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Abstract: The biological clock is a molecular oscillator that generates a 24-hour rhythm in accor-
dance with the earth’s rotation. Physiological functions and pathophysiological processes such as
inflammatory bowel diseases (IBD) are closely linked to the molecular clock. This review summarizes
14 studies in humans and mice on the interactions between the biological clock and IBD. It provides
evidence that IBD negatively affect core clock gene expression, metabolism and immune functions.
On the other hand, disruption of the clock promotes inflammation. Overexpression of clock genes can
lead to inhibition of inflammatory processes, while silencing of clock genes can lead to irreversible
disease activity. In both human and mouse studies, IBD and circadian rhythms have been shown to
influence each other. Further research is needed to understand the exact mechanisms and to develop
potential rhythm-related therapies to improve IBD.

Keywords: biological clock; circadian rhythm; clock genes; inflammatory bowel disease; intesti-
nal diseases

1. Introduction
1.1. The Biological Clock

The biological clock is a molecular oscillatory system that is responsible for the rhyth-
micity of cellular processes [1]. In doing so, it maintains physiological functions and
homeostasis of the body. In humans, its rhythm is regularly repeated approximately every
24 h and can be synchronized by environmental factors [2]. For example, light interacts
with the central oscillator of the circadian clock located in the suprachiasmatic nucleus
(SCN) of the hypothalamus [2].

The molecular core of the clock consists of transcriptional and translational feedback
loops (Figure 1) [3,4]. Specifically, two core clock proteins—aryl hydrocarbon receptor
nuclear translocator like (ARNTL), also known as BMAL1, and circadian locomotor output
cycles kaput (CLOCK) (paralogous to NPAS2)—activate clock gene expression by binding
to E-box motifs [3]. To this end, CLOCK and BMAL1 form a heterodimer complex that
enters the nucleus and induces the expression of genes encoding cryptochromes (CRY) and
periods (PER) by binding to E-box sequences in their promoters [4]. As a result, PER and
CRY are released into the cytoplasm. They bind together and re-enter the nucleus as a new
complex. Once inside the nucleus, they interfere with the BMAL1:CLOCK complex and
stop their own transcription [3–5].

In a second transcriptional/translational feedback loop, BMAL1:CLOCK drives ex-
pression of genes encoding REV-ERBα (also known as NR1D1) and RORα [3,4]. These
proteins compete for the retinoic acid-related orphan receptor (ROR)-binding elements
(RORE). While RORα binding induces BMAL1 expression, REV-ERB binding inhibits
BMAL1 expression [3]. However, little is known about how CLOCK is regulated [2,6–8].

Another loop involves D-box-binding protein (DBP). DBP is also regulated by the
BMAL1:CLOCK complex [3]. Together with interleukin-3-regulated protein (NFIL3), it
forms a complex that binds to the D-box elements. These elements regulate genes containing
D-box sequences, including those for PERs and RORs [3].
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Figure 1. The molecular mechanism of the circadian clock and its potential interaction with 
inflammation in IBD: The central oscillator of the circadian clock is located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus and is activated by light. Peripheral clocks oscillate in virtually 
all organs, including the gut, as all cell types are synchronized and entrained by autonomic 
innervation and humoral factors. The core molecular clock consists of transcriptional and 
translational feedback loops. The clock proteins BMAL1 and CLOCK form a heterodimer and 
induce the expression of other clock proteins by binding to E-box motifs. These include BMAL1 
positive regulators, such as RORα, and negative regulators, such as REV-ERBs, PERs and CRYs, 
which simultaneously downregulate their own transcription and initiate a new transcription cycle. 
DBP and NFIL3 form another loop that regulates the transcription of genes containing D-box 
sequences, including those for PER, and thus work in concert with the core clock to establish robust 
24-hour rhythms. In inflammatory bowel disease (IBD), clock proteins interact with inflammatory 
mediators. CLOCK positively regulates and REV-ERBα, RORα or BMAL1 negatively regulate the 
expression of the transcription factor NF-κB, which is responsible for the activation of a variety of 
mediators involved in inflammation, such as the pro-inflammatory cytokines TNF-α, IL-1β or IL-6. 
NF-κB, in turn, inhibits the expression of E-Box-regulated clock proteins and thus may generally 
reduce clock gene expression during the inflammatory process as seen in IBD. Figure partly created 
with Biorender.com. 
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Figure 1. The molecular mechanism of the circadian clock and its potential interaction with inflam-
mation in IBD: The central oscillator of the circadian clock is located in the suprachiasmatic nucleus
(SCN) of the hypothalamus and is activated by light. Peripheral clocks oscillate in virtually all organs,
including the gut, as all cell types are synchronized and entrained by autonomic innervation and
humoral factors. The core molecular clock consists of transcriptional and translational feedback loops.
The clock proteins BMAL1 and CLOCK form a heterodimer and induce the expression of other clock
proteins by binding to E-box motifs. These include BMAL1 positive regulators, such as RORα, and
negative regulators, such as REV-ERBs, PERs and CRYs, which simultaneously downregulate their
own transcription and initiate a new transcription cycle. DBP and NFIL3 form another loop that
regulates the transcription of genes containing D-box sequences, including those for PER, and thus
work in concert with the core clock to establish robust 24-hour rhythms. In inflammatory bowel
disease (IBD), clock proteins interact with inflammatory mediators. CLOCK positively regulates and
REV-ERBα, RORα or BMAL1 negatively regulate the expression of the transcription factor NF-κB,
which is responsible for the activation of a variety of mediators involved in inflammation, such as
the pro-inflammatory cytokines TNF-α, IL-1β or IL-6. NF-κB, in turn, inhibits the expression of
E-Box-regulated clock proteins and thus may generally reduce clock gene expression during the
inflammatory process as seen in IBD. Figure partly created with Biorender.com.

