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Abstract: It is well known that variations in light exposure during the day affect light sensitivity in
the evening. More daylight reduces sensitivity, and less daylight increases it. On average days, we
spend less time outdoors in winter and receive far less light than in summer. Therefore, it could be
relevant when collecting research data on the non-image forming (NIF) effects of light on circadian
rhythms and sleep. In fact, studies conducted only in winter may result in more pronounced NIF
effects than in summer. Here, we systematically collected information on the extent to which studies
on the NIF effects of evening light include information on season and/or light history. We found
that more studies were conducted in winter than in summer and that reporting when a study was
conducted or measuring individual light history is not currently a standard in sleep and circadian
research. In addition, we sought to evaluate seasonal variations in a previously published dataset
of 72 participants investigating circadian and sleep effects of evening light exposure in a laboratory
protocol where daytime light history was not controlled. In this study, we selectively modulated
melanopic irradiance at four different light levels (<90 lx). Here, we aimed to retrospectively evaluate
seasonal variations in the responsiveness of the melanopsin system by combining all data sets in
an exploratory manner. Our analyses suggest that light sensitivity is indeed reduced in summer
compared to winter. Thus, to increase the reproducibility of NIF effects on sleep and circadian
measures, we recommend an assessment of the light history and encourage standardization of
reporting guidelines on the seasonal distribution of measurements.

Keywords: season; light sensitivity; non-image forming effects; melatonin; sleep-latency

1. Introduction

Light is the most important zeitgeber for the internal biological clock in the brain,
located within the suprachiasmatic nuclei (SCN) [1]. To allow for synchronization with
the environment, the SCN has direct connections to the intrinsically photosensitive retinal
ganglion cells (ipRGCs) in the retina, which contain the photopigment melanopsin and are
most sensitive to short-wavelength light (~480 nm) [2–4]. The photic information received
by the SCN is then relayed to the pineal gland, resulting in a circadian pattern of serotonin
and melatonin production. Circadian melatonin rhythms [5], sleep timing [5], and sleep
architecture [6] show seasonal variations. Moreover, Münch et al. [7] and Kawasaki et al. [8]
found seasonal variations in the post-illumination pupil response, which is known to
be regulated by the melanopsin system. In this publication, we aim to observe seasonal
variations in the responsiveness of the melanopsin system by using light conditions that
were matched for S-, M- and L-cone excitation but differed in melanopic irradiance (high vs.
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low melanopic irradiance; Method of Silent Substitution [9]). Because melanopic irradiance
predicts melatonin suppression [10–12] and sleep latency [12], these variables were used
for the analysis of seasonal dependencies. In addition to their role as a pacemaker for
circadian rhythms and their photic entrainment with the environmental light-dark cycle,
the SCN also helps to regulate seasonal rhythms [13]. A stronger circadian entrainment
in summer than in winter [5] has been attributed to increased motor activity levels and
daylight exposure when the photoperiod becomes longer [14]. Therefore, less light during
winter days may lead to an increased sensitivity to evening light. Several studies have
indeed shown that reduced light levels prior to evening light exposure increase light
sensitivity as indexed by more melatonin suppression [15–18] and a stronger alerting
response [18]. Therefore, a study on non-image forming (NIF) effects of light may yield
different results in summer and winter, especially if light history is not controlled. As part
of a systematic review, we collected information on the seasonal distribution and light
history from relevant publications. Our aim is to provide a broader picture of the seasonal
distribution of studies on the effects of evening light on melatonin and sleep and to derive
recommendations on how to improve the reproducibility of studies in the field of circadian
rhythm and sleep research.

Here, we (1) assessed whether seasonal and light history information is available in the
literature on the effects of evening light exposure on melatonin secretion and polysomno-
graphically assessed sleep. In addition, (2) the effects of melanopic irradiance on melatonin
and sleep latency (published in [12]) were analyzed according to season. To this end, we
used a data set of 72 young, healthy male participants who were exposed to relatively
low light levels (<90 lx) of screen light that differed in melanopic irradiance (high- vs.
low-melanopic; HM vs. LM) but were matched in terms of luminance (27 cd/m2, 62 cd/m2,
135 cd/m2, 284 cd/m2) and for S, M, and L cone excitation.

