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Abstract: Traumatic brain injury (TBI) is one of the most prevalent causes of morbidity in the United
States and is associated with numerous chronic sequelae long after the point of injury. One of the
most common long-term complaints in patients with TBI is sleep dysfunction. It is reported that
alterations in melatonin follow TBI and may be linked with various sleep and circadian disorders
directly (via cellular signaling) or indirectly (via free radicals and inflammatory signaling). Work
over the past two decades has contributed to our understanding of the role of melatonin as a sleep
regulator and neuroprotective anti-inflammatory agent. Although there is increasing interest in the
treatment of insomnia following TBI, a lack of standardization and rigor in melatonin research has left
behind a trail of non-generalizable data and ambiguous treatment recommendations. This narrative
review describes the underlying biochemical properties of melatonin as they are relevant to TBI. We
also discuss potential benefits and a path forward regarding the therapeutic management of TBI with
melatonin treatment, including its role as a neuroprotectant, a somnogen, and a modulator of the
circadian rhythm.

Keywords: traumatic brain injury; melatonin; insomnia; therapeutic; neurology; neuroinflammation;
neuroprotection

1. Introduction

Traumatic brain injury (TBI) is a prominent cause of morbidity and mortality around
the world, with an estimated global incidence of nearly 1/100, as 69 million individuals
sustain a TBI every year [1,2]. Patients with TBI experience a complex symptom constella-
tion, varying widely between individuals and persisting for several years after the initial
injury [3,4]. Disruption of normal sleep patterns following TBI of any severity is one of
the most common complaints experienced in both acute and chronic recovery phases. Esti-
mates for prevalence vary widely, ranging anywhere from 30% to 70% [5–7]. Sleep quality
complaints with TBI correlate strongly with mood and pain domains. They are difficult to
disentangle, as they independently associate with impaired cognition, pain sensitization,
and mood disorders [8,9]; they also prolong recovery after injury [10]. Considering the high
prevalence and health burden of sleep disorders following TBI, interventions that optimize
sleep may provide one of the greatest opportunities to improve long-term outcomes in
this population.

A suitable therapeutic intervention requires a balance of safety and efficacy, and it
may be most effectively utilized with an understanding of how its mechanism of action
addresses underlying injury pathophysiology. Despite growing insight into the importance
of sleep dysfunction following CNS injury, detailed mechanisms for the cause of these
disturbances remain largely unknown as they are likely multidimensional, depending on
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injury patterns and individualized comorbidities. Further, the mechanism of sleep dysfunc-
tion post-TBI may differ by chronicity since the injury. Acute parenchymal disruption has
been shown to be caused by a mixture of the force-based primary injury and subsequent
secondary injury, which includes resultant metabolic disruption, oxidative stress, and in-
flammation that may pervade long after the initial injury occurred, culminating in eventual
neurodegeneration [11,12]. An ideal therapeutic might mitigate one or multiple causative
injury mechanisms while simultaneously promoting a high safety and efficacy profile.

Melatonin has well-established properties as a potent antioxidant that also functions
as a signaling hormone, regulating sleep and circadian physiology. For example, direct
changes in melatonin production, receptor concentration, and circadian rhythm function
have been repeatedly observed following TBI [13–19]. Disruptions of endogenous mela-
tonin signaling after TBI may partly explain some of the pathological phenotypes related to
sleep, inflammation, and hormonal function. As a therapeutic, exogenous melatonin has
had several challenges. A host of negative or inconclusive clinical insomnia studies [20]
conflict, in part, with supportive studies in comorbid sub-populations [21,22]. There are
also some studies showing safety and efficacy in the use of melatonin for enhancing re-
productive health and fertility [23,24], while some animal studies suggest there might be a
risk in prenatal and childhood development due to hormone signals [25–27] (although no
human evidence of developmental harm from melatonin is known to the authors of this
paper). These data, combined with a lack of federal regulation and reports of inaccurate
quantification and impurities during manufacture [28], have led to its removal from clinical
guidelines and recommendations for the treatment of sleep disorders. Nonetheless, clinical
use continues, and certain indications, such as the use of melatonin in shifting circadian
timing (e.g., for jet lag), remain widely accepted [29] due to what appears to be an accept-
able safety margin and side effect profile. Some argue that the increasingly prolific use in
over-the-counter supplementation as a circadian clock-shifting stimulus and a sleep aid in
the general population could be cause for concern in some susceptible populations [29].

Despite melatonin’s availability as an inexpensive, readily available “supplement”,
no standard guidelines for proper dosing exist. Supplements are not regulated by the
FDA, giving rise to possible drug-drug interactions and substandard quality assurance.
One sample of 31 supplement manufacturers reported falsely labeled dosing by up to
400% when measured independently [28]. Although there continues to be an increasing
interest in optimizing the treatment of insomnia following TBI, a lack of standardization
and rigor in melatonin research has left behind a trail of non-generalizable data and
ambiguous treatment recommendations. Clearly, more work is needed to investigate the
true therapeutic potential of melatonin.

This review describes the underlying biochemical properties of melatonin as they are
relevant to TBI. We also discuss potential benefits regarding the therapeutic management
of TBI with melatonin treatment, including its role as a neuroprotectant, a somnogen, and a
modulator of the circadian rhythm.

2. Results

Boolean searches within the PubMed database for randomized controlled trials con-
taining the operators “TBI” AND “melatonin” returned only three results. There is a
relative paucity of published works focused on the therapeutic benefit of melatonin on
TBI and downstream sleep dysfunction. Expanding criteria to all article types under the
same operators returned 74 results, with 40 articles found pertinent for this review. The
remaining articles were collected via sampling aimed at the specific subtopics outlined in
this paper (i.e., “Melatonin” AND “Physiology” OR “Anti-oxidation” OR “Neurodegen-
eration”) with a final total of 169 fit for inclusion. A sample of these works is presented
in Tables 1–3. See Appendix A for a supplementary table (Table A1) for relevant animal
model studies included for review.
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Table 1. Previous reviews on TBI, sleep dysfunction, and melatonin.

Citation Title Design Key Findings

Kaleyias and
Kothare,
2022 [30]

Sleep Disorders in
Traumatic Brain

Injury

Literature
Review

Factors implicated in sleep disturbance following TBI include reduced
hypocretin signaling, damage to histaminergic tuberomammillary

neurons, disruption of circadian regulation impairing melatonin synthesis,
and parenchymal damage involving the ascending reticular activating

system, basal ganglia, and limbic system. Human observational studies
implicate substantial loss of histaminergic neurons and impaired

melatonin synthesis as significant pathophysiologic contributors up to
6 months after injury.

Naseem and
Parvez,

2014 [31]

Role of Melatonin in
Traumatic Brain

Injury and Spinal
Cord Injury: A

Review

Literature
Review

9 Studies

In animal models, melatonin has neuroprotective effects on both TBI and
spinal cord injury (SCI). Mechanisms for observed benefit are largely

owed to anti-inflammatory and anti-oxidative action leading to a
reduction in cerebral edema, decreased NFkB, decreased AP-1,

stabilization of Nitric Oxide Species (NOS), increased superoxide
dismutase and glutathione peroxidase. Measurements of melatonin in the

CSF increase acutely following TBI.

