important: for the validation of the computer code models and
to determine data that are necessary to perform calculations.
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1. Introduction

The determination of a suitable water chemistry to be used for the cooling system of
nuclear fusion plants is still under debate [1–3]. The complexity of this task is related to the
different requirements needed for each experimental fusion reactor under construction, for
ITER [4] (International Thermonuclear Experimental Reactor), and for DTT [5] (Divertor
Tokamak Test) or in commissioning such as JT-60SA [6] (JT60 Super Advanced) as well
as those in the design stage aimed to demonstrate power generation such as DEMO [7].
Fusion power reactors operate in either steady state (e.g., DEMO) or in pulsed mode (ITER,
JT-60SA and DTT), where an alternation between oxidizing and reducing conditions is
foreseen. This operation has a drastic effect on water chemistry since the pulsed mode
induces an oxidizing environment due to the effects of gamma and neutron irradiation
on water radiolysis [8]. The oxidizing environment during the pulse is then alternated to
a reducing environment, which is preferable for both copper alloys and stainless steels.
Power plant operation using a reducing environment has been implemented for decades in
pressurized water reactors (PWRs), for example, where this is obtained through hydrogen
injection in the range of 25 to 35 cm3 kg−1 [9].
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Corrosion and erosion phenomena play an important role in mobilizing activated
materials in nuclear fusion machines [10–12]. When corrosion occurs in stainless steel, two
different oxide layers are formed. The inner sublayer is a chromium-rich spinel that is
adherent to the base metal. The surface layer is loosely adherent, and it is characterized
by large iron-rich tetrahedral crystals (deposits), which agglomerate through precipitation
processes of ions and particles transported by the cooling fluid.

The primary coolant transports ions generated by corrosion/release phenomena and
oxide dissolution. When it is supersaturated in corrosion products, ions can precipitate
to form wall deposits or particles suspended in the cooling fluid. Corrosion products
in terms of ions in solutions, clusters, and deposits may encounter intense neutron flux
in nuclear fusion applications. High-energy neutrons induce transmutation reactions,
generating unstable nuclei, which can constitute a radiological hazard. Activated corrosion
products (ACPs) in Primary Heat Transfer Systems (PHTSs) are significant sources of
radiological hazard in nuclear reactors. Predicting transport of contaminants in a nuclear
reactor cooling circuit may provide benefits in terms of radiation exposure assessment
and mitigation, operation optimization, waste management, and hazardous source term
identification [2,8,13,14].

Several computer codes have been developed over the years to monitor ACPs in
nuclear applications (e.g., PACTOLE [1], TRACT [15], PACTITER [16], OSCAR [17], and
CATE [13], among others), and they have been used to scan different technical and op-
erational solutions devoted to decreasing the general corrosion of structural and piping
materials. Minimizing general corrosion has the dual aim of reducing the outage time
in case of corrosion induced failures and the dose to operators in charge of maintenance
and inspections. It is well known that ACPs are responsible for the largest fraction of
occupational doses in PWRs, especially during shutdown when corrosion increases due to
the ingress of oxygen in the cooling circuits [18].

The main aim of the work is to present the preliminary experimental activity for the
definition of water chemistry for DEMO through autoclave and loop tests performed to
assess corrosion susceptibility of Reduced Activation Ferritic-Martensitic (RAFM) EURO-
FER 97 and AISI 316L steels used for the plasma chamber structure and piping materials.
The presence of different materials (RAFM EUROFER 97 and copper alloys) in fusion
reactors compared with PWRs is another element that adds complexity to this task. The op-
timization consisted of choosing a tailored water chemistry that ensures low corrosiveness,
low impact in term of ACP generation, low neutron absorption to guarantee a suitable
tritium production in the Breeder Blanket (BB), and suppression of radiolysis. Different
water chemistry formulations were proposed, and preliminary autoclave testing was per-
formed to evaluate the corrosion susceptibility of RAFM EUROFER 97 and AISI 316L
base metals. Further tests on weld joints of EUROFER 97 and EUROFER 97-AISI 316L
were carried out to investigate the effect of welding on corrosion performance. The water
chemistry formulation tested so far considered the addition of LiOH and buffer NH3.
The results were promising, and first indications for an optimized cooling water chemistry
are here presented.

The importance of validating computer codes with experimental tests is also high-
lighted. Experimental data obtained for EUROFER 97 have been used to validate the
porosity parameters in PACTITER v2.1, which has been extensively used in support of
the ITER Generic Site Safety Report (GSSR) and the ITER Preliminary Safety Report [19]
for accident analyses and worker collective dose assessments and in preliminary ACP
invenotory assessments for DEMO PHTS [14,20] .