In addition to the pacemaker in the SCN, autonomous clocks are also present in
peripheral tissues [9–11]. Their clock gene expression is locally controlled and independent
of the SCN. However, they are entrained by the SCN through neuronal and hormonal
pathways [10]. The endocrine system is central to the synchronizing of SCN and peripheral
clocks [11]. It is thought that diet-related hormones synchronize the peripheral clocks in
metabolic organs, the kidney, the gastrointestinal tract and the muscles [11].
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Clock changes have been observed associated with jet lag and shift work [12,13] or
stress [14]. Diet influences the transcription factors DBP and NFIL3, which have an effect
on the length of the clock cycle [15]. In addition, environmental influences such as cigarette
smoke have been shown to adversely affect circadian pathways [16]. Because of its vital
role in the maintenance of the body’s homeostasis, the circadian clock is critical to disease
mechanisms. Disruption of the clock has been implicated in diseases such as cardiovascular
disease [17], obesity [18], diabetes [19,20], metabolic diseases [21], and cancer [22–24].
Furthermore, inflammatory bowel disease (IBD) and colorectal cancer have been linked to
a dysfunction of the biological clock [25–27].

1.2. Inflammatory Bowel Disease (IBD)

IBD is a group of chronic inflammatory diseases affecting the gastrointestinal tract.
Crohn’s disease (CD) and ulcerative colitis (UC) are the most common [28,29]. While CD
spreads throughout the entire tract, UC primarily affects the large intestine, the colon and
the rectum. While CD may impair several tissue levels, UC afflicts only the first inner
layer of the colon [28,30]. Common symptoms include diarrhea and abdominal pain, while
rectal bleeding is more than twice as likely to indicate UC as CD [31,32]. Other indicators
are decreased appetite, weight loss, fatigue, anemia, joint pain, menstrual irregularity or
cessation and fever [30].

In recent years, the prevalence of IBD has been highest in Western countries. In
2010, approximately 1.5 million cases were reported in the United States [33]. Ten years
later, in 2020, this number increased by more than 60% to nearly 2.5 million cases [33].
Worldwide, the incidence of the disease is increasing, especially in Asia [34,35] and in
emerging countries [34]. In Europe, the mortality rate in patients with CD is up to 40%
higher than in the general population [36]. Incidence rates vary between different ethnic
groups [37,38] and regions [37].

IBD is diagnosed by blood and stool tests, endoscopy, radiology scans, CT scans or
magnetic resonance imaging [39,40]. It has been suggested that multiple factors [32], in-
cluding environmental exposures, such as smoking or drugs [41,42], as well as diet [43–45],
exercise [46,47], genetics [37,38], sleep [48,49] and depression [50,51] contribute to the de-
velopment of IBD. IBD has also been associated with disturbed circadian rhythms, such as
altered sleeping [52–55] and eating [56] habits.

This review provides an overview of study results on the relationship between the
circadian clock and IBD. The study results suggest that IBD and biological clocks influence
each other and thus open up new therapeutic perspectives.

2. Results
2.1. Influence of IBD on the Circadian Rhythm

Significant clock gene disruption was found in both CD and UC cases. The expression
of the clock genes BMAL1, CLOCK, PER1/2 and CRY1/2 was up to three times lower in the
mucosal tissue and peripheral blood of IBD patients [57,58]. Comparing CD and UC, UC
patients had significantly lower PER1/2 and BMAL1 expression in inflamed mucosa than
CD patients [57]. No differences in clock gene expression between UC and CD patients
were found in peripheral blood mononuclear cells [57,58].