2. Results
2.1. Reporting of Season in Sleep and Circadian Research on Evening Light Effects
2.1.1. Evening Melatonin Concentrations

In this systematic review, we only included studies that investigated the impact of
evening light exposure (i.e., between 5:30 p.m. and 2 a.m.) on melatonin secretion. Studies
with light interventions during daytime or at night were not included. We extracted
data from 45 laboratory studies selected according to our inclusion criteria (see Methods
section, [12,19–62]). The season or time period (e.g., months) of data collection was explicitly
reported in 53% of the studies (Figure 1A). Only two studies were solely conducted in
summer. In more than 50% of the studies in which a time period was specified, data
acquisition took place mainly in the winter (i.e., between October and March). Only a
small proportion of studies kept participants in the laboratory throughout the experimental
day to control for light history (n = 4) or recorded light history (n = 4). Light history was
assessed subjectively (n = 1, [12]) or objectively using sensors integrated into actigraphs
(n = 3, [21,27,41]) or spectacle frames (n = 1, [60]). The extracted information on season and
light history can be found in the Supplementary Material.
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Figure 1. Reporting of season or period of data collection: (A) Studies on evening melatonin concen-
tration; (B) Studies assessing sleep with polysomnography following evening light exposure. The 
grey bars correspond to the number of manuscripts that did not include information about the sea-
son and period of data collection. The darker blue bars refer to studies that collected data between 
October and March. The lighter blue bars represent the studies that were mostly conducted in winter 
(i.e., >3 months in winter and September or April). The green bars correspond to studies conducted 
in summer and winter. The studies in which the data collection took place in summer (i.e., between 
April and September) are shown in yellow. 

2.1.2. Polysomnographically Assessed Night-Time Sleep 
In total, we extracted data from 21 studies that met our inclusion criteria 

[12,20,21,43,45,63–78]. Five of the studies have already been included in the results for 
melatonin. Only 43% of the studies (n = 9) specified the study period or season (Figure 
1B). Of these, four studies were conducted during winter or mostly during winter, four 
studies during summer and winter and one study during summer. Nineteen percent (n = 
4) of the studies kept participants in the laboratory under reduced light levels for the entire 
experimental day prior to sleep assessment, and only one study objectively recorded the 
light history [21]. The extracted seasonal and light history information can be found in the 
Supplementary Material. 

2.2. Seasonal Sensitivity to Evening Light without Controlling Light History 
Here, we report the results of a re-analysis investigating seasonal variations in the 

effects of evening light on melatonin and sleep latency. Therefore, we combined the da-
tasets of all four luminance levels and conducted separate analyses for data collection dur-
ing summer (April–September) and Winter (October–March). 

2.2.1. Solar Irradiance and Self-Reported Light History 
Participants arrived at the laboratory 7 h before their usual bedtime. Before entering 

the laboratory, participants were not restricted in their exposure to light, and neither did 
we objectively measure light exposure during the preceding day. However, solar irradi-
ance for the study location, Basel (47.56°, 7.58°), was available for the study period (Figure 
2A), and we asked participants how long and when they had spent time outdoors. Figure 
2B illustrates the time spent outdoors in the morning, in the afternoon and throughout the 
day before arriving at the laboratory according to light conditions and season. There was 
no significant difference in the reported time spent outdoors on the experimental days 

Figure 1. Reporting of season or period of data collection: (A) Studies on evening melatonin con-
centration; (B) Studies assessing sleep with polysomnography following evening light exposure.
The grey bars correspond to the number of manuscripts that did not include information about the
season and period of data collection. The darker blue bars refer to studies that collected data between
October and March. The lighter blue bars represent the studies that were mostly conducted in winter
(i.e., >3 months in winter and September or April). The green bars correspond to studies conducted
in summer and winter. The studies in which the data collection took place in summer (i.e., between
April and September) are shown in yellow.