Furthermore, preliminary experimental activities to define the water chemistry of
DTT under construction at ENEA Frascati Research Centre (Italy) are briefly presented
here. The DTT exploits the use of boric acid in the vacuum vessel (VV) cooling circuit as a
nuclear shield.
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2. Materials and Methods for Experimental Activities
2.1. Demo Wcll Water Chemistry Optimization

At RINA Consulting-Centro Sviluppo Materiali (RC-CSM), corrosion testings were
performed using an autoclave equipped with a rotating sample holder system (see Figure 1)
and an experimental corrosion loop, named HTHP (High Temperature High Pressure, see
Figure 2). Both aimed to simulate the steady-state operative conditions of the breeding
blanket of DEMO during plasma burning. Coolant and specimens were at a temperature
of 300 °C. The systems were pressurized at 155 bar, simulating a flow rate of 2 m s−1, with
the typical coolant speed in the breeding blanket zone.

The exposure time was fixed at 1000 h. During this time interval, temperature, pres-
sure, the HTHP flow rate, and the autoclave rotative speed were maintained constant.
The water solutions were prepared in a laboratory using ultrapure compounds. Their
deareation was performed by pure nitrogen tailoring an oxygen contamination lower than
10 ppb.

To perform autoclave testing, a 20 L apparatus equipped with a sample stirring (shown
in Figure 1) was used. The speciemens were placed into a rotative cage, and the rotation
speed was set at 150 rpm to simulate a DEMO water speed of 2 m s−1. The pressure
conditions were achieved using pure nitrogen.

In the HTHP testing procedure, tank B (see Figure 2) was used as a storage and loading
tank of ultra-pure water (UPW). The test vessel A was loaded thanks to a nitrogen feed,
which was also used for loop de-aeration and purging. Once the loop was loaded and
pressurized, the nitrogen inlet was closed and the high-pressure circulating pump was
activated. A heating system acting on tank A allowed us to reproduce high temperature
conditions. A third tank C was used for water dumping and sampling.

Two typologies of speciemens for the corrosion test program were prepared: flat
coupons and U-bend speciemens. The flat coupons were the following:

• EUROFER 97 coupons (Type A),
• AISI 316L coupons (Type B),
• Heterogeneous welded joints constituted by EUROFER 97 and AISI 316L with a

central welded zone (Type AB), and
• Homogeneous welded joints constituted by EUROFER 97 with a central welded zone

(Type AA).

On the other hand, the U-bend specimens were only made of AISI 316L and Ni-Alloy
UNS625. The material fabrication method was performed at the RC-CSM steelwork plant
according to the following steps:

• A primary production phase of Vacuum Induction Melting (VIM),
• A Vacuum Arc Remelting (VAR) for the second phase, and
• A final melting in a prismatic ingot of 80 kg.

EUROFER ingots hot rolling was realized by the RC-CSM rolling plant to produce
plates with a wall thickness of 5 mm. The chemical composition of the EUROFER-97 steel
sheets produced at RC-CSM is shown in the following Table 1.

Table 1. Chemical composition (wt %) of the EUROFER-97 plate material (Fe balanced).

Cr Ni Mn Ti V Al Ta W Mo

8.89 0.01 0.51 0.005 0.34 0.01 0.10 0.92 0.01

C Si P Sn Sb N S Co Nb

0.11 0.05 0.005 0.001 0.001 0.21 0.003 0.06 0.01

The final heat treatments applied after the rolling process were normalization at 980 °C
for about 30 min and tempering at 760 °C for 90 min, both followed by air-cooling.
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The AISI 316L was a commercial product coming from a hot rolling process with a
final annealing treatment. Annealing was accomplished by heating in the 1040 to 1175 °C
temperature range followed by air cooling or a water quench. Cooling should be sufficiently
rapid (between 816 and 427 °C) to avoid reprecipitation of chromium carbides and to
provide optimum corrosion resistance.

The Ni-Alloy UNS625 was a forged bar (6 in of diameter). The heat treatment consisted
of stabilizing annealing at temperatures of 1093–1204 °C. Water quenching should be
carried out rapidly to achieve optimal corrosion characteristics.

The welded joints were obtained using a TIG process [21] in two passes using a
single V-edge of preparation. A Post Weld Heat Treatment (PWHT) at 760 °C for 2 h was
also performed.

The water chemistry considered for testing was characterized by buffer solutions
of 0.5 to 8.0 ppm of LiOH, 500 to 750 ppm of NH3, and 5 cm3 kg−1 of H2 for radiolysis
suppression. In PWRs, it was found that 5 cm3 kg−1 of H2 was enough to suppress the
water radiolysis [22].

Figure 1. Autoclave (20 L) for corrosion testing with the water stirring apparatus.

Figure 2. Layout of the HTHP corrosion testing loop. The test vessel (A) capacity was 2 L.
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For the analysis of the specimens after corrosion testing, the following main tools
were used:

• Scanning Electron Miscroscope (SEM) Model Zeiss EVO MA-15;
• Transmission Electron Microscopy (TEM), Model JEOL JEM-3200FS-HR, for the char-

acterization of the oxide scale forms; and
• Focussed Ion Beam milling combined with Scanning Electron Microscopy (FIB-SEM)

for the extraction of the TEM lamella from the sample top surface.