Stewart et al.,
2022 [32]

Treating Sleep
Disorders Following

Traumatic Brain
Injury in Adults:

Time for Renewed
Effort?

Systematic
Review

18 Articles

Pathophysiology of sleep disruption following TBI remains poorly
understood. Circadian rhythm dysfunction was common acutely

(10 days), and low melatonin production is found up to a year post injury
and associated with reduced sleep quality. Recommendation for clinical
use of melatonin to treat sleep dysfunction following TBI is supported but
cautioned against given the paucity of published data from human RCTs.

Gagner et al.,
2015 [33]

Sleep-wake
Disturbances and

Fatigue after
Pediatric Traumatic

Brain Injury: A
Systematic Review
of the Literature.

Systematic
Review

From over 20 identified pathologic characteristics from human and
animal models from studies investigating neuropathology, only 4 were

observed concurrently in both. Shared findings included decreased
hypothalamic orexin, increased slow waveform during wakefulness on

EEG, increased sleep fragmentation, and increased sleep time, suggesting
higher validity and utility for these findings when investigating the

pathophysiologic mechanism for sleep dysfunction after TBI.

Driver and
Stork, 2018

[34]

Pharmacological
Management of

Sleep After
Traumatic Brain

Injury

Literature
Review

Melatonin administration following TBI may improve subjective daytime
alertness, but a comprehensive understanding of its restorative impact on
sleep fragmentation is limited by a lack of rigorous RCTs with objective

sleep data. In one double-blind placebo-controlled trial of 13 individuals
with TBI, the melatonin agonist Ramelteon improved total sleep duration

and cognitive performance following the 3-week trial.

Osier et al.,
2018 [35]

Melatonin as a
Therapy for

Traumatic Brain
Injury: A Review of
Published Evidence

Literature
Review

22 articles

In animal models, melatonin conferred neuroprotective benefits following
TBI via antioxidative action, downregulation of NFkB and AP-1, and
decreased apoptosis leading to reduced contusion volume during the
evening. Majority of reports support the potential use of melatonin in

treating human patients following TBI.

Barlow et al.,
2019 [36]

Melatonin as a
Treatment after
Traumatic Brain

Injury: A Systematic
Review and

Meta-Analysis of the
Pre-Clinical and

Clinical Literature

Meta-
analysis

17 studies

From 15 pre-clinical studies, melatonin had an overall beneficial effect on
subject outcomes with improvement in cognitive performance and motor

function. Pertinent clinical trials included a post-concussive pediatric
population that benefited from melatonin supplementation to reduce

post-traumatic headaches (N = 12).

Blum et al.,
2021 [37]

Melatonin in
Traumatic Brain

Injury and Cognition

Literature
Review

11 studies

Murine models continue to demonstrate melatonin exerting potent
neuroprotective action via anti-inflammatory and antioxidant functions.
Evidence for reduced expression of abnormal proteins, including AB and

p-tau, following treatment with melatonin after injury highlight a
potential future application in decreasing the risk of neurodegenerative

disease for which TBI exposure is a risk factor. Longitudinal data on
cognitive performance in a treatment population are lacking; however,
some evidence for improvement in memory task function acutely after

injury does exist.
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Table 1. Cont.

Citation Title Design Key Findings

Feinberg et al.,
2021 [38]

Association of
Pharmacological

Interventions with
Symptom Burden

Reduction in Patients
with Mild Traumatic

Brain Injury: A
Systematic Review

Systematic
Review

23 studies

Review of 23 studies (11 randomized clinical trials, 7 prospective
observational studies, 3 retrospective observational studies, and 2 case

studies) examining 20 pharmacological interventions; while
methylphenidate, sertraline hydrochloride, ondansetron, amitriptyline,

and melatonin were adequately represented— consistent symptom
burden reduction was limited.

Ali et al.,
2022 [39]

Fatigue After
Traumatic Brain

Injury: A Systematic
Review

Systematic
Review

Review of 37 articles showed methylphenidate and melatonin were the
only pharmacological agents associated with decreased fatigue in RCTs.

Samantaray
et al., 2009 [40]

Therapeutic
Potential of

Melatonin in
Traumatic Central
Nervous System

Injury

Mini
Review

Mini review exploring and summarizing characteristics and benefits of
melatonin as neuroprotectant/treatment for acute SCI or traumatic

CNS injuries.

Reiter et al.,
2016 [41]

Melatonin as an
Antioxidant: Under
Promises but Over

Delivers

Literature
Review

Review articles summarizing the evolutionary history of melatonin as
well as its biochemical pathways and physiological effects in healthy and

injured states.

Cassimatis
et al., 2022 [42]

The Utility of
Melatonin for the

Treatment of Sleep
Disturbance

Following Traumatic
Brain Injury

Literature
Review

9 studies

A total of 5 RCTs on adults and adolescents showed that post-TBI
melatonin treatment improved subjective and objective sleep measures as

well as mental health symptoms, executive function, and cognition.

Table 2. Previous human studies on TBI, sleep dysfunction, and melatonin.

Citation Title Design Key Findings

Kemp et al.,
2004 [43]

The Value of Melatonin for Sleep
Disorders Occurring Post-Head

Injury: a Pilot RCT

1 mth, Double blind crossover (N = 7)
of TBI patients with insomnia;

melatonin 5 mg/d vs. amitriptyline
25 mg/d; 2 wk washout

Melatonin improved daytime
alertness compared to baseline

(d = 0.42). No treatment effect on
insomnia (F (2.48) = 0.98,

p > 0.056) was found.

Grima et al.,
2018 [44]

Efficacy of Melatonin for Sleep
Disturbance Following Traumatic

Brain Injury: A Randomized
Controlled Trial

4 wk, Double blind crossover (N = 33)
of TBI patients with chronic insomnia;

melatonin 2 mg/d vs. placebo;
48 h washout

Melatonin improved sleep quality
compared to placebo by PSQI

(d = 0.46; p < 0.0001). Melatonin
improved sleep efficiency

(d = 0.28, p = 0.04) but had no
effect on sleep onset latency

(d = 0.18; p = 0.23). No treatment
effect on daytime sleepiness by

ESS (d = 0.17, p = 0.15)

Lequerica
et al., 2015 [45]

Pilot Study on the Effect of
Ramelteon on Sleep Disturbance

After Traumatic Brain Injury:
Preliminary Evidence from a

Clinical Trial

3 wk, Double blind crossover (N = 13)
of TBI patients with circadian

rhythm disorder

Ramelteon 8 mg nightly
improved total sleep time and
slightly increased sleep latency.

Improvement seen from
psychometric tests in
executive function.
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Table 2. Cont.

Citation Title Design Key Findings

Ilyer et al.,
2020 [46]

Neural Correlates of Sleep
Recovery following melatonin

Treatment for Pediatric
Concussion: A Randomized

Controlled Trial

Double-blind RCT of pediatric cohort
with post-concussion symptoms

(N = 62). 3 mg vs. 10 mg melatonin
vs. placebo.

fMRI findings show increased
connectivity of posterior default

mode networks in the
melatonin group.

Barlow et al.,
2020 [47]

Efficacy of Melatonin in Children
with Postconcussive Symptoms:

A Randomized Clinical Trial

Double-blind RCT of 99 adolescents
with PPCS.