In addition to clock gene alterations, IBD patients showed upregulated genes involved
in cell differentiation (BHLHE40, BHLHE41) [59] and downregulated genes involved in
cell growth (KITLG, EGFR, EREG) [59]. Correlations between clock gene expression and
Mayo score, an index of colitis activity, were predominantly negative [57]. In addition, the
levels of two inflammation markers, C-reactive protein and calprotectin, were significantly
increased in IBD patients compared with controls [58]. Table 1 summarizes the association
between IBD and clock gene changes in humans. One study, did not differentiate between
UC and CD [60].
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Table 1. IBD and clock gene expression in humans. * p < 0.05 compared to healthy controls. † p < 0.05
inflamed vs. noninflamed tissue. ↑ = significantly upregulated mRNA levels; ↓ = significantly
downregulated mRNA levels; CD = Crohn’s disease; UC = ulcerative colitis; IBD = inflammatory
bowel disease; CGE = clock gene expression; CRP = C-reactive protein; nuc = nuclear.

Reference
Year No. of Patients, Disease Samples Disease Findings

[61] 2012 n = 3365
(972 UC, 1082 CD, 1311 HC)

Peripheral blood
leukocytes UC and CD • PER3-risk-variant↑*

[59] 2015
n = 29
(14 UC, 15 CD)

Inflamed or adjacent
noninflamed colon
tissue

UC and CD • ARNTL2↑*, RORα↑*, PER3↓*

UC • CRY1↑*, CSNK1E↑*, TIPIN↑*,
NR1D2↓*

CD • CSNK2B↓*, NPAS2↓*, PER1↓*

[57] 2017
n = 132
(51 UC, 39 CD,
42 HC)

Inflamed colon
mucosa

UC and CD • BMAL1↓*, CLOCK↓*, PER2↓*,
CRY1/2↓*

UC vs. CD • PER1/2↓*, BMAL1↓*

PBMCs UC and CD

• BMAL1↓*, CLOCK↓*, PER1/2↓*,
CRY1/2↓*

• CGE correlated negatively with
CRP

[58] 2020
n = 30
(5 UC, 8 CD,
16 HC)

Peripheral blood
leucocytes UC and CD

• BMAL1↓*, CLOCK↓*, PER1↓*,
CRY2↓*

• CGE correlated negatively with
fecal calprotectin

Colon mucosa UC and CD • CLOCK↓†, PER1↓†, CRY2↓†

[60] 2022 n = 103
(IBD) Colon mucosa UC and CD

• BMAL1↓†, CRY1/2↓†,
REV-ERBα↓†

• sleep quality correlated with
disease severity

Clock gene expression associated with intestinal inflammation has also been studied
in mice [57,62–64]. In these studies, colitis was induced by treatment with dextran sulfate
sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS). Table 2 summarizes the changes
in clock gene expression in mice with colitis.

Examination of C57BL/6 mice with DSS-induced colitis revealed significantly re-
duced Cry1, Per2, Npas2 and Rev-erbα expression, but significantly increased expression
of Rorα [63]. In contrast, another study reported no changes for Bmal1, Clock and Rev-erbα
expression in response to DSS treatment [62]. In addition, some DSS-treated mice received
ocular treatment with UVB light (range 280–320 nm) for 60 s each day. DSS + UVB light-
treated mice showed significantly increased Bmal1-, Clock- and Rev-erbα-mRNA levels and
even higher colitis scores than the DSS-only and control groups. Accordingly, UVB eye
irradiation exacerbates the effects of colitis [62].
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Table 2. Colitis’ effect on Clock gene expression in colitis mice. * p < 0.05 compared to controls.
†† p < 0.05 compared to DSS-only group. ↑ = significantly upregulated mRNA levels; ↓ = significantly
downregulated mRNA levels; DSS = dextran sulfate sodium; TNBS = 2,4,6-trinitrobenzene sulfonic
acid; UVB = UVB eye irradiation.