2.2. DTT VV Water Cooling Circuit Chemistry

Usually, pH in PWRs is kept under control within 6.9 to 7.4 at 300 °C [9,23]. This is
possible thanks to the addition of chemicals that keeps the pH at room temperature (25 °C)
within pH25°C = 6.2–7.3. The main additive used in western PWRs is LiOH (enriched with
99.9 wt % in 7Li to minimize tritium production) with Li varying within 0.5 to 4 ppm.
The addition of LiOH in PWRs’ primary water is used to neutralize the pH of borated
water containing 0 to 2400 ppm of B [23,24] during reactor operation.

Borated water in PWRs is used mostly as a reactivity control agent. The use of borated
water in fusion reactors JT-60SA and DTT has, instead, the primary function of shielding
the superconducting coils via neutrons generated in the tokamak plasma during fusion
reactions. In this case, borated water has to be highly enriched in 10B since this has a high
neutron absorption cross section, approximately 0.2 barn at 1 MeV. 10B absorbs neutrons
through the 10B(n, α)7Li reaction [25].

A first preliminary assessment for DTT VV water cooling circuit chemistry was per-
formed using POTHY [26], the water chemistry subroutine of PACTITER v2.1. Water pH
and AISI 316L alloying elements solubility were simulated in the temperature interval of
interest for a DTT VV circuit between 40 and 80 °C.

The solubility of the main elements present in AISI 316L steel—Fe, Ni, Co, Cr, and
Mn—were compared across three environments: UPW, borated water, and borated water
stabilised by LiOH. The borated water contained 8000 ppm of boron since this is the
upper requirement for DTT VV during high-performance plasma tests [27]. UPW was
simulated considering no LiOH addition and with 0.1 ppm of B and H2 as this is the
minimum concentration possible in POTHY. The water chemistry simulated agreed well
with the theoretical UPW behavior [28]. A simplified scheme of a loop was simulated in
PACTITER v2.1 to evaluate the release and deposit of corrosion products from a stainless
steel surface exposed to several borated water solutions. The loop design, based on the
CORELE circuit [16], did not have filtering capabilities, and the only surface that was
allowed to interact with the cooling media was a steel AISI 316L pipe. The pipe surface
area was 0.314 m2, the fluid velocity was 1 m s−1, and the temperature of the media was
T = 200 °C, and the initial thickness of the deposit in the pipe was 10−10 mg cm−2.

To validate whether the chemistry code simulated the borated water environment
well, complimentary experiments were performed. The water pH estimated by the code
was compared with the experimental one. The 8000 ppm borated water was made by
adding H3BO3 (4.58 wt %) from Borax (Optibor EP, 20 Mule Team, Rio Tinto, Borax Europe
Limited, London, UK) to UPW (conductivity of 0.055 µS cm−1 at 25 °C produced by an
in-house purification system at Consorzio RFX, Padua, Italy). The measurement of pH with
temperature was performed using a Testo 206 pH meter. The solution was kept in a plastic
beaker and stirred with a PTFE magnetic stirrer. The beaker was sealed with parafilm to
avoid evaporation and was placed on a hot plate. The pH measurements were taken after
the solution stabilised at the set temperature. To ensure that temperature measurements
were correct, a second thermocouple was submerged in the solution.
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3. Results
3.1. Results of Experimental Activities for DEMO WCLL BB Water Chemistry

Post-examination was performed using the following techniques:

• The form of the corrosion (uniform or localized) in both EUROFER 97 and welded
specimens was determined using a 3D optical microscope (OM);

• The presence of cracks originated by Stress Corrosion Cracking (SCC) phenomena
was investigated through OM observations on cross-sectioned U-bended speciemens
(only on AISI 316L and Ni alloy 625 in autoclave);

• SEM and Energy Dispersion Spectroscopy (EDS) analyses on cross-sectioned specimens; and
• TEM and EDS analyses on cross sectioned specimens to evaluate the oxide layer

composition, structure, and porosity.

Corrosion rates were calculated according to two different wight loss procedures:

• The first one considers the initial and the final weights of the coupons, without any
corrosion product removal from the surfaces.

• The second approach compares the speciemens weight after a gentle chemical pickling
with specific acid solutions in order to evalute oxide scale formation during exposure.
The removal was performed in accordance with the ASTM G1 procedure.

A summary of the corrosion testing results performed in autoclave related to LiOH
water chemistry is reported in the following graphics shown in Figure 3. The first one,
in Figure 3a, shows the correlation between the corrosion rate of EUROFER as a function of
LiOH concentration, while the second one, Figure 3b, is a diagram of the iron concentration
versus LiOH concentration. Finally, Figure 3c shows the correlation of the final water pH
measured at room temperature as a function of LiOH concentration.

The corrosion rates of welded joint samples, which are not reported in the above
graphics, showed higher values with respect to the unwelded samples. In general, the
corrosion rates of welded samples are 30 to 50% higher than those of base material.