Placebo vs. 3 mg vs. 10 mg.

No significant difference in
outcomes on Post-Concussion

Symptom Inventory score
measured after 28 days of

treatment. However, caveated by
wide confidence intervals.

Kuczynski
et al., 2013 [48]

Characteristics of Post-traumatic
Headaches in Children Following
Mild Traumatic Brain Injury and
their Response to Treatment: A

Prospective Cohort.

Prospective pediatric cohort with
post-mTBI symptoms (N = 670;

385 males, 285 females) and
comparison group with extracranial

injury (N = 120; 61 males, 59 females).
Retrospective chart review of a

separate cohort (treatment cohort)
treated for post-traumatic headaches
(PTH) with amitriptyline, flunarizine,
topiramate, and melatonin, (N = 44;

29 females, 15 males).

Headaches in 9/12 (75%).
13/18 patients (68%) reported a
good effect with amitriptyline.

Grima et al.,
2021 [49]

Poorer Sleep Quality Predicts
Melatonin Response in Patients

with Traumatic Brain Injury:
Findings from a Randomized

Controlled Trial

Secondary analysis of phase 3
randomized, placebo-controlled,

double-blind, 2-period, 2-treatment
crossover clinical trial evaluating the

efficacy of melatonin (2 mg,
prolonged release) treatment for sleep

disturbances in patients with TBI

Severe TBI patients with
comorbid insomnia and poorer
sleep quality experience most

benefit regardless of time since
injury, demographics, fatigue,

daytimes sleepiness, mood,
and anxiety.

Dominguez-
Rodriguez

et al., 2017 [50]

Usefulness of Early Treatment with
Melatonin to Reduce Infarct Size in

Patients With ST-Segment
Elevation Myocardial Infarction

Receiving Percutaneous Coronary
Intervention (From the Melatonin
Adjunct in the Acute Myocardial

Infarction Treated With
Angioplasty Trial)

Multi-site, double-blind, RCT of
STEMI patients in 3 groups. Placebo

vs. intracoronary melatonin vs.
intravenous melatonin.

Melatonin treatment in STEMI
patients who present early after
symptom onset was associated

with a significant reduction in the
infarct size after pPCI.

Dominguez-
Rodriguez

et al., 2022 [51]

Early Treatment of Acute
Myocardial Infarction with

Melatonin: Effects on MMP-9 and
Adverse Cardiac Events

Pilot RCT of melatonin treatment vs.
placebo in acute MI patients receiving
percutaneous intervention (N = 94).

Melatonin associated with
improved outcomes in acute MI

patients undergoing primary
percutaneous intervention.

Ekeloef et al.,
2017 [52]

Effect of Intracoronary and
Intravenous Melatonin on

Myocardial Salvage Index in
Patients with ST-Elevation
Myocardial Infarction: A

Randomized Placebo
Controlled Trial.

RCT of STEMI patients in 3 groups.
Placebo vs. intracoronary melatonin

vs. intravenous melatonin.

No improvement in myocardial
salvage index after primary

percutaneous coronary
intervention in patients with

STEMI treated with melatonin
vs. placebo.

Dwaich et al.,
2016 [53]

Melatonin Effects on Myocardial
ischemia-reperfusion Injury:

Impact on the Outcome in Patients
Undergoing Coronary Artery

Bypass Grafting Surgery

RCT of 45 patients split into 3 groups:
Placebo-controlled group, low dose

melatonin group, 10 mg capsule once
daily and high dose melatonin group

20 mg capsule once daily.

Dose-dependent melatonin
supplementation can ameliorate

the degree of myocardial
ischemic-reperfusion injury.
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Table 3. Previous Recommendations for Melatonin Supplementation in Sleep Disorders.

Indication Administration Recommendations

ASWPD
AASM Consensus panel did not provide a

recommendation regarding the use of melatonin for
ASWPD [54]

DSWPD

Adult: “Strategically timed,” administration:
0.3–3.0 mg; 1.5–6.5 h prior to DLMO,

i.e., 15:00–21:30 for most adult patients

Children (6–12 years): 1.5–2.0 h prior to usual sleep
time for patients with no comorbidities, with

depression, patients without depression; 20–30 min
prior to caregivers’ desired bedtime or 18:00, 19:00,

for those with comorbid psychiatric disease

AASM Consensus panel, rating in favor of the use of
melatonin, as opposed to no treatment. [WEAK] [54]

N24SWPD For “blind adults:” 0.5–10 mg one hour prior to
desired bedtime, or consistently at 21:00

Consensus panel, rating in favor of the use of
melatonin, as opposed to no treatment. [WEAK] [54]

No recommendation made for sighted adults
with N24SWD.

Shift work disorder 1.8–3.0 mg prior to the desired sleep period

Administration of melatonin prior to daytime sleep is
indicated to promote daytime sleep among night shift

workers. [GUIDELINE] [55]

Melatonin improved daytime sleep but did not
improve nighttime alertness (work shift alertness).

Jetlag 0.5–10 mg administered at bedtime

Melatonin administered at the appropriate time is
indicated to reduce symptoms of jet lag and improve

sleep following travel across multiple time zones.
[STANDARD] [55]

Insomnia
Doses ranging from 0.5–10 mg have been studied
for insomnia, but evidence-based guidelines were

based on studies using 2 mg

Most evidence-based guidelines recommend against
the use of melatonin for insomnia (compared to no
treatment), based on low quality evidence, with a

limited dose range, failing to demonstrate efficacy).
[WEAK] [56–58]

TBI: misc. sleep
dysfunction 3–10 mg in pediatric and adult patients Conflicting results, increased daytime alertness, no

significant impact on sleep measures [43,59].

Abbreviations: Advanced Sleep Wake Phase Disorder (ASWPD), Delayed Sleep Wake Phase Disorder (DSWPD),
Non-24 Sleep Wake Phase Disorder (N24SWPD), Irregular Sleep Wake Rhythm Disorder (ISWRD), Dim Light
Melatonin Onset (DLMO).

3. Discussion
3.1. Traumatic Brain Injury and Sleep Disorders

Sleep disorders are pervasive following TBI. Incidence risk of insomnia, obstructive
sleep apnea, circadian sleep-wake rhythm disorders, and disorders of hypersomnolence
have all been shown to be increased after TBI [60]. TBI has been shown to be a risk factor
associated with a higher prevalence of objective sleep disorders [61,62]. Determining the
true incidence of sleep dysfunction after TBI can be difficult due to comorbid confounding,
variable presentation, and incomplete pre-injury history. A review by Castriotta and
Murthy found the following prevalence of sleep disorders in the TBI population: sleep
apnea (23%), post-traumatic hypersomnia (11%), periodic limb movement disorder (7%),
and narcolepsy (6%) [63]. Further, estimates for the prevalence of insomnia following TBI
can be as high as 50% [64]. One particularly relevant variable related to the onset and
severity of sleep dysfunction following TBI appears to be chronicity, whereby expressed
differences are observed in acute versus chronic phases [65,66].
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Acutely after injury, sleep complaints have been reported in up to one-third of patients
within the first 10 days after mTBI, increasing to half of the patients within 6 weeks [67,68].
Using two- and four-week follow-up evaluations, Haboubi found the most frequent com-
plaints following mTBI by patients to be fatigue, headache, dizziness, irritability, sleep
disturbance, poor concentration, and poor memory [69]. Mathias showed that three months
after TBI, 50% of individuals reported disordered sleep, and 25–29% of those were diag-
nosed formally with insomnia, hypersomnia, or apnea [6]. The observed incidence of sleep
symptoms included 50% insomnia, 50% disordered sleep maintenance, 49% with objective
poor sleep efficiency by polysomnography testing, early morning awakening at 38%, and
27% incidence of nightmares [6]. Sleep disorders may persist for years after injury, with
two prospective longitudinal studies reporting that two-thirds of patients were impacted
by a sleep disorder three to five years after injury [4,70].