Reference
Year Samples Colitis Mouse Models Findings

[57] 2017 Colon mucosa DSS/TNBS • Bmal1↓*, Clock↓*, Per1/2↑*, Cry1/2↓*

[62] 2018 Colon tissue UVB+DSS • Clock↑††, Bmal1↑††, Rev-erbα↑††, Nfil3↓††, Rorγt↑††

• UVB worsened DSS severity

[63] 2018 Colon tissue DSS
• Per2↓*, Cry1↓*, Rev-erbα↓*, Npas2↓*, Rorα↑*
• Clock, Rev-erbβ, Dbp disturbed
• severity of clock gene disturbance depends on daytime

[64] 2022 Colon tissue DSS • reduced rhythm amplitude

2.2. Influence of the Circadian Rhythm on Colitis

The effects of IBD on clock gene expression were not unidirectional. Clock disruption
also affected the disease, highlighting a bidirectional relationship. Mice with inactivated or
completely knocked out clock genes showed changes in cells, genes and colitis, as summa-
rized in Table 3. Mice lacking Rorα or Bmal1-driven Lnc-UC were more susceptible to colitis
than their control group [65,66]. Lnc-UC is a long noncoding RNA that has been associated
with colitis in mice and humans, particularly by reducing Rev-erbα expression [66]. On the
other hand, healthy Lnc-UC levels along with high Rev-erbα levels reduced colitis. Lnc-UC
deactivated the activity of NLR family pyrin domain (NLRP) 3, an inflammasome critical
for the induction of proinflammatory cytokines [63,66]. Mice lacking Nlrp3 did not respond
to DSS-induced colitis [63].

Mice with clock disruption caused by jet lag or Bmal1 deficiency were more susceptible
to DSS treatment [57,67]. Shifts in the light–dark cycle caused greater damage from DSS [57].
Similarly, disease activity scores of mice with DSS-induced colitis worsened after sleep
deprivation [60]. Furthermore, DSS-induced colitis was more severe in Per1/2-deficient
mice compared to wild-type mice [68]. While 30% of the epithelium of Bmal1−/− mice was
damaged by DSS, only half of the damage was observed in the wild-type group [67]. The
degree of inflammation also depended on Rev-erbα expression as Rev-erbα inhibited nuclear
factor (NF) κB signaling and NLRP3. Whenever Rev-erbα expression was elevated due to
its circadian behavior, the severity of inflammation was reduced [66].

Moreover, colitis damage was found to be time-dependent [66]. Bmal1−/−mice showed
a consistently high inflammation rate, whereas inflammatory activity in Bmal1+/+ mice var-
ied throughout the day. This suggests that clock-deprived animals are more susceptible to
colitis damage and that disease activity varies throughout the day in mice with functioning
clock rhythms [64]. DSS mice under jet lag had increased colitis damage compared to mice
treated with DSS alone [69].

A critical part of the development of IBD is the stability and function of the intestinal
barrier [70–73]. Tight junctions close gaps between epithelial cells to prevent the passage
of inflammatory substances. The tight junction proteins occludin and claudin-1 showed
circadian oscillation opposite to Per2 mRNA [74]. While mice that lacked PER2 had persis-
tently elevated levels of occludin and claudin-1, mice lacking CLOCK had persistently low
levels of the two tight junction proteins and were more susceptible to intestinal injury from
DSS [74]. Therefore, it has been suggested that colonic permeability is clock-dependent,
with opposing functions of CLOCK and PER2 in the clock rhythm [74]. In contrast, no
differences regarding the transcriptional expression of occludin, claudin-1 and two other
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barrier genes (tight junction protein 1 and mucin 2) were found between colitis mice lacking
Bmal1 and their nonmutant controls [64].

Table 3. Effects of clock disruption on cells, genes and colitis in mice. * p < 0.05. If no compar-
ison group is given compared to controls. ↑ = significantly upregulated levels; ↓ = significantly
downregulated levels; JL = jet lag; DSS = dextran sulfate sodium; TNBS = 2,4,6-trinitrobenzene
sulfonic acid; IEL = intraepithelial lymphocytes;⇔ = stable levels; DAI = disease activity index score;
SD = sleep deprivation.

Reference
Year Samples Disrupted Clock

Mouse Models
Additional
Treatment Findings

[74] 2014 Colon tissue

mPer2m/m
• occludin↑*, claudin-1↑*

DSS • increased DSS resistance

Clock∆19/∆19
• occludin↓*, claudin-1↓*

DSS • increased DSS sensitivity

[57] 2017 Colon tissue JL DSS/TNBS • increased DSS/TNBS sensitivity and damage

[68] 2017 Colon and ileal
tissue Per1/2−/−

• paneth cell↓*, goblet cell↓*, lysozyme transcript/protein↓*
• inhibited cell proliferation and apoptosis

DSS • mucin 2↓*
• increased DSS sensitivity

[63] 2018 Colon tissue

JL
• Rev-erbα↓*

DSS • increased DSS sensitivity

Bmal1−/−
• Rev-erbα↓*

DSS • increased DSS sensitivity

Rev-erbα−/− DSS • increased DSS severity
• REV-ERBα inactivates NLRP3

[65] 2019 Colon tissue Rorα∆IEC DSS
• Ki67+↓*, 16S rDNA↑*
• RORα essential for recovery
• RORα reduced NF-κB transcription