Furthermore, other tests were performed at the target pH 7.8 and 8.0 on Austenitic
AISI 316L and Ni alloys 625 U-bend sample, to evaluate the risk of SCC phenomenon at high
pH and high temperature. The results were very positive, and in all tests, the susceptibility
to SCC was not detected. Concerning the corrosion rates of the EUROFER and AISI 316L
in ammonia water chemistry, a summary of the main results is shown in Table 2 below.

Table 2. Corrosion rates of EUROFER and AISI 316L in ammonia water chemistry.

NH3 EUROFER AISI 316L
Concentration (ppm) Corrosion Rate (µm yr−1) Corrosion Rate (µm yr−1)

500 5 1
750 4 1

To simulate the corrosion behavior of EUROFER 97 and AISI 316L, some material
properties are needed as input in PACTITER v2.1. One of the inputs needed is EUROFER 97
oxide porosity. An oxide porosity of approximately 40% (percentage of the area populated
by pores with respect to the total area) was considered as input data for ACP evaluation
in PACTITER v2.1 (see in the following). A specific post-test analysis of oxide scale was
performed. The selected sample for this analysis was EUROFER 97 exposed to a water
solution buffered with 500 ppm of NH3 for 1000 h. The characterization of the oxide scale
was carried out by TEM, and the extraction of the TEM lamella was obtained by FIB-SEM;
see Figure 4 below.
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(a)

(b)

(c)
Figure 3. Summary of the EUROFER corrosion results performed in autoclave and corrosion loop (HTHP) facilities:
(a) EUROFER corrosion rate as a function of LiOH concentration. Corrosion rate data were calculated on the base of weight
loss measurements, according to the ASTM G1 procedure. (b) Diagram of the iron concentration versus LiOH concentration.
(c) Correlation of the final water pH measured at RT as a function of LiOH concentration.
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Figure 4. Three-dimensional image of a thin sample during the phase of extraction by FIB-SEM [29].

The image analysis by TEM allowed us to identify the porosity of the oxide scale.
Figure 5 shows the morphology of the typical porous observed on a cross section of
EUROFER oxide.

Figure 5. The figure shows the morphology of the pores observed on a cross section on the EUROFER
oxide scale by TEM in bright field (BF) mode [29].

Eight different representative zones were examined by TEM for the evaluation of
oxide porosity percentage. Table 3 presents the related values of this examination (the
percentage average value was 10.3%, in a range 1.4–43%).

Table 3. Porosity for the eight representative zones after the corrosion test on EUROFER in a water
solution buffered with 500 ppm of NH3.

Zone 1 2 3 4 5 6 7 8 Total Ave.

% 1.4 43.0 6.3 8.6 1.8 2.8 7.9 11.1 10.3

The comparison with the PACTITER v2.1 results of the corrosion rate for DEMO
WCLL First Wall (FW) PHTS is provided in Section 4.
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3.2. Preliminary Activities for DTT VV Water Cooling Circuit Chemistry

To understand the release of corrosion products in the DTT VV during alternating
operations using UPW and borated water, both experiments and computer simulations
were used. The POTHY chemistry subroutine of PACTITER v2.1 [26] simulated the water
pH and solubility of the main elements of stainless-steel during corrosion processes.

The boric acid quantities needed in the DTT [30] and JT-60SA [31] fusion reactors are
8000 ppm and 13,400 ppm in B, respectively, which is well above the operational experience
seen in PWRs. No additives are considered yet for the neutralization of borated water in
the DTT VV cooling circuit; therefore, to choose the best water chemistry in this circuit,
both modelling and experiments were used. Figure 6a shows the pHT of borated water
solutions at their saturation temperature, and the data were taken from J. Park et al. [32].
The pHT of DTT and JT-60SA borated water solutions were extrapolated from the fitting of
experimental data between 8500 ppm and 14,000 ppm; the fitting is shown with a dashed
line [32] in Figure 6a. The pHT of a solution with 8000 ppm B was estimated to be 3.44,
whilst the pHT of a 13,400 ppm B was 2.80. These values are shown by markers in Figure 6a.
The stated pHT of 13,400 ppm B solution in the JT-60SA Plant integration document was,
however, pH = 4.5, very different from the fitted experimental pHT in Figure 6a. To the best
of our knowledge, no decision has been made yet on the additives to be used in JT-60SA
VV cooling circuit.

(a)
Figure 6. Cont.
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(b)
Figure 6. pHT as a function of temperature for borated solutions: (a) experimental data of pHT with
temperature for a borated saturated solution taken from [32], the estimated pHT of borated water
for DTT (8000 ppm B) and JT60SA (13,400 ppm B) are highlighted with a star. (b) pHT with the
temperature of UPW and a borated water solution simulated with POTHY software; experimental
data obtained for a 8000 ppm B solution are shown with a star (this study).