Recently, the Transforming Research and Clinical Knowledge in Traumatic Brain Injury
(TRACK-TBI) study enrolled 2022 participants to longitudinally characterize insomnia fol-
lowing TBI, and 61% of participants endorsed persistent insomnia up to one year following
injury [71]. A separate study revealed 84% of patients with severe TBI endorsed sleep
dysfunction on admission, which persisted in 66% of those one month after injury [72].
Those patients exhibiting sleep dysfunction acutely were found to have an increased risk
for headaches, depression, and irritable mood.

3.2. Pathophysiology of TBI Associated Sleep Dysfunction
3.2.1. Primary Injury

Proposed mechanisms underlying sleep dysfunction following TBI can be subdivided
by chronicity and subsequent microscopic or macroscopic effects. Acute injury mechanisms
implicate acceleration-deceleration (blast and/or coup-contrecoup), resulting in axonal
shearing and diffuse interruption of affiliated functional networks, theoretically including
those associated with wakefulness and sleep, as shown in Figure 1 [73]. Cranial surface
morphology exerts traumatic action in areas of high shear stress, such as the sphenoid
ridge, inferior frontal, anterior temporal, and basal forebrain regions. These areas are rich in
axonal projections mediating sleep and wakefulness, such as those from the locus coeruleus
(noradrenergic pathway), the suprachiasmatic nucleus (circadian rhythm disorders), pos-
terior hypothalamus (orexin neurons), and tuberomammillary nucleus (histaminergic
pathway) [73].

Delayed mechanisms inciting injury include hypoxemia, hypotension, increased in-
tracranial pressure, seizures, and hematoma formation. Microscopic effects of cellular dam-
age, unchecked free radical production, neuroinflammation, and biochemical excitotoxicity-
related events have all been shown to disrupt normal neural function following TBI.

3.2.2. Secondary Injury

Extensive inflammatory cytokine release is observed following TBI, functioning as an
innate mechanism to promote self-healing and stabilize the parenchymal microenvironment
of the CNS [74,75]. However, chronic inflammation can prolong clinical recovery and
predispose patients to additional deficits [36,76]. Following primary injury, mediators of
inflammatory cascades are released, which in turn promote the recruitment, activation, and
integration of immune cells and signaling molecules within the cerebral microenvironment,
as shown in Figure 2 [75]. The inflammatory response following primary injury is a
prominent catalyst for secondary insults such as ischemia, edema, hemorrhage, lipid
peroxidation/free radical injury, and cell death [76,77]. Secondary injuries can prolong
treatment and impair a complete, timely recovery, representing an important focus for an
interventional study.
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3.2.3. Injury Severity

The inciting force which produces clinically recognized TBI can be as innocuous as
head jostling, common to many recreational sports, or as complex as an explosion resulting
in multiple pressure waves, lacerations, contusions, and fragmented bones. Severe TBI has
been found to result in loss of function in wake-promoting tuberomammillary histaminergic
systems and is associated with symptoms of daytime fatigue. A post-mortem examination
of patients with severe TBI found a loss of 41% of histaminergic neurons, 29% melanin-
concentrating hormone, and 21% of orexinergic neurons [78]. Cortical excitability and
stimulation likely underpin excessive daytime sleepiness (EDS) and fatigue in the TBI
population. The magnitude of the force is not predictive of the severity of the injury. The
severity of a TBI is dependent on a multitude of factors, including the mechanism of injury,
characteristics of the individual patient, such as age, previous central nervous system (CNS)
injury, and predisposing conditions [79].

3.2.4. Genetic Risk

Genomic variation may also expose individuals to the risk of developing sleep dys-
function following TBI. Genetic susceptibility for developing circadian rhythm disorders
following TBI has been identified, providing additional context for mechanisms related to
pathophysiology and risk factor stratification [80]. The PERIOD (Per) gene family, which is
a polymorphic regulator of circadian rhythm, has been implicated in delayed sleep phase
syndrome and confers increased risk for shorter sleep duration following TBI, as reported
by Hong et al. [81]. Heterozygous Per3 carriers were associated with a significant risk for
persistent sleep dysfunction following TBI [81]. Just as the magnitude of force does not
always predict injury severity, TBI severity does not predict the severity of sleep-related
symptoms; whether accounting for the genetic background would improve sleep outcome
prediction remains an open question.

3.3. Melatonin Physiology

Originally isolated from bovine pineal glands by dermatologists in 1958, melatonin
was named for its ability to blanch skin cells by inhibiting melanocyte-stimulating hor-
mone [82]. Although sleep and circadian regulation are the best-known functions of
melatonin, they are evolutionarily predated by its potent antioxidant properties. The
light-dependent inhibition of melatonin synthesis is a comparatively new evolutionary
development, as shown in Figure 3. The pineal gland is the only endocrine organ influ-
enced by neuronal activity (from photoperiod), primarily secreting melatonin at its highest
concentrations at night. Melatonin effects and receptors have been identified in a wide
range of extracerebral organs. The biodistribution of melatonin is heterogeneous; bile and
CSF have much higher concentrations than plasma by several orders of magnitude.

Melatonin is synthesized in all tissues and cell types, with the majority being produced
by the mitochondria [83] and to a lesser degree in the cytosol, as erythrocytes have also
been shown to produce melatonin in vitro [84]. The gastrointestinal (GI) tract maintains
higher levels of melatonin than the serum by 10–100 times and is more than 400 times
greater than in the pineal gland, suggesting an alternative function beyond sleep regula-
tion [85]. Melatonin cannot be stored within cells and is instead directly secreted into the
cerebrospinal fluid of the third ventricle by melatonin-producing cells of the pineal gland,
where it enters systemic circulation [86]. An amphiphilic molecular structure allows the
molecule to diffuse across all membranes, including the blood-brain barrier, acting through-
out the body and various tissue types [86], suggesting tissue-dependent function. The pool
of serum and tissue-dependent concentrations appears to receive contributions from the
pineal gland, dietary consumption, microbiota production, and non-visible near-infrared
radiation (NIR) [87]. Interestingly, NIR penetrates inches into the human body, causing
dose-dependent increases in melatonin production, likely to counteract UV damage from
the sun [88]. This dose-dependent increase is by no means an insignificant or quickly
resolving phenomenon either. A four-hour period of heavy exercise outdoors induces a
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melatonin peak approximately three times higher than the nightly circadian peak, with a
rate of increase approximately 33 times faster [89]. This relationship appears to indicate a
correlation between metabolically demanding processes/activities and melatonin levels, as
shown in Figure 4.
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Melatonin’s effects on DNA and free radical scavenging pre-date its effects on sleep by
approximately 2.5 billion years, as evidenced by its production in invertebrates, plants, and
unicells [90]. Melatonin is thought to have evolved in purple non-sulfur bacteria to reduce
the free radical damage generated during aerobic metabolism. These bacteria were then
phagocytosed by eukaryotic cells, becoming what are now mitochondria [91]. At a biochem-
ical level, melatonin administration in humans and rats has been associated with increased
levels of antioxidant enzymes, such as glutathione peroxidase and superoxide dismu-
tase [92–95]. Some evidence suggests melatonin improves mitochondrial function via com-
plex I/IV action in the electron transport chain by reducing acute metabolic demand [96–98].
Melatonin is also implicated in inhibiting programmed cell death via mitochondrial cas-
pase/apoptosome preservation [99–101].