2.1.2. Polysomnographically Assessed Night-Time Sleep

In total, we extracted data from 21 studies that met our inclusion
criteria [12,20,21,43,45,63–78]. Five of the studies have already been included in the re-
sults for melatonin. Only 43% of the studies (n = 9) specified the study period or season
(Figure 1B). Of these, four studies were conducted during winter or mostly during winter,
four studies during summer and winter and one study during summer. Nineteen percent
(n = 4) of the studies kept participants in the laboratory under reduced light levels for the
entire experimental day prior to sleep assessment, and only one study objectively recorded
the light history [21]. The extracted seasonal and light history information can be found in
the Supplementary Material.

2.2. Seasonal Sensitivity to Evening Light without Controlling Light History

Here, we report the results of a re-analysis investigating seasonal variations in the
effects of evening light on melatonin and sleep latency. Therefore, we combined the datasets
of all four luminance levels and conducted separate analyses for data collection during
summer (April–September) and Winter (October–March).

2.2.1. Solar Irradiance and Self-Reported Light History

Participants arrived at the laboratory 7 h before their usual bedtime. Before entering
the laboratory, participants were not restricted in their exposure to light, and neither did
we objectively measure light exposure during the preceding day. However, solar irradiance
for the study location, Basel (47.56◦, 7.58◦), was available for the study period (Figure 2A),
and we asked participants how long and when they had spent time outdoors. Figure 2B
illustrates the time spent outdoors in the morning, in the afternoon and throughout the
day before arriving at the laboratory according to light conditions and season. There was
no significant difference in the reported time spent outdoors on the experimental days
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between the two light conditions (HM vs. LM) nor between the different seasons. However,
using solar irradiance and reported time spent outdoors as an approximation of lux*min,
there was a significantly higher light exposure during the summer months compared to the
winter months (F1,78 = 8.22, p < 0.01,ω2 = 0.08).
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Figure 2. (A) Solar irradiance (W/m2) during the study period depending on the time of day
measured in Basel (Klingelbergstrasse 47.561697, 7.580502, 264.00 m). (B) Time spent outdoors
prior to the arrival at the laboratory on experimental days in summer and winter for each light
condition. (C) Approximation of illuminance*min using reported exposure times and durations
and solar irradiance (W/m2). To estimate the lux*minutes, we approximated 120 lx per 1 W/m2

(according to [79]), multiplied it by the minutes spent outdoors per hour of day and summed it up
for each experimental day. The colored boxes indicate whether the data was collected in summer
(yellow) or winter (purple). The lower and upper hinges of each box correspond to the first and
third quartiles (the 25th and 75th percentiles). The black horizontal bar within each box refers to the
median. The upper (lower) whisker extends from the hinge to the largest (lowest) value no further
than 1.5 * the inter-quartile range (IQR). The individual values are highlighted in grey.

2.2.2. Seasonal Dependent Light Sensitivity

During summer, there was no significant light-dependent effect on sleep latency (Light
Condition: F1,33 = 1.40, p = 0.25) (Figure 3A,B). In contrast, during the winter months, there
was a significant prolongation in sleep latency following the high compared to the low
melanopic condition (Light Condition: F1,34 = 13.80, p < 0.001,ω2 = 0.26) (Figure 3C,D).
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Figure 3. Boxplots of light effects depending on the season: (A–D) Sleep Latency in minutes on a
log scale; (E–H) Melatonin Area Under the Curve (AUC); (I–L) Melatonin Onset in hours prior to
bedtime (HPB). The difference [%] corresponds to (LM − HM)/LM. The coloured boxes indicate
whether the data was collected in summer (yellow) or winter (purple). The lower and upper hinges
of each box correspond to the first and third quartiles (the 25th and 75th percentiles). The black
horizontal bar within each box refers to the median. The upper (lower) whisker extends from the
hinge to the largest (lowest) value no further than 1.5 * the inter-quartile range (IQR). The individual
values are highlighted in grey. Supplementary Figure S2 shows the light effects depending on the
season for the four light intensity groups. Asterisks indicate a significant difference between the
light conditions. Abbreviations: HPB—Hours prior to bedtime, LM—Low Melanopic Condition;
HM—High Melanopic Condition.

Effects of light exposure on the Area Under the Curve (AUC) of melatonin during
summer (Light Condition: F1,35 = 4.25, p < 0.05, ω2 = 0.08) and winter (Light Condition:
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F1,33 = 15.41, p < 0.001,ω2 = 0.29) were significant (Figure 3E–H). However, the effects were
more pronounced during the winter season, as indicated by the effect size.