The measure of pH can be affected by the boric acid solubility with temperature;
however, the pH measured experimentally in 8000 ppm B solutions in this study was
similar to the one extrapolated from the data reported by J. Park et al. [32]. The experimental
pHT values of a 8000 ppm B solution with temperature were plotted in Figure 6b: the
pHT = 3.71± 0.08 at saturation. The simulated pHT of a borated water solution with
8000 ppm B in POTHY was higher: pH = 4.17 at 40 °C, as shown in Figure 6b. The software
used to simulate borated water solutions seemed to overestimate the pH values with
temperature, meaning a less aggressive solution is simulated by the code. The general
trend of pHT with temperature is well represented by the software since an increase in pH
with temperature is observed both from the model and from the experiments.

The use of a software has the advantage of testing several water chemistry regimes
and enables a screening of the additives to be added to minimize the corrosive environment.
The neutralization of boric acid in the DTT VV water circuit was simulated by the addition
of LiOH. This relies on the 60+ years’ experience of operation of PWRs from which the
POTHY chemistry module was derived.

Figure 6b shows the pHT of borated water solutions (8000 ppm B) with the addition
of 0, 10, 30, and 100 ppm of Li as LiOH. The DTT VV operating temperature is highlighted
in yellow (T = 40–80 °C), whilst the operating temperature of PWRs (T = 288–316 °C) is
highlighted in light blue (Figure 6b).

A comparison between pHT of borated water and UPW water with temperature
enables us to compare the naturally acidic nature of UPW when heated to 250 °C. POTHY
simulated the behavior of UPW well, since the pH = 5.65 at 200 °C (B 0.1 ppm, Li 0
ppm curve in Figure 6b) and the theoretical pH of UPW at 200 °C is 5.65 [28]. Having a
pH of 5.5 in the cooling circuit is therefore acceptable (since UPW shows this behavior);
furthermore, IAEA guidelines [33] suggest that a pH value between 4.5 and 7 should be a
good compromise for metals exposed to 1 µS cm−1 water.
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By keeping these guidelines in mind, the addition of 10 ppm of Li in 8000 ppm B water
should be enough to maintain the pH of the solution at around 5.5. The addition of higher
quantities of LiOH in the water (Li > 4 ppm) may be detrimental since LiOH is considered
responsible for phenomena such as SCC in Inconel and Zircaloy [34]. The conductivity of
8000 ppm B and 10 ppm Li water is well above the IAEA limit of 1 µS cm−1 water, but the
temperature is lower than most reactor applications.

To understand the release of metals in the circuit and how these are affected by the
addition of LiOH, the solubilities of Fe, Ni, Co, Cr, and Mn were simulated for each borated
water solution; these are plotted in Figure 7a.

(a)

(b)

Figure 7. Solubility data obtained from POTHY: (a) the solubility of cations in a UPW environment
(solid lines) vs. borated water (8000 ppm B) with no LiOH addition (dashed lines) to simulate DTT
VV cooling circuit. (b) Comparison of the solubility of Fe (solid line) and Mn (dashed line) in the case
of a borated water solution with the addition of 0, 10, 30, and 100 ppm Li as LiOH.
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From Figure 7a, it is possible to observe that solubilities of Fe, Ni, Co, Cr, and Mn in
the 40–80 °C temperature interval were three orders of magnitude larger in the borated
water (with 8000 ppm B) solution compared with the use of UPW. Simulated solubilities
of Fe and Mn change drastically above 60 °C; see Figure 7b. A slight improvement in
terms of the Fe, Ni, Co, Cr, and Mn solubilities was observed in the borated water scenario
(8000 ppm B) with the addition of 10 ppm Li compared with no addition of Li at 80 °C.
To reduce drastically solubilities, a considerable amount of lithium, 100 ppm Li as LiOH,
should be added. This cannot be realistically considered since 4 ppm Li is the safe upper
limit in PWR water chemistry operations.

To assess whether the addition of LiOH would help minimize corrosion buildup, a sim-
plified scheme based on the CORELE circuit [16] was used. As can be seen in Figure 8a,b,
the stabilization of boric acid (8000 ppm B) with a base, LiOH, is not a straightforward
solution for minimizing corrosion product build-up in the circuit. The loop was exposed to
operations either in UPW or in borated water solutions (8000 ppm B) containing 0 ppm
Li, 4 ppm Li, or 30 ppm Li for 10 days. Using 4 ppm Li as LiOH (PWR’s upper limit
concentration) did not mitigate the corrosion release process and mass deposit formation.
The addition of 4 ppm Li was worse compared with the non-neutralization of the acid
(0 ppm Li: dotted line). The neutralization with either 4 ppm Li or 30 ppm Li (bold line)
showed a similar behavior in terms of corrosion product buildup and release.

(a)
Figure 8. Cont.
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(b)
Figure 8. Surface of a stainless steel tube exposed to borated water solutions simulated using PACTITER 2.1 (elements
considered are Fe, Ni, Mn, Co, and Cr): (a) total mass deposit and (b) metal release.