Free radical production is necessary for several physiologic processes, including
energy production within mitochondria, cellular apoptosis, post-injury cytoskeletal re-
modeling, and normal function of the innate and adaptive immune system. Melatonin’s
anti-inflammatory properties reduce detrimental neuroinflammation that impairs normal
brain function [76,102,103] through cytokinetic action and through indirectly decreasing
inflammatory mediators, such as nitric oxide and malondialdehyde [104]. The antioxidant
effects of melatonin are more potent, per molecule, than vitamin C, vitamin E, and glu-
tathione. A single molecule of melatonin may react with up to 10 ROSs [95], conferring
benefits to human immune system regulation, tumor suppression, and neuroprotection.
For example, melatonin has been shown to inhibit the expression of SIRT1, a pro-oncogenic
gene product responsible for the downregulation of p53-mediated apoptosis implicated in
multiple human cancers, including osteosarcoma, prostate adenocarcinoma, and retinoid or-
phan nuclear receptor alpha (RORα) gene-associated breast cancer [105,106]. Melatonin has
also been shown to play a neuromodulatory role in TBI, exerting neuroprotective effects by
reducing symptom burden following TBI [35,37]. For example, in the short term, melatonin
may induce excessive glutamate release after TBI (thus inducing acute toxicity) through
action at inhibitory gamma-aminobutyric acid (GABA) subset A receptors [106–109].
However, in the long term, melatonin appears to decrease neurotoxicity related to chronic
traumatic encephalopathy-associated beta-amyloid aggregation [110].

Interestingly, melatonin is implicated in immune regulation and is hypothesized
to be responsible for prolonging healthy aging in centenarians [111,112]. Measures of
immune system function, such as T cell proliferation and cytokine production, have been
shown to predict human longevity, and some evidence suggests that melatonin’s role as an
antioxidant could contribute to longevity, perhaps through immune regulation [113,114].
Melatonin’s effects on electron scavenging and mitigation of inflammatory pathways,
such as decreasing cytokine production, apoptosis, and circadian signaling, each have
implications for understanding the pathophysiology and subsequent development of
treatments for strokes, TBIs, cardiac arrest, and other organ system ischemia.

Melatonin also exerts its effects via binding and activation of the melatonin receptors.
Melatonin receptors 1A (MT1, encoded by MTNR1A) and 1B (MT2, MTNR1B), expressed
in both the central nervous system and in numerous peripheral tissues, are transmembrane
proteins that activate G protein-coupled receptors. Melatonin’s neuroprotective properties
are mediated by its strong affinity and activation of the brain mitochondria MT1 receptor
in the outer mitochondrial membrane, which inhibits the release of cytochrome c, blocking
caspase activation and inhibiting apoptosis [83]. Interestingly, genetic polymorphisms have
not been linked with sleep or circadian phenotypes; rather, variations of the MTNR1B
gene are associated with type 2 and gestational diabetes [115–118] and also adolescent
idiopathic scoliosis [119]. Other studies linked receptor polymorphisms with polycystic
ovary syndrome [120] and hepatocellular carcinoma [121].

The recently discovered human glymphatic system may also be involved in and af-
fected by melatonin. Operating as a central system of waste disposal within the CNS,
disruption of normal glymphatic clearance has been implicated in increased amyloid beta
and tau burden, accumulation of TBI biomarkers S100b, GFAP, NSE [122–124], and in-
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creased risk of chronic traumatic encephalopathy following TBI [125]. Sleep appears to
be critical for normal glymphatic function, as demonstrated by Xie et al. 2013, whereby
CSF delivered radio labeled tracer uptake was reduced by up to 95% in the cortex during
the awake state compared to sleep in murine models [126]. During sleep, the cortical
interstitium expands by up to 60%, allowing more rapid fluid clearance [126]. Melatonin
is delivered by the glymphatic system to highly active parenchymal tissues, where accu-
mulated free radicals may undergo scavenging. The dual role of melatonin as both an
antioxidant and circadian hormone raises the possibility that it can influence glymphatic
function, conferring a possible greater neuroprotective importance for the pineal gland by
extension. The pineal gland may also be responsible for CSF secretion, a function primarily
attributed to the choroid plexus [127]. The microvascular architecture of both tissues shares
unique morphology with networks of the convoluted fenestrated capillary that distinctly
facilitate CSF production [128]. Taken together, being responsible for melatonin synthesis
and possibly CSF production may indicate a more prominent role of the pineal gland in
moderating healthy glymphatic function than previously understood [129].

3.3.1. TBI Effect on Melatonin Synthesis

Patients with TBI have been shown to exhibit decreased evening melatonin production
by up to 42% compared to healthy controls [130]. The hypothalamic suprachiasmatic
nucleus regulates the circadian rhythm, influencing various neurologic activity patterns,
including the sleep-wake cycle, both directly via neurological inputs and indirectly by
hormonal synthesis regulation. The best-characterized regulatory activity is stimulated by
the light-activated melanopsin-expressing retinal ganglion cells, which project directly to
the suprachiasmatic nucleus to activate an array of GABAergic projections [see Figure 2]
to the paraventricular nucleus, which result in inhibition of melatonin synthesis in the
pineal gland. This light-mediated inhibition depends upon a long, multi-synaptic path-
way of sympathetic fibers that descend and synapse in the spinal cord and again at the
cervical ganglia before ascending to activate melatonin synthesis in the pineal gland via
beta receptor second messenger systems. In theory, long pathways may be susceptible to
acceleration/deceleration forces, yet this anatomy has not been systematically examined
post-TBI. Regardless of the mechanism, following TBI, melatonin levels become dimin-
ished, resulting in a higher threshold for sleep initiation and maintenance, with the most
pronounced effect on sleep architecture being decreased total REM sleep. Multiple studies
demonstrate altered melatonin secretion compared to controls in both acute and chronic
recovery phases [31,130,131]; however, these studies are small and relatively limited to
severe TBI. Structural lesions associated with fatigue include injury associated with the
ascending reticular activating system, limbic system, anterior cingulate, middle frontal, and
basal ganglia [132]. Further associated structures include the pontine reticular formation,
posterior thalamus, midbrain processes surrounding the third ventricle, and cervical lesions
involving the locus coeruleus. Whether injury to any of these structures correlates with
melatonin synthesis remains untested.