The Melatonin Onset during light exposure in summer (Light Condition: F1,27 = 8.58,
p = 0.007,ω2 = 0.21) and winter (Light Condition: F1,29 = 11.97, p = 0.002,ω2 = 0.26) were
significant (Figure 3I–L).

3. Discussion

Laboratory studies investigating the effects of evening light exposure on melatonin
secretion or PSG-assessed sleep are extremely time- and resource-consuming. To reduce the
complexity of the experiment, researchers often refrain from assessing light exposure prior
to the arrival at the lab. Additionally, it is often not feasible to control for seasonal effects as
scheduling participants for protocols often comprising several weeks is already complex
enough. Beyond this, climate change may make it challenging to run studies during the
summer months if air conditioning is not available. Last, researchers often argue that
acquiring data uniformly across seasons would rule out an effect of the season in their data.
While this may be true, this makes it difficult to replicate and compare results, especially if
information on when data were acquired is missing and/or individual light histories are
not assessed. To circumvent such problems, we suggest here a hierarchy of measures, the
most simple of which should be reported in any study investigating the effects of light on
the biological clock and sleep.

In line with the assumptions outlined above, our systematic review yielded that the
time period or season in which data collection took place was often not specified (i.e., only
about 50% specified this). However, from the studies that did report the data collection pe-
riod, more studies were conducted in the winter months than in the summer months. This is
problematic because it is difficult to extrapolate the light effects quantified in winter to sum-
mer. The reason is that daylight exposure is significantly higher in summer than in winter,
which in turn affects the sensitivity to evening light exposure [80–82]. In a study by Adams-
son and colleagues [81], light radiation in summer, with a daily mean of 1,394,200 lux*min,
was about 15 times higher than in winter (daily mean = 91,366 lux*min) and also higher
than in spring (daily mean = 356,367 lux*min) and autumn (daily mean = 477,165 lux*min)
at a northern latitude of 56◦ N, with large annual variations in photoperiod length. This is
in line with the light levels (measured by wrist-worn actimeters) in the study by Zerbini
et al., which were 10 times higher (on average) in summer than in winter assessed in
Groningen (53◦13′ N/6◦33′ E) [5].

3.1. Seasonal Variations in Humans

Although the amplitude of seasonal variation is likely to be smaller in humans than
in other animals, several physiological parameters have been suggested to still follow a
seasonal pattern. For instance, caloric intake, and especially carbohydrate intake, has been
found to be higher in autumn [83]. Blood pressure [84] and cholesterol levels [85] have
also been reported to be higher in winter than in summer. Behavioral patterns also show
seasonal variations, at least in pre-industrial societies, where, for example, conception
peaked in spring and winter [86]. Variations in mood are probably the best-studied sea-
sonal pattern, with the prevalence of major depressive disorder [87] and subclinical mood
deterioration [88] increasing during the winter months. Serotonin may play a key role in
seasonal mood changes and seasonal affective disorder; its production in the brain has been
shown to be directly affected by the duration of sunlight [89]. In addition, a recent study by
Meyer and colleagues [90] suggests that there are seasonal variations in task-related brain
responses.

3.2. Seasonal Variation in Light-Induced Melatonin Suppression

Several studies have shown that reduced light levels during daytime increase nocturnal
light sensitivity as assessed by melatonin suppression [15–17]. Thus, the effects of light
may well be specific to the season during which data were acquired. This is consistent