[66] 2020 Colon tissue

Bmal1−/− • Lnc-UC↓*, Dbp↓*

Lnc-UC−/− LPS • Rev-erbα↓*
• Lnc-UC regulated inflammation

[67] 2021 Intraepithelial
lymphocytes Bmal1−/− DSS • IELs Breg Cells↓*

[64] 2022 Colon tissue Bmal1−/− DSS • NR1D1↓*, claudin-1⇔, mucin 2⇔
• poor regeneration

[69] 2022 Colon tissue
JL

• Per2↓*, Ki67↓*,
• all core clock genes disrupted
• destroyed mitochondrial morphology

JL DSS • increased DAI

[60] 2022 Colon tissue SD DSS • Cry2↑*
• increased DAI

However, mucin 2 mRNA, a gut-protective secretory protein [75], was significantly
reduced in DSS-treated mice lacking Per1/2 compared with DSS-treated wild-type mice [68].
Likewise, significantly reduced numbers of secretory Paneth cells, goblet cells and lysozyme
were detected in colitis-affected mice without Per1/2 [68]. In contrast to the secretory cells,
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the total number of epithelial cells in the colon, ileum and stem cells in the small intestine
hardly changed [68]. No changes in goblet cells or crypt abscess scores were found in
Bmal1-deficient colitis mice [68]. Nevertheless, Bmal1−/− mutants showed significant
morphological abnormalities and increased immune cell infiltration compared to wild-type
colitis mice [64]. In addition to alterations in intestinal barrier cells, DSS-injured mice
lacking the circadian transcription factor RORα showed a twofold increase in bacterial 16S
rDNA in the mesenteric lymph node after 14 days, indicating increased intestinal barrier
permeability [65].

In addition to gut barrier function, circadian rhythmicity has also been linked to the
immune system [67,68]. Under the influence of DSS/TNBS and time shift, mice showed
significantly higher levels of inflammatory cytokines interleukin (IL) 6 and tumor necrosis
factor (TNF) α than without time shift [57]. Influenced by BMAL1, TNF-αwas expressed
more strongly in Bmal1−/− mice [64]. Furthermore, disruption of the biological clock
resulted in a reduction of regulatory B cells, a subset of B cells that suppress the immune
system and increase immunological tolerance [67]. Tissue-dependent changes in T cells,
lymphocytes, natural killer cells and dendritic cells were also reduced. Therefore, a BMAL1-
driven B cell regulation has been proposed [67].

Finally, differences in heterozygous and homozygous variants of the clock gene PER3
have been observed in IBD patients [61]. Significant genotype differences were found when
comparing the adult-onset group with the control group [61]. One allele was determined
to be more frequent in the adult-onset group than in the control group. This “risk” allele
was present in two out of three genotypes. It was concluded that IBD correlates with the
polymorphism of PER3 [61].

2.3. Circadian Rhythmicity and Cell Proliferation

Continuous processes of regeneration and cell growth are necessary to recover from
cell damage and inflammation [76]. These processes are preventative and follow circadian
rhythms [77]. Cell proliferation was impaired 24 h after injection of a proliferation marker
into Per1/2-deficient mice [68]. WEE1, an inhibitor protein kinase that regulates mitosis,
increased mRNA levels in clock gene-deficient mice and impeded cell division, which was
associated with decreased cell apoptosis but increased necroptosis [68].

It was found that regulatory B cells expressing high levels of programmed cell death
ligand 1 (PDL1) were regulated by BMAL1 [67]. When these cells were injected into the
blood of mice with clock disorders, these mice were less affected by colitis. Conversely, the
absence of PDL1+ B cells promoted colorectal cancer through CD4+ T cell apoptosis [67]. In
contrast to Bmal1−/− mice with colitis, in which epithelial cell proliferation was consistently
low, cell proliferation in diseased Bmal1+/+ mice fluctuated throughout the day [64]. Less
than 20 % of Bmal1−/− mice recovered from their DSS treatment compared to more than
75% of Bmal1+/+ mice [64].