Although data suggest both melatonin and its receptors decrease following TBI, the
mechanism of these reductions is unclear [31,130,131]. One explanation may be that trypto-
phan, a melatonin precursor, is preferentially converted into kynurenine [133]. Alternatively,
melatonin may be metabolized at a quicker rate following TBI due to the scavenging of
free radicals. Or perhaps melatonin escapes the injured blood-brain barrier or is degraded
following TBI. Further, the pineal gland itself may be sensitive to traumatic injury, impair-
ing the body’s greatest contributor of systemic melatonin [134]. Unfortunately, the pineal
gland has been largely neglected in animal models of TBI in studies analyzing melatonin
and its receptors.

A previous study attributed decreases in melatonin levels to changes in melatonin
metabolism [135]. Tryptophan is a naturally occurring amino acid implicated in numerous
metabolic pathways. Notably, tryptophan can be metabolized into serotonin, which is fur-
ther processed to create melatonin. Tryptophan may also be metabolized into kynurenine
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via the enzyme indoleamine 2,3, deoxygenase 1 [133]. Zhang et al. evaluated the metabolic
activity of tryptophan after TBI using a pediatric rabbit model of TBI [135]. Post-mortem
evaluations were performed at 6 h through 21 days post-TBI. No gender differences were
noted, but researchers found indoleamine 2,3, deoxygenase 1 was upregulated at all time
points in this study. Starting at 7 days post-TBI, kynurenine levels were also significantly el-
evated. Additionally, melatonin levels were significantly decreased at 21 days post-TBI. The
authors noted a significant decrease in the melatonin/tryptophan and melatonin/serotonin
ratios at 21 days post-TBI and suggested that the decrease in melatonin may be attributable
to the downregulation of the melatonin pathway and upregulation of the kynurenine
pathway. An alternative analysis of this study is that melatonin levels are depleted due
to the binding of free radical byproducts or that melatonin is being degraded at a more
rapid rate [135]. When melatonin reacts with free radicals, it may appear as a product loss
on gel electrophoresis. The elevation of indoleamine 2,3, deoxygenase 1 could then be
explained by an increase in tryptophan production, which is rapidly utilized to make both
kynurenine and serotonin. Serotonin was unchanged between groups, suggesting changes
in melatonin were likely downstream.

Considerable work has also been conducted to quantify endogenous melatonin
changes after TBI in human studies [14–17,130,131,136,137]. Though most of these studies
quantified melatonin in patients acutely after TBI [13–17,131,136], two studies investigated
patients between one and six years from the initial injury [130,137]. In studies measuring
melatonin in ICU patients with an acute phase TBI, five studies showed an increase in mela-
tonin production [13–17], and one study showed a decrease relative to controls [130,131].
Both studies that observed patients one to six years after initial injury found lower mela-
tonin levels relative to controls [130,137]. A large range in melatonin levels compounds
the difficulty of comparing results across studies. In Seifman’s 2008 study, CSF and serum
melatonin were measured, and a 5x increase in melatonin was found in the CSF of TBI
patients, but no difference in serum melatonin relative to controls [13]. Subsequently, in Seif-
man’s 2014 study, where only serum melatonin was measured, a lower level of melatonin
was found relative to healthy controls but not ICU controls [131]. These studies suggest
that there are changes to melatonin levels in patients with TBI compared to the healthy
population; however, the magnitude and direction of these changes are more difficult
to ascertain.

Differences in the methodology of measurement, time since injury, injury severity, and
patient selection may all play a role in the incongruences observed between studies. Serial
measurements to normalize and align comparative measures relative to the peak or nadir of
the phase response curve were not performed in most studies. In these studies, melatonin
was quantified in serum [13–15,17,131,136], saliva [16,130,137], urine, and CSF [13]. The
patient population that these samples were taken from represents a range of Glasgow
Coma Scale scores from a median of 4 [17] to an average of 8.8 [137], though all studies
utilized the standard definition of a severe TBI as a Glasgow Coma Scale below 8. Difficulty
producing high-quality control groups among different studies is overcome in many cases
with only literature-based reference value comparison [14,131,136]. This continues to be a
problem as recent as 2021 [17]. In Seifman’s study, their healthy controls differed in ranges
of serum melatonin concentrations from literature values. In these studies, quantified
values of melatonin in TBI patients were compared against control groups that had some
combination of differences in TBI severity, age, and gender [15–17,131]. In studies that
had higher quality controls that were aged-matched, pre-existing injuries that resulted
in ICU stay and uncaptured environmental factors may have also impacted melatonin
production [15–17,131]. The lack of sampling and analytic standardization of melatonin-
based clinical research led the 2005 Associated Professional Sleep Societies participants to
create a working group to resolve these issues [138,139].
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3.3.2. TBI Effect on Melatonin Receptor Expression

Melatonin likely acts both via a receptor-independent mechanism and receptor-
dependent mechanism when fulfilling its anti-inflammatory and antioxidant responsi-
bilities [63]. Data on melatonin receptor expression change following TBI are limited in
human studies. Some animal data suggest that TBI reduces melatonin receptor levels;
however, the mechanism of action is unclear. In 2017, Osier et al. found that TBI, in a
sample of 25 adult male Sprague Dawley rats, resulted in lower levels of the melatonin
receptor subtypes MT1 and MT2 as assessed by gel electrophoresis [18]. The researchers
used stereotactic neurosurgery to induce cortical damage and found that MT1 and MT2
expression was reduced in the frontal cortex at 24 h post-TBI. The hippocampus also
demonstrated reduced MT1 and MT2 expression at both 6 and 24 h post-TBI, compared to
controls. Actin, a popular cytoskeleton control in gel electrophoresis studies, was used as a
loading control when measuring MT1 and MT2. Although actin levels were shown to be
constant across experimental and control animals, the authors note that if significant gliosis
and neuronal death occurred in the experimental animals, actin levels might be artificially
elevated despite significant cell death; thus, leading to the false conclusion that MT1 and
MT2 are less expressed. Future research is needed to further characterize exactly where
MT1 and MT2 are expressed. As such, continuation in this line of research is necessary
for determining whether reduced melatonin receptor expression occurs and elucidating
potential links to symptoms of TBI and/or efficacy of melatonin therapy.

Other studies have sought to characterize melatonin receptor expression at remote
time points. Rui et al. found that MT1 and MT2 expression is decreased for an extended
period following TBI [19]. In this study, investigators sought to explore whether the deletion
of Ferritin H in mice reduced melatonin’s protective nature in TBI-induced ferroptosis.
Ferroptosis, a form of cellular death regulated by lipid and iron oxidation, has recently
been shown to play a role in TBI. The authors found that TBI resulted in increased reactive
oxygen species (ROS) production and significantly decreased MT1 and MT2 expression in
the cortex at 12 h and 14 days. Interestingly, melatonin administration 1 h after TBI was
sufficient to rescue MT1 and MT2 receptor levels 24 h after TBI in the wild-type group
treated with melatonin; however, that effect was not observed in the Ferritin H knockout
group. Melatonin and liproxstatin-1, an inhibitor of ferroptosis, were both shown to
significantly decrease TBI-induced ferroptosis, lesion size, neuronal damage, and resultant
behavioral deficits in the mice. The changes in MT1 and MT2 expression post-TBI are likely
related to brain volume loss/neuronal damage, as melatonin was also shown to rescue
their expression. The authors suggest the neuroprotective effects of melatonin are mediated
by the MT1 and MT2 receptors, as their antagonists (4P-PDOT and Luzindole, respectively)
appear to block melatonin’s effect, with MT2 being the major subtype involved.