Clocks&Sleep 2023, 5 657

with the results of the data re-analysis presented here. They suggest that the sensitivity
to high melanopic compared to low melanopic light is reduced in summer compared
to winter, as indicated by the reduced impact of melanopsin activation on sleep latency
and melatonin suppression during the summer months. Further support for enhanced
melatonin suppression in winter comes from Owen et al. and Higuchi et al. [17,91]. The
study by Higuchi et al. [91] showed a greater melatonin suppression 2 h after the start of
light exposure (1000 lx, 4200 K) in winter (66.6 ± 18.4%) than in summer (37.2 ± 33.2%).
The ambient light dose participants received from rising until going to bed in summer was
approximately twice as high in summer as in winter. Nathan et al. [92] could, however, not
find seasonal differences in melatonin suppression when participants were exposed to light
(200 lx) for one hour. Münch et al. [7] compared melanopsin-mediated light responses in
summer and winter and found a seasonal variation in the Post-Illumination Pupil Response
(PIPR) in pseudophakes indicating seasonal variations. The PIPR is formed by intrinsically
photosensitive retinal ganglion cells (ipRGCs) and is, therefore, a proxy for melanopsin
system sensitivity [93]. However, they found no differences in melatonin suppression after
30 min of light exposure at 400 lx. The authors concluded that their light exposure may
have been too short and that the age of their participants (mean: 67 years) might have
influenced melatonin suppression [94]. In contrast, in our protocol, young participants
(19–35 years, mean: 25 years) were exposed for a longer time (3.5 h) but to relatively low
light levels (<90 lx). Our re-analysis is, to the best of our knowledge, the first to suggest
that specifically melanopsin-mediated melatonin suppression may be more pronounced in
winter than in summer.

3.3. Seasonal Variation of Light-Induced Changes in Melatonin Circadian Phase

In addition to the more acute effects of prior light history on sensitivity to evening
melatonin suppression, it may also have affected the circadian phase. It is well established
that 24 h light exposure patterns determine human circadian entrainment, with morning
light advancing and evening light delaying human circadian melatonin rhythms [95].
Several studies have reported a phase delay in winter compared to summer in circadian
melatonin rhythms measured either in saliva, plasma or urine in different locations such as
Australia, Siberia and Central Europe [96–99]. However, because our participants’ visits
took place within two weeks at their habitual bedtimes, such effects would have been
masked. Moreover, our phase estimate was not based on a 24 h assessment of the circadian
profile of melatonin, but only on melatonin onset, which has been masked by the acute
effect of light.

However, the aim here was to describe whether the effect of melanopic high versus
melanopic low light on the phase of the melatonin rise varies seasonally rather than to
describe fundamental seasonal differences in the timing of the evening melatonin rise. We
found that in both summer and winter, the onset of melatonin relative to bedtime was
significantly delayed in the high melanopic compared to the low melanopic condition.

3.4. Seasonal Variation in Sleep Architecture and Its Modification by Light

While there have been studies of the seasonal effect on subjective and actigraphy-
assessed sleep duration and timing, with longer sleep duration and earlier bedtimes in
winter than in summer [100,101], there is limited research on seasonal changes in sleep
architecture as assessed by PSG. Altogether, these studies suggest that the received dose
of daylight may well affect sleep architecture. More specifically, in a laboratory study,
a shorter photoperiod (10 h vs. 16 h) was shown to result in longer sleep times [102].
This is consistent with Seidler et al. [6] who found longer total sleep time during winter
compared to summer using PSG. Furthermore, there is evidence for seasonal effects on
REM sleep [6,103,104], but the direction of these effects is controversial. REM sleep was
found to be shorter during autumn than in spring [6,104] and during winter than during
summer [104], whereas Kohsaka et al. [103] found more REM sleep (about 30 min) in
winter compared to spring. As REM sleep is under strong circadian control [105–107],



Clocks&Sleep 2023, 5 658

simultaneous assessment of the circadian melatonin phase and PSG is recommended
for studies investigating seasonal effects of REM sleep. Kohsaka et al. also found that
sleep timing was 1–1.5 h later in winter than in summer, while Seidler et al. [6] did not
report a change in sleep timing. Neither study reported changes in sleep latency across
seasons. Importantly, neither of these studies investigated the overall effect of evening
light exposure on sleep, but they do suggest that the amount of light during the day may
have influenced sleep architecture. This is the first evidence that the light sensitivity of
the human melanopsin system and its effect on sleep latency depends on the season and
possibly on the individual’s previous light history. Our results suggest that in summer, the
effects of high melanopic light compared to low melanopic light are not as pronounced
as in winter. Therefore, collecting data only in winter, as many studies have done, may
have led to an overestimation of the effects on sleep latency and, thus, reduced replicability
when the timing of data collection is unknown.