3.3. Comparison of Corrosion Experiments Results with Pactiter V2.1 Code Corrosion
Rates Predictions

The outer oxide layer is characterized by an open porosity that allows for direct
contact between the inner, more adherent, sublayer, and the cooling fluid. The growth of
the deposits may limit the mass transfer between the inner oxide and the fluid, but ions
can still be exchanged through corrosion/release mechanisms depending on the oxide
morphology. In PACTITER v2.1, the release rate Ri for element i is calculated according to
the following equation:

Ri =
hDνZi

Dz + h
√

2x
(Csat,i − Ci) (1)

where h is the ion transfer coefficient from the oxide surface to the coolant bulk, D is
the coolant diffusion coefficient, ν is the ratio between the open pore surface and the
geometrical surface called POROS in PACTITER v2.1, Zi is the element i content in the
base metal, x is the deposit thickness, Csat,i is the equilibrium concentration (solubility)
of element i at pipe wall, and Ci is the element concentration in the coolant bulk. In
the calculations documented in [14], a conservative value of 0.4 (i.e., 40% of open oxide
porosity) has been assumed for EUROFER 97 for the POROS parameter. To validate such a
value for EUROFER 97, the corrosion and release rates evaluated using PACTITER v2.1
have been compared with the experimental results described above. Table 4 shows the
corrosion rate measurements for 1000 h exposure of EUROFER specimens to a water
solution of pH = 6.8 at 300 °C and 155 bar. Two samples were considered: EUROFER 97
(Type A) and a homogeneous welded joint EUROFER 97-EUROFER 97 (Type AA), showing
corrosion rate values of 10.5 and 18 µm yr−1, respectively.
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Table 4. Corrosion rates measurements for 1000 h exposure at 300 °C, 155 bar, and 2 m s−1 for
EUROFER specimens.

Solution pH Specimen/Mat. Corr. Rate µm yr−1 Weight Loss mg m−2

6.8 (1 ppm of LiOH) Type A EUR_3 10.5 9.42
Type AA EUR_3 18.0 16.15

Eight different representative zones of the EUROFER oxide layer were examined by
TEM for the evaluation of the oxide porosity as already shown in Table 3.

The PACTITER v2.1 results on ACP assessment for DEMO-WCLL-FW-PHTS (in sim-
ilar conditions with pH300°C = 7.0) have been analyzed to extrapolate corrosion rates
as functions of time for both scenarios (pulsed and continuous). The corrosion rates
of 48.6 µm yr−1 and 45 µm yr−1 have been determined after 1000 h of simulation time
for the continuous and pulsed scenarios, respectively. The former value is compared
with the experimental results in Table 4, related to steady-state conditions such as the
simulated continuous scenario. The autoclave tests on specimens with average oxide
porosity equal to about 10.3% (see Table 3), measured an average value for corrosion rate
of 14.2 (10.5 + 18)/2 µm yr−1 (see Table 4). The ratio between the porosity and the corro-
sion rate for the experiments is 7.3 × 10−3 (0.103/14.2), and the same ratio calculated for
PACTITER v2.1 simulation is 8.9 × 10−3 (0.4/45). This shows that, despite the differences
between the two situations, there is a good agreement between the calculation hypotheses
and the experiments and confirms that the choice made for calculations via PACTITER
v2.1 about the POROS parameter for EUROFER 97, for which there was little or nothing of
bibliographic evidence, was correct though rather conservative. Considering that OSCAR-
Fusion v1.3 uses a completely different release and corrosion model from PACTITER v2.1,
the role of experiments becomes fundamental for two reasons:

• To use validated input data, especially for EUROFER 97, for simulations runs;
• To validate not only corrosion and release models but also other main phenomena in

ACP assessment by computer codes, transport, diffusion etc.

4. Discussion
4.1. Experimental Activities on DEMO WCLL BB Corrosion

The determination of a suitable cooling water chemistry for DEMO has to ensure low
corrosivity, low impact in terms of ACPs generation, low neutron absorption, adequate
tritium production, and suppression of radiolysis at temperatures around 280–320 °C.

The results obtained in this work showed that, moving toward pH values higher than
7.4, the LiOH concentration can have beneficial effects on corrosion rate. Such an advantage
can be summarized as follows: the coolant showed more stable pH for a longer time near
the neutral zone, which is the best condition for having passivity state of EUROFER 97,
as described in the Pourbaix diagram pH–electrochemical potential [35]. Therefore, a less
corrosive coolant can be achieved when reducing the ion and crude concentration in
the PHTS circuit and when reducing the Chemical and Volume Control System (CVCS)
adjustment and purification of the coolant during the life of the plant. At the same time,
CVCS has to guarantee the set water chemistry parameters.