In jet-lagged mice, Ki67, a cell proliferation marker, and p-DRP1, a molecule active in
ATP production, as well as ATP itself showed reduced expression [65]. Cell proliferation
was also reduced in Per2-silenced mice. Thus, chronodisruption impaired mitochondrial
shape and function, which reduced ATP production. Since ATP production was linked
to cell proliferation, cell proliferation was also reduced [69]. RORα has been linked to
p65, a major subunit of NF-κB, which is also essential for the recovery process of inflamed
tissues [65]. It has been suggested that RORα competes with two other proteins, CREB-
binding protein and Bromodomain-containing protein 4, to reduce NF-κB transcription [65].
While wild-type mice were able to recruit RORα, intestinal epithelial cell-specific RORα-
deficient (RORα∆IEC) mice were unable to recruit RORα, resulting in intense inflammation
despite the recovery period. Therefore, it was found that RORα is necessary to recover
from colitis and maintain a functional intestine by reducing NF-κB transcription [65].
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3. Discussion

We summarized recent findings on the relationship between IBD and the circadian
clock on a molecular basis. It has become clear that the circadian rhythm affects the
onset, severity and recovery of IBD. At the same time, intestinal inflammation has been
reported to disrupt the biological clock. Previous analyses of the biological clock and IBD
found strong relationships between the circadian clock, intestinal defense and the immune
system [73,78].

The proinflammatory markers TNF-α and IL-1β were found to control epithelial
barrier function [71]. Colitis decreased cell proliferation [64,68] and impaired the devel-
opment of physiological function. Furthermore, inflammation led to the loss of several
secretory cells [68], which play an important role in the immune response. Disruption of
clock genes could also reduce the number of secretory cells [68]. Therefore, as previously
suggested, clock disruption may create an imbalance in gut physiology while inflammation
disintegrates it [68]. The impact of the circadian clock on inflammation extends beyond
the intestine. Inflammatory arthritis [79,80], neuroinflammation [81,82] and metabolic
inflammation [83] have been linked to the biological clock. In addition, inflammation of
the retina [84], skin [85] and lungs [86–88] has been linked to circadian rhythms.

Immune cells exhibit circadian behavior [89,90] and clock genes have been found to
directly influence innate immunity. In Rev-erbα−/− mice, lipopolysaccharide (LPS)-induced
inflammation was worse than in wild-type mice. Increased translocation of p65, a subunit
of the heterodimer NF-κB protein complex [91], into the nucleus was found, indicating an
upregulated NF-κB pathway [81]. NF-κB regulates inflammation through transcription
of proinflammatory cytokines and other molecules [92]. It is activated in response to
stimulation by bacterial and viral factors via pattern-recognition receptors, such as Toll-
like receptors (TLR), or cytokines like TNF-α [91,93]. In Rev-erbα−/− mice, several genes
involved in the positive regulation of NF-κB signaling, such as Nfkb2, Tlr4, Stat3 and Traf2,
were found to be upregulated [81]. Two genes involved in inhibiting NF-κB signaling
(Nfkbib and Usp31) were found to be downregulated [81]. In primary microglia, Rev-erbα-
binding peaks were localized at Bmal1 promoters, known to be the target of Rev-erbα, but
also at NF-κB promoters [81]. Therefore, a direct control of NF-κB by Rev-erbα has been
proposed [81].

Notably, the NF-κB subunit p65 was directly linked to CLOCK, as CLOCK was found
to coimmunoprecipitate with p65 [91]. In addition, CLOCK increased p65-mediated tran-
scription in a concentration-dependent but BMAL1-independent manner [91]. In tran-
scriptional assays of a κB-responsive promoter, activation was higher for plasmids with
CLOCK/p65 co-expression than for plasmids with CLOCK/BMAL1/p65 co-expression [91].
Therefore, it has been suggested that BMAL1 opposes CLOCK/p65 co-activity [91]. In mice
with reduced Clock expression (Clock+/− mice), activation of NF-κB by the TLR 5 agonist
CBLB502 was also reduced, suggesting that CLOCK can increase the activity of NF-κB
promoters [91]. Furthermore, CLOCK overexpression correlated with increased p65 acetyla-
tion, indicating p65 activity [91]. Thus, it has been proposed that CLOCK enhances NF-κB
transcriptional activity by activating p65 [91]. However, the specific molecular mechanisms
between CLOCK and NF-κB remain unclear [91].

As a result of NF-κB stimulation, the expression of repressive clock genes of the
feedback loop was reduced [94]. The p65 peak density was found to be adjacent to E-box
elements, indicating a disruption of the repressive side of the circadian clock [94]. p65
bound to the promoter sites of Per1/2, Cry2, Dbp and Rev-erbα. Consistently, their expression
increased after p65 knockout [94]. Deletion of the NF-κB regulatory kinase IKKβ led to
similar results with a fold increase in repressor arm clock genes, indicating the regulatory
influence of NF-κB in addition to IKKβ on clock rhythmicity [94]. Regulator regions of
Bmal1 and Clock were barely affected by p65 binding [94].

Interestingly, LPS-mediated inflammation in wild-type mice resulted in new CLOCK-
and BMAL1-binding sites compared to saline-treated wild-type mice [94]. These sites were
located near genes involved in immune response and metabolic signaling pathways, among
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others [94]. Therefore, a circadian control of inflammatory response through epigenetic
modulation has been proposed [94].