3.5. Suggestions for Improving the Reproducibility of Studies Investigating Non-Visual Effects of
Light in Humans

Here, we would like to add some suggestions to the existing guidelines for reporting
light exposure in human chronobiology and sleep research experiments [108]:

1. Studies investigating not only the non-visual effects of light in humans but also
any endpoint under potential seasonal influence should report the season, seasonal
distribution, and time of day of the respective measurement.

2. The assessment and reporting of subjective individual light history (i.e., time spent
outdoors) is a relatively simple method, together with weather conditions. The
assessment should also include the time of day when outdoor activities took place. In
our study, for example, subjectively reported time spent outdoors showed relatively
small differences in summer and winter. This is not unlikely, given that most of
our participants were students and the study was conducted during the COVID-19
pandemic.

3. Taking into account the solar irradiance from local weather stations and combining
this with individual time and duration spent outdoors improves the prediction of
individual light history, and, for example, our study showed significant differences
between summer and winter months. The most accurate is the objective assessment
of individual light history by light sensors, which can be worn on different parts of
the body (e.g., wrist-worn, on eye-level attached to spectacle frames or worn at the
chest), the more advanced of which also provide spectral characterization of light (for
an overview, see [109]) (Figure 4).

4. One strategy for eliminating the effects of prior light history, if desired, is to keep
participants in the laboratory on study days and control the light situation, thus
reducing variance by eliminating the bias caused by variations in prior light expo-
sure. In most constant routine studies of the effects of evening light on melatonin
(e.g., [38]), illuminance was drastically reduced compared to daylight (<100 lx vs.
1000 lx (overcast day)—100,000 lx (direct sunlight)) when participants remained in
the laboratory throughout the experimental day. It should be noted, however, that
the ecological validity of these strictly light-controlled studies is compromised by
the fact that reducing light exposure during the day increases sensitivity to evening
light [15,54]. This should be kept in mind when comparing the results of different
study designs.
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Figure 4. Schematic illustration of suggestions for reporting season and light history and their
accuracy in predicting individual light history.

4. Conclusions and Summary

Depending on latitude, the changes in photoperiod are immense and may have major
effects on human physiology and behavior. However, despite the use of artificial light in
modern lifestyles to override seasonal effects in photoperiods, it is not clear how sensitive
we still are to photoperiodic changes at a given latitude. For this reason, studies of the
non-visual effects of light on circadian melatonin and sleep in humans need to include data
collection and recording dates.

Unfortunately, sleep and circadian studies often involve small numbers of people
being studied. As a result, seasonality is often excluded from data analyses or only collected
in winter. Here, we report that sensitivity to melanopic irradiance would have been more
pronounced if we had conducted our study only in winter months when the photoperiod
is shorter. Therefore, the results of studies that only collect data in one season cannot be
extrapolated to the whole year, as this may lead to an overestimation of study results in
winter and vice versa in summer.

In summary, a relatively simple way to improve the reproducibility of research results
is to provide information on the period of data collection and the seasonal distribution
(e.g., the number of observations per month). Secondly, any information on subjective
light behavior (i.e., time spent outdoors) and light changes recorded by a light logger to
quantify a person’s light history would greatly improve the ability to disentangle the effects
of photic memory on human circadian physiology and sleep and improve reproducibility
among studies.

5. Materials and Methods
5.1. Review

Criteria for eligibility were that the studies included human participants, information
on the spectral power distribution or illuminance levels and specified the duration of light
exposure. Moreover, the timing of light exposure had to have occurred in the evening
within the time interval from 5:30 p.m. to 2 a.m. prior to nighttime sleep and lasted for at
least 30 min. We only included original research in the English language and laboratory
studies. There were no restrictions regarding the study design or prior light history, sex
or age of the participants. Letters to the editor, conference abstracts and literature reviews
were excluded (according to [110]).
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5.1.1. Search Melatonin Studies

The search was performed on 9 June 2023, in PubMed and Web of Science. The search
string included the items (Light [All Fields] AND Melatonin [All Fields]) AND Evening
[All Fields]). The search on PubMed yielded 448 articles, and the search on Web of Science
yielded 721 articles. After removing duplicates, the articles were screened by IS, OS and CB
for exclusion from studies.