3.4. Therapeutic Potential of Melatonin
3.4.1. Melatonin’s TBI Therapeutic Potential—Circadian and Sleep-Wake Disorders

Melatonin’s potential as a therapeutic agent in treating post-TBI sleep dysfunction is
owed to its ability to alter circadian rhythms and induce sleep while mediating neuroin-
flammation. However, due to melatonin’s classification as a supplement, the FDA does not
have regulatory oversight. Despite this, various societies have recommended melatonin as
an acceptable treatment in the management of primary insomnia [56–58,140] though no
clear consensus has been reached.

Common dosing regimens for insomnia may range from 1 to 5 mg [141] but can be as
low as 200 mcg and as high as 50 mg [142], typically taken a few hours prior to bedtime due
to its rapid absorption and half-life between 20–50 min. Some studies report side effects,
such as vivid/nightmare dreams, dizziness, daytime fatigue or hangover effect, headache,
depression, irritability, and stomach cramps [143]. However, a recent review that included
5 RCTs did not show any serious adverse effects in adult or adolescent populations [42].

Evidence for melatonin’s effects in TBI and non-TBI populations is mixed. In the
non-TBI population, melatonin supplementation provides a small benefit for sleep onset
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but none for maintenance [36,144]. These results are confounded by differences in dose,
time since injury, and individual physiological differences, all of which impact effect size.
In 2019, Barlow et al. identified 12 meta-analyses of placebo-controlled randomized trials
(3–13/study) with varying degrees of methodologic quality, finding a statistically signif-
icant (though low in magnitude) improvement in sleep latency and total sleep time [36].
Uncertainty remains whether these small changes are clinically significant.

One RCT associated with the PLAYGAME trial enrolled 99 participants aged 8–18 years
old with mTBI and post-concussive symptoms into either a treatment group consisting of 3 mg
or 10 mg of melatonin compared to the control. No symptom change was observed [47].
However, melatonin has been shown to be effective at treating children with TBI-associated
insomnia [145] and was also independently shown to exert neuroprotective effects in the
neonatal and pediatric TBI populations [36].

One randomized controlled trial in adults comparing melatonin to amitriptyline
found melatonin improved daytime alertness compared to controls, but no alterations in
sleep latency or duration were observed [34,146]. Additionally, one RCT found a 4-week
supplementation regimen to be safe and effective for improving sleep quality in patients
with prior TBI [44]. Another RCT demonstrated melatonin replacement may be effective
in resetting sleep-wake cycling with an observed positive impact on daytime fatigue [43].
Melatonin was found to modulate sleep and wake rhythm and subsequently was beneficial
for post-TBI sleep disorders [40].

Ramelteon (a melatonin receptor agonist) is approved by the FDA for insomnia with
sleep onset dysfunction, exerting its action by decreasing evening SCN-driven arousal,
which helps reinforce circadian periodicity [147,148]. Its use is associated with low risk due
to its favorably low side effect profile, with reported limited adverse effects on neurobehav-
ioral function. Ramelteon has been shown to improve PSQI scores for patients with mild to
severe TBI in addition to an associated increase in total sleep time and variable cognitive
functioning following a 3-week trial at 8 mg compared to [45]. However, ramelteon was
not associated with improved sleep onset latency in TBI populations despite an overall
improvement in sleep quality.

In one systematic review, methylphenidate and melatonin were the only pharmaco-
logical interventions shown to reduce fatigue in patients who suffered from post-traumatic
brain injury fatigue (PTBIF) [39]. Interestingly, ramelteon did not demonstrate this effect.
The effect of melatonin on reducing PTBIF may be attributed secondarily to improved sleep
quality and might only improve sleep-related fatigue [39].

The therapeutic potential of melatonin to address sleep-wake disorders after TBI is
promising. Further work is needed (such as FDA regulation) to improve the reliability of
the dosing. This, in combination with a detailed understanding of pharmacokinetics, will
facilitate the development of biomarkers of target engagement and pharmacodynamic effect.
By establishing these basic parameters, the promising data noted in previous paragraphs
can be validated in rigorous follow-on clinical trials.

3.4.2. Melatonin’s TBI Therapeutic Potential—Antioxidant/Anti-Inflammatory

Melatonin administration after TBI may confer benefit through its potent anti-
inflammatory and anti-oxidative properties. CNS injury frequently results in wide cellular
process disruption, often involving metabolic cascades, mass neurotransmitter release, mass
free radical release, increased oxidative stress, and mitochondrial dysfunction. Melatonin
contains an electron-rich aromatic ring that enables melatonin to act as an electron donor
and subsequently reduce the concentration of free radicals during periods of oxidative
stress [76]. Oxidative stress develops when oxygen byproducts from the electron transport
chain contain unstable electrons that then react to form ROS beyond the levels of antioxi-
dants, thereby increasing the concentrations of free radicals [149]. At supra-physiologic
levels, as seen with supplementation, melatonin can exert both receptor-mediated and
intracellular effects, capable of diffusing to the microenvironment of cellular injury to
perform its oxidative scavenging function [76,111,150–155]. Free radical production, while
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necessary for energy production in mitochondria, apoptosis, clearing of post-injury biologi-
cal debris, and immune defenses, is a double-edged sword. The risks of normal free radical
production are mitigated by antioxidants, such as melatonin, glutathione, and vitamins E
and C, that deactivate ROS responsible for collateral damage during normal function.

The anti-inflammatory actions of melatonin are accomplished via indirect and direct
means, most of which occur without the help of a known receptor. However, melatonin
is reported to bind to quinone reductase 2, which serves as an indirect antioxidant that
enhances the abilities of other antioxidant enzymes [76]. Another highlighted mechanism
includes the activation of nuclear factor-erythroid 2 related factor 2, antioxidant-response
element (Nrf2-ARE), and increased downstream factors [156]. It was found that melatonin
administration in post-TBI mice limited neuronal degeneration near lesions, edema, and
levels of oxidative products, such as malondialdehyde (MDA), a product of oxidative stress,
and 3-nitrotyrosine (3-NT), a marker of nitrogen free radical species. It was also found
that melatonin administration returned levels of antioxidant enzymes to normal compared
to the non-melatonin control groups. Interestingly, melatonin also influences the way
macrophages and microglia respond, driving differentiation into the anti-inflammatory M2
type [157].

The timing and route of melatonin administration can play a critical role in the physio-
logic response to injury and treatment. Findings from a study on the impact of intracoronary
and intravenous melatonin administration in patients receiving percutaneous coronary
intervention following a first-time ST-elevation myocardial infarction (STEMI) showed
evidence of a potential golden period in which free radical damage is preventable and
even reversible before cells undergo irreparable damage [50]. Treatment was given both
before and after the restoration of blood flow to the infarcted vessel. Researchers found that
melatonin was associated with a significant reduction in infarct size when given early after
symptom onset [50]. A follow-up pilot RCT showed increased survival rates among mela-
tonin recipients as measured by mortality and heart failure readmission at two years [51].
Interestingly, in the short term, there was no improvement in myocardial salvage index
on cardiac MRI at day 4 (+/−1) after intravenous melatonin administration following
STEMI. This may suggest the bulk of melatonin’s benefits are more evident in the long
term, potentially via enhanced repair mechanisms as opposed to damage prevention [52].