Another aspect considered is the maximum value of iron concentration in the coolant,
which is an indication of the release capacity of the ACP for EUROFER and depends on the
passive layer of magnetite. Different results were obtained when EUROFER 97 samples
were tested in a first case before the formation of the magnetite layer and in a second case
after its formation. After the formation of the magnetite layer, the test results showed
that a plateau of the iron concentration is reached with 500 h of the test exposure. In
the DEMO plant, the presence of the CVCS system can modify both the iron concentrations
and the pH of the coolant during operation. This fact makes it unlikely that the magnetite
layer is also generated in the nuclear plant, as was observed in the HTHP testing loop
(schematized in Figure 2), with the same trend. The risk is that the achievable levels of
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Fe concentration and pH in the DEMO plant are very different and such that the natural
protective layer of magnetite cannot form in the EUROFER piping, as in the experimental
loop. This phenomenon could lead to considering that the loop corrosion test is not very
conservative, so that, in the real plant, higher values of corrosion rate may be observable
for EUROFER. Therefore, it would be necessary to perform future tests that better simulate
the continuous and dynamic change of the parameters of the water chemistry in the loop
system, with frequent changes of solution, just to delay the magnetite formation, as it
should be in a real plant.

The SCC results clearly showed that no stress cracking was observed in austenitic and
Ni alloy, as reported by some authors [29,36] in the literature, considering the B–Li system.
In the Li regime, without the effect of B, the operative range of the pH is influenced only
by the precipitation of the iron hydroxides [37,38], which quickly reduce the initial pH of
the coolant. On the other hand, the water equilibrium is more complex in the B–Li regime
and the neutronic transmutation of the 10B in 7Li and α emission must be considered a
source of alkalization of the coolant. This fact can explain the reason why many others
recommended maintaining the pH of the coolant between 6.8 and 7.4 when the B–Li regime
is adopted, adding a few parts per million of LiOH, with a maximum of 4 ppm.

Another important aspect analyzed through the experiments was associated to the
corrosion code PACTITER v2.1 adopted so far for DEMO ACP assessments. As reported
in Section 3.3, the relationship providing the release rate from the base metal and hence
driving the corrosion rate is the open oxide porosity (parameter ν) that is the ratio between
the open pore surface and the geometrical surface (named POROS in PACTITER v2.1 input).
Usually, the POROS value adopted for AISI 316L is around 0.04, supported by experiments
and PWR experiences. As the first guess for EUROFER 97, also taking into account its
lower resistance to corrosion, a value 10 times larger, i.e., 0.40, was conservatively assumed.
The correlation with experiments was performed as described in Section 3.3. The oxide
porosity was investigated by TEM analysis of cross sectioned specimen. The experimental
average value of porosity and the EUROFER 97 corrosion rate were in good agreement
with the corresponding values given by the code in the sense that these two parameters
are in the same ratio. However, the distribution of porosity into the scale detected by TEM
analysis showed a more complex scenario, as reported in Figure 5: in some part of the scale,
the observed porosity was predominant, while in another minor zone, it was extremely
low. Such a distribution could be caused by an acceleration of the corrosion processes
that occurred in the first month of exposure, which generated anisotropies in the oxide
film formation and therefore inhomogeneous distribution of the porosities through the
oxide film.

4.2. Experimental Activities on DTT VV Water Cooling Circuit Chemistry

Neutron shielding function in DTT-VV is planned to be achieved with the addition
of boric acid enriched up to 95% in the isotope 10B [27,31,39] in quantities higher than
that generally used in PWRs. The use of boric acid in the cooling circuit complicates the
chemistry choice to be implemented to minimize corrosion product buildup. During nor-
mal operation, it is envisaged that high purity water is used, and 0.3 µS cm−1 water is
proposed to be used for JT60-SA [40]. Keeping a low conductivity water ensures small
concentrations of contaminants and dissolved gases, such as oxygen, which minimizes
SCC whilst maintaining a low Oxidation-Reduction Potential (ORP) [23]. Furthermore,
using UPW [28], conductivity of 0.055 µS cm−1 at 25 °C, as feedwater ensures minimal
galvanic corrosion of metallic materials in the circuit.

Galvanic corrosion acts through a “long cell action corrosion mechanism” [41] and is
minimized by low conductivity; this is important in fusion reactors since different materials,
copper alloys and stainless steels, are present in the circuit.

The addition of 8000 ppm B in DTT increases the water conductivity greatly as well
as affects the pHT . PACTITER v2.1 overestimated the pHT of 8000 ppm B solutions.
Even though the pH definition is widely accepted since it depends on water dissociation
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constants (Kw), there are several models that describe Kw and therefore the pHT of water.
POTHY pHT is calculated based on the Mesmer and Baes [42] model: this was specifically
chosen to best fit the pHT measurements conducted by CEA up to 300 °C. POTHY was
used to simulate the pHT of solutions in the temperature interval 25 to 100 °C, where
models for the pH of UPW are consistent with each other.

The discrepancies observed in the pHT definition of 8000 ppm B solutions between
POTHY and experimental data, as shown in Figure 6, may be therefore related to the
complex chemistry of boric acid in water which would react according to

B(OH)3 + 2 H2O B(OH) –
4 + H3O+

The chemistry of boric acid in water is further complicated by the formation of
polyborates anions [42,43].