This interpretation was supported by findings in macrophages showing that the
epigenetic states of enhancers were regulated by BMAL1 [95]. BMAL1 bound to the clock
gene loci in primary macrophages of mice, but also to TLR-4 inducible genes (Hif1a and
Csf1r) [95]. Moreover, the aforementioned novel CLOCK-/BMAL-binding sites due to
LPS inflammation showed increased NF-κB-binding motifs [94]. CLOCK/BMAL1 shifted
to sites associated with increased p65 binding [94]. Therefore, it has been suggested that
CLOCK/BMAL1/p65 colocalization is dependent on LPS-induced inflammation [94]. In
conclusion, increased NF-κB activity suppresses the transcription of repressor arm clock
genes and the relocalization of activator arm clock proteins. Consequently, increased NF-κB
activity alters circadian clock transcription processes (see Figure 1).

Besides its influence on the NF-κB pathway, the biological clock has been linked to
other parts of the immune response. Among those, influences on cytokine IL-1β were
found [96]. In Bmal1−/− mice, IL-1β-production was higher than in Bmal1+/+ mice. Knock-
down of Nfr2, an inhibitor of IL-1β, led to similar results [97]. In contrast, NFR2 activation
was enhanced by BMAL1 binding to the E-box in the Nrf2 promoter [96]. Consequently, the
immune response via IL-1β was suppressed and inflammation was alleviated. BMAL1 reg-
ulatory effects on inflammation have also been linked to REV-ERBα [85]. In Bmal1 knockout
mice with skin inflammation, p65 and NLRP3 levels were increased compared to their
wild-type counterpart [85]. Rev-erbα−/− mice were more sensitive to skin inflammation
associated with the direct effects of clock genes on NLRP3 [63,85]. Furthermore, silencing
of Rev-erbα attenuated the regulatory influence of BMAL1 on inflammation, suggesting that
regulation by BMAL1 occurs via REV-ERBα [85]. As a mediator of inflammatory infiltra-
tion of macrophages [98], REV-ERBα has also been proposed as a critical link between the
circadian clock and adaptive immune responses [99]. T helper 17 (Th17) cells enhance the
immune response by producing the cytokine IL-17 [100]. RORα and RORγt regulate them.
REV-ERBα competes with RORγt by binding to the RORE of Th17, thereby inhibiting the
Th17 immune response [101–103].

BMAL1 deficiency was also related to increased levels of chemokines, which signal
inflammatory processes and attract monocytes [103]. The secretion of cytokines, such as
TNF-α- and IL-6, showed a circadian rhythmicity that followed the diurnal rhythms in
peripheral organs [104]. The circadian clock was involved in TNF-α transcription upon
TLR4 signaling in response to LPS stimulation [104]. Interestingly, TNF-α and IL-1β
disrupted the circadian rhythm [105,106]. However, only clock genes that depend on E-box-
mediated transcription were affected [105]. Besides cytokines, many immune cells, such
as natural killer cells, lymphocytes and neutrophils, underlie circadian rhythmicity [107].
Reduced clock gene expression in natural killer cells affected the rhythmicity of cytolytic
factor secretion [108].

In addition, the microbiota influenced the rhythmicity of the immune system [109],
which showed diurnal oscillations [110,111]. A comparison of Bmal1IEC−/− mice showed
that the gut clock system also drives microbiota oscillations. Microbial functionality was
altered when intestinal rhythmicity was disabled [112] and specific populations, such as
Bacteroidetes S24-7 spp. and Prevotella, Firminicutes Allobaculum and Lactobacillaceae spp.
and Protobacteria Heliobacter and Suterella, were reduced [113]. Microbial rhythmicity was
completely lost in Per1/2−/− mice [110]. Circadian disruption by jet lag also disrupted
diurnal oscillations in the microbiota of mice [110]. However, jet lag was not always
sufficient to disrupt the microbiome in mice, but a combination of jet lag and a modified
high-fat, high-sugar diet altered the microbiome [111].

Interestingly, microbiota and circadian rhythms show bidirectional behavior. The
regulation of the circadian transcription factor nuclear factor interleukin 3 (Nfil3) was
dependent on the microbiota, which could repress the expression of Rev-erbα [114]. In
general, microbiota depletion was associated with changes in clock gene expression [115].
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Mice with depleted microbiota had a disrupted core clock. While Bmal1 and Cry1 were
reduced, Per1/2 increased and Clock was unaffected [116].