5.1.2. Search Polysomnographically Assessed Sleep

We only included studies that assessed sleep by polysomnography in a laboratory
setting. Studies observing the evening light-dependent effects on polysomnographically
assessed night-time sleep are limited. We used 18 studies selected in our meta-analysis
(Cajochen, 2022) and added the literature published between 22 January 2021, and 28 May
2023. Therefore, the PubMed and Web of Science search included the following items
according to [110]: ((Light [title] OR Lighting [title]) AND Sleep [title]) AND humans
[mesh]). We excluded three studies used by Cajochen et al. [110] because two studies
observed light exposure during the night [111,112] and one study showed light exposure
throughout the day [113]. The search on PubMed yielded 104 articles, and the search on
Web of Science yielded 99 articles. After removing duplicates, 105 articles were screened.
Only three additional papers could be included. The most common reasons for exclusion
were that there was no polysomnography, no laboratory study, the light exposure was not
in the evening, or there was no original data.

5.1.3. Collected Data

We collected information on the light timing, duration, the period of data collection,
season and any information about seasonal distributions. The light history was classified as
controlled when the participant spent the whole day in the laboratory since already morning
light can have phase-advancing effects [114] and is otherwise considered uncontrolled.

5.2. Seasonal Dependent Data

We used the melatonin and sleep latency data published by Schöllhorn et al. [12].
Seventy-two young (18–35 years; Intensity 1: 24.5 ± 3.8 years; Intensity 2: 25.4 ± 5.5 years;
Intensity 3: 24.3 ± 4.3 years; Intensity 4: 24.7 ± 3.5 years) healthy male participants have
been included in the study. The study investigated the influence of melanopic irradiance
on melatonin and polysomnographically recorded sleep latency within four light-intensity
groups (n = 18 participants per group). Within each light intensity group (27–284 cd/m2),
there was a high melanopic and a low melanopic light condition (within comparison),
which showed an approximately 3-fold difference in melanopic irradiance (for details,
see [12] or Supplementary Tables S3 and S4 with light characteristics). After entering the
laboratory 7 h before habitual bedtime, there were two periods of dark adaptation and
one dim light period (~2 h in total) before participants were exposed to the different light
conditions. Four hours before habitual bedtime, participants were exposed to the different
light conditions for about 3.5 h.

The study was carried out between December 2019 and July 2021. To assess whether
there are differences in evening sensitivity to high melanopic light between seasons, data
from all four light intensity groups were combined. As many previous studies were
conducted only during the winter months, light sensitivity in summer (April to September)
and winter (October to March) were analyzed separately using Linear Mixed Models.
Approximately the same number of appointments were conducted in summer (n = 73) and
winter (n = 71), and the number of appointments in summer and winter at the two lowest
(winter: n = 35, summer: n = 37) and two highest luminance levels (winter: n = 36, summer:
n = 36) was similar. All statistical analyses were conducted in R (Version 4.1.1, R Core
Team, 2021). For all variables, Light Condition (HM and LM) was included as a fixed effect
and repeated measures per participant were modeled as a random intercept. LMMs were
followed by an ANOVA (Type III) function. We used log-transformed sleep latency values
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for our analyses. As an effect size measure, omega squared (ω2) was calculated using the
effect size package. It can be interpreted as follows: small effect: ω2 ≥ 0.01, medium effect:
ω2 ≥ 0.06, large effect: ω2 ≥ 0.14. A p-value < 0.05 was considered to indicate statistical
significance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/clockssleep5040044/s1, Table S1: Description of the included
studies on evening light exposure on melatonin concentration; Table S2: Description of the included
studies on the effect of evening light exposure on sleep as assessed by polysomnography; Table
S3: Overview of luminances, illuminances, chromaticity coordinates and irradiance-derived α-opic
responses; Table S4: α-opic equivalent daylight (D65) illuminances, mEDI ratios and contrasts. Figure
S1: Time spent outdoors prior to the arrival at the laboratory on experimental days in summer and
winter. Figure S2: Boxplots of light effects depending on the season for the four light intensity groups.
Reference [115] is cited in the supplementary materials.
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