For a solution with 8000 ppm B, a conductivity of approximately 40 µS cm−1 at 80 °C
and a pHT = 3.44 [32] is expected compared with UPW = 0.455 µS cm−1 at 80 °C and a
pHT = 6.3 [28]. This reduction in pHT and increase in conductivity enhance the general
corrosion of steels and galvanic corrosion in the DTT VV cooling circuit. To minimize
corrosion processes, the addition LiOH was assessed using ACP codes. Even though the
addition of Li showed a beneficial effect in terms of decreasing metals solubility in the
borated water solutions simulated by POTHY (see Figure 7b) the release and deposit of
corrosion products simulated by PACTITER 2.1 was minimized when no LiOH was added
(see Figure 8). The addition of 30 ppm LiOH to neutralize pHT did not help the contrasting
corrosion of AISI 316L surfaces; furthermore, this quantity is above the concentrations
currently used in PWRs. Experimental tests are therefore conducted to assess the corrosion
of AISI 316L in 8000 ppm B solutions considering no addition or small quantities addition
of LiOH.

4.3. Overall Discussion

Given the complexity of the task in defining the best water chemistry for each specific
fusion reactor, a dual approach involving both computer simulations and experiments was
retained, being decisive in obtaining successful results. The requirement of low corrosivity
in the cooling systems of fusion plants has an important additional safety aspect from the
point of view of radiation protection since some of the corrosion products are neutron-
activated (ACPs). They are mainly generated in the plasma chamber structure (blanket
and divertor) cooled by the refrigerant in the form of ions and particles transported
and deposited onto the circuit in components accessible to operators, valves, piping,
pumps, and a steam generator, creating a gamma radiation. In addition, ACPs also imply
safety issues in the event of loss-of-coolant accidents (LOCA). The comparison of code
results with experiments is two-fold important: on one hand, for the validation of the
computer code models and, on the other hand, to determine parameters necessary to carry
out computer simulations, such as corrosion and release rates from new materials (e.g.,
EUROFER 97) at unconventional conditions of temperatures and water chemistry, and the
morphological characteristics of the oxides that form on their surfaces which control the
corrosion mechanism. In this regard, a preliminary comparison of the experimental data
for corrosion rates with the predictions of the code is presented and discussed. Hence, it is
well recognized that the chemistry control of the primary circuit is one essential component
of radiation protection optimization in fission nuclear power plants [44]. The same can be
stated for fusion reactors adopting water as cooling media, even though tangible evidence
does not exist, with most of the experimental fusion reactors not actively being cooled; the
exceptions are JET, D-III-D, ASDEX, etc. From that stems the importance paid to studying
the water chemistry to be used in the next experimental and power fusion reactors in
advance. Last but not least, it is important to mention that, among the operational (non-
safety) functions required of the CVCS of DEMO PHTSs [45], there are those related to
inventory control and make-up plus chemical control. The design of the DEMO CVCS is
based not only on the knowledge acquired in the PWRs field but also on ongoing studies for
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the definition of water chemistry, such as those documented in this article, in combination
with the inventory assessment of ion and particles concentration obtained by dedicated
calculation codes.

5. Conclusions

The water chemistry optimization for DEMO WCLL and DTT VV cooling circuits was
discussed here. The optimization required both computer simulations and experimental
work to be carried out simultaneously given the complicated requirements of fusion power
plants that use innovative materials in circuits exposed to operating conditions never
experienced in other power plants before. The main conclusions are summarized here:

• The corrosion testing in water chemistries with LiOH addition showed, in general, low
corrosion rates for EUROFER and no cracking for AISI 316L, both on base materials
and welded joint samples. Considering the corrosion behavior of a Ni-Alloy UNS625
as reference, similar results were obtained in the case of ammonia chemistries.

• EUROFER was shown to be more affected by uniform corrosion for the effect of
welding process. In this regard, corrosion rates detected in the case of EUROFER
welded joint specimens were 30–50% higher than those of unwelded samples.

• The beneficial effect of a higher pH condition was observed for the corrosion sus-
ceptibility of EUROFER, and no SCC phenomena was detected for both AISI 316
and Ni-Alloy UNS625. These results are very promising for enlarging the operative
range of pH for LiOH chemistry, simplifying the chemistry control of the coolant for
CVCS units.

• DTT VV exploited a highly enriched borated water (8000 ppm B) solution alternated to
UPW as a coolant. The choice of adding a base, LiOH, to neutralize the borated water
pH was discussed here, but contradictory results from simulations were obtained.

• Experimental tests showed that the ACP codes developed for PWR water chemistry
regimes (pH25°C = 6.2–7.3 with Li varying from 0.5 to 4 ppm and B varying from 0
to 2400 ppm) overestimated the pHT of 8000 ppm B borated water solution needed
for DTT.

• The choice of adding LiOH to a DTT VV borated water solution needs to be validated
by experimental tests to ensure that the code that will be used to assess DTT ACPs is
representative of the real situation as well as to minimize corrosion in the circuit.
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