Besides its impact on the circadian rhythm, the microbiota plays a central role in the
pathogenesis of IBD. In most mouse models, the microbiota is required for the development
of intestinal inflammation [117]. Caspase-3-deficient mice that were initially safe from colitis
could develop colitis when housed with wild-type mice [118]. Therefore, microbiota transfer
through cohousing has been implicated as a reason for the disease development [118].
Furthermore, some bacteria have been shown to be destructive to the barrier and lead
to inflammation [119], while others have been shown to aid in the development of the
immune system and intestinal defense [120,121]. Antimicrobial peptides synthesized by
gut bacteria help protect the intestinal barrier from damage [122].

Several limitations were identified in the reviewed studies. In the mouse studies,
the method of chemically inducing colitis varied in amount and timing, which could
affect disease severity. Additionally, the jet lag phases used to induce clock disruption
differed in duration and number of phases [57,63,69]. For example, clock gene expression
levels in mice were measured every fourth hour [63,66,69], every sixth hour [74] or every
eighth hour [64]. Standardized times, intervals and methods to induce colitis or clock
disruption would improve the comparability of studies. Although various clock genes
and mechanisms have been studied in mice, comparable analyses in humans are lacking.
Therefore, clinical trials in humans should support findings from animal studies.

In most human studies, the timing of tissue collection was not specified [58–61].
Therefore, a standardized approach to tissue collection and clock gene expression analysis
is required. Clinical trials involving human participants should consider establishing more
specific guidelines regarding sleep and mealtimes. Comparable circadian time points could
help to increase the value of clock gene expression measurements. As circadian rhythmicity
may still vary between human individuals, circadian markers like melatonin could help to
validate results.

Moreover, studies evaluating the long-term relationship between IBD and clock genes
are needed. Cohort studies of changes in disease activity and symptoms associated with
several different rhythm-related factors, such as sleep–wake patterns, meal timing and
light exposure, may help to understand the impact of each factor. At the same time, more
specific claims could be made about the entrainment of peripheral clocks.

Today, IBD is treated medically or surgically. Five types of medications dominate
the treatment of IBD [39,123]. First, aminosalicylates reduce inflammation and inhibit
symptoms. Second, corticosteroids regulate and suppress the immune system. Immune
modulators prevent continuous inflammation due to the relentless activity of the immune
system. Fourth, antibiotics are used to cure colorectal infections. Finally, biological therapies
aim to prevent tumor necrosis factors and white blood cells from entering IBD-affected
tissue [39,123,124].

Recent studies recommended fecal microbiota transplantation as a promising and
effective treatment for UC [125,126]. In addition, dietary modification has been suggested
to be beneficial in the future treatment of IBD [127]. Similarly, melatonin has shown positive
effects in reversing the disease [128]. Beyond melatonin, drugs that target specific clock
genes are opening up a new field of research. Furthermore, the timing of medication, dietary
intake or sun-/screen light exposure should be more emphasized in the treatment process.
More specifically, taking the biological clock into account should be part of personalized
medicine, which aims to include the time factor as an important part of therapy.

Next to regular sleeping times, adequate rest and regular mealtimes, the disease
progression may benefit from limiting factors that are detrimental to IBD and the circadian
clock. First and foremost, abstinence from smoking and alcohol should be considered.
Besides physical changes, the patient’s mental state may need to be evaluated and treated.
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4. Conclusions

The biological clock has received increasing attention and has been implicated not
only in various physiological functions and processes, but also in diseases such as intestinal
diseases, especially IBD. Several studies have addressed the relationship between IBD and
the biological clock. They unanimously link the clock and disease mechanisms. Therefore,
the molecular link between the biological clock machinery and IBD should be considered
as a potential future therapeutic target. Although a connection between NF-κB and the
circadian rhythm has been established, the understanding of the specific mechanisms
remains incomplete. Moreover, information on the interplay between inflammation and
the biological clock beyond the NF-κB pathway is fragmentary. It remains to be seen how
exactly the biological clock and IBD are linked at the molecular level and how existing
knowledge about the biological clock can be used to effectively treat the disease.

5. Methods

A literature search was conducted for articles on the biological clock and IBD using
search terms “clock” and “circadian” for biological clock and “intestine”, “gut”, “inflamma-
tory bowel disease”, “ulcerative colitis”, “Crohn’s disease” and “colitis” for IBD. Besides
these terms, titles and abstracts were scanned for clock-related terms, e.g., “circadian
rhythm” or specific clock genes like PER2. Citation tracking of valid study documents was
performed. Four databases were searched for potential research articles: PubMed, Google
Scholar, Clinical Trials and Cochrane. The search was conducted until December 2022. In
total, titles and abstracts of 759 articles were scanned, and 28 articles were assessed for
eligibility. The search resulted in 14 articles (see Supplementary Figure S1).
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