The effects of melatonin may be blunted via oral administration. Patients undergoing
coronary artery bypass graft surgery (CABG) experienced no antioxidant benefit from oral
melatonin; however, there was a significant increase in ejection fraction and a decrease
in heart rate with melatonin [53]. Intraperitoneal melatonin administration in rats after a
surgically induced myocardial infarction (MI) was associated with an increased plasma
level of Sirt6, a stress response protein involved in metabolic pathways affecting DNA
repair, ATP production, and inflammation. Evidence shows melatonin may significantly
increases Sirt6 mRNA transcription while reducing the levels of iNOS and phosphorylated
iNOS after ischemic insult [158,159]. While one study found decreased myocardial infarct
size and ROS levels following melatonin administration, these findings were not statistically
significant [159].

Evidence for the benefit of intraperitoneal melatonin benefit in animal models is en-
couragingly more robust in the context of hemorrhagic and ischemic brain injury. Much
like TBIs, ischemic strokes promote an inflammatory response that perpetuates the pro-
duction of cytokines and oxidative stress through the initiation of various inflammatory
cascades [160]. Intraperitoneal melatonin administration has been associated with attenu-
ated secondary brain injury after intracerebral hemorrhage in rat models [161]. Benefits
included significantly reduced blood-brain barrier (BBB) disruption, decreased indicators
of oxidative stress, inflammation, and DNA damage, reduced pro-inflammatory cytokines,
increased antioxidant protein levels, reduced infarct size, improved sensorimotor functional
deficits at early time points, and reduced percentage of apoptotic cells in a dose-dependent
manner [160,161].
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The success of melatonin as an antioxidant treatment for ischemic strokes has also been
shown in humans, as evidenced by positive outcomes in newborns with hypoxic-ischemic
encephalopathy (HIE) after cerebral hypoxia during birth. Such insults are associated with
delayed development or premature death. Newborns have a decreased production of
melatonin until months after their birth [162]. Researchers used melatonin as an adjuvant
therapy to the standard of care for mild hypothermia and found improved outcomes as
well as reduced inflammation and oxidative stress [151,162–164]. The decreased melatonin
production in newborns may be offset by different pharmacokinetic activity than their adult
counterparts. Melatonin has been shown to have a longer half-life in newborns compared
to adults, which may explain the decrease in endogenous melatonin production [130,165].
Whether these data have implications for the therapeutic use of melatonin as an antioxidant
after TBI remains unclear. Future studies in TBI patients should account for endogenous
levels of melatonin over multiple time points in addition to assessment of melatonin
receptor genetic haplotypes and expression when possible.

Most TBI treatments are largely aimed at symptom management until self-
resolution [166]. Previous TBI treatment trials involved progesterone [167], magnesium
(Mg) [168], erythropoietin (EPO) [169,170], hyperbaric oxygen therapy (HBOT) [171], cy-
closporin [172,173], and IV corticosteroids [173]. Cochrane reviews of Mg and HBOT did
not show evidence to support treatment, although HBOT may cautiously be interpreted to
have a decreased mortality rate [168,171]. Except for IV corticosteroids, EPO, cyclosporine,
and progesterone showed no difference compared to placebo in terms of safety and efficacy.
Interestingly, IV corticosteroids were associated with an increased mortality rate within the
first two weeks [173]. In contrast, melatonin’s safety and positive effect has been demon-
strated in neonates [162,164], children/adolescents [143], and adults via multiple routes of
administration, including oral, IV, and intracoronary routes [50,52,174,175]. Doses as high
as 300 mg via PO without significant clinical effects have been demonstrated [176]. An RCT
performed in ICU patients showed median serum melatonin levels of 150 pg/mL (range,
125–2125 pg/mL) with an oral dose of 10 mg [177]. Considering physiologic exercise-
induced melatonin increases to over 200 pg/mL have been demonstrated [89], it is likely
that a large portion of the healthy population have experienced similar levels at multiple
times in their lives.

4. Materials and Methods

A comprehensive, nonsystematic, narrative review utilizing standardized search strate-
gies was conducted within the PubMed database. Various Boolean inputs were combined;
an inexhaustive list includes the following terms: Melatonin, Safety, Efficacy, Neurodegen-
eration, Neuroinflammation, TBI, Concussion, Head Trauma, Insomnia, Human, Animal
Model, and RCT. Included review study designs consist of meta-analyses, systematic
reviews, literature reviews, and book chapters, while experimental designs included ran-
domized controlled trials and animal studies, which contributed to the understanding of
the biochemical and physiologic mechanisms of melatonin changes after injury, the role of
melatonin in neuro-inflammatory mediation and sleep regulation and therapeutic potential
of melatonin following TBI. Additional articles were selected based on the references con-
tained in the articles. Inclusion was determined by meeting one or more of the following:
(a) animal TBI models investigating the therapeutic mechanism of melatonin, (b) human
subjects with sleep disruption following TBI, (c) melatonin characterized as therapeutic,
(d) pathophysiologic investigation of sleep disruption following TBI in human subjects,
and (e) papers describing measurements of melatonin in healthy humans, TBI patients, and
animal models were included, including reviews where primary source data were verified.

For purposes of injury stratification, TBI of all severity (mild, moderate, and severe)
in addition to post-concussive syndrome were included. Further inclusion focusing on
the anti-inflammatory and anti-oxidative properties of melatonin resulted in additional
RCT efficacy human trials for both non-traumatic brain injury and non-CNS effects across
multiple systems. Six independent reviewers assessed articles for eligibility and pertinence.
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5. Conclusions

This review aimed to investigate recent literature to characterize the role of endogenous
melatonin in TBI physiology and the use of exogenous melatonin as a treatment for TBI. A
volume of pre-clinical studies consisting primarily of murine models has characterized the
potential pathophysiologic mechanisms of post-TBI sleep dysfunction, including melatonin
synthesis, variable receptor expressivity, and cellular susceptibility to inflammatory and
oxidative damage. Pre-clinical studies regarding the treatment efficacy of melatonin in
murine TBI models in treating sleep dysfunction demonstrated overall positive effects on
the improvement in post-TBI behavioral, sleep, and motor outcomes. Multiple human RCTs
show promising results in sleep and mental health outcomes, with evidence supporting
melatonin’s utility as an antioxidant and as a signaling molecule. Future studies will need
to utilize better standardization of melatonin measurements and therapeutic supply, assess
longitudinal exposure, and expand to multiple sub-populations. In general, the benefits
of melatonin largely appear to outweigh the harms, and the current body of evidence
supports a more-disciplined look at its promise as a therapeutic to mitigate not only sleep
and circadian disorders but also inflammatory sequelae in the TBI population.

Author Contributions: Conceptualization, J.K.W.J., A.B. and B.H.; methodology, J.K.W.J. and A.B.;
software, B.H.; formal analysis, C.B., A.F., J.W., B.H. and A.B.; investigation, C.B., A.F., J.W., B.H.
and A.B.; resources, C.B., A.F., J.W., B.H. and A.B.; data curation, C.B., A.F., J.W., B.H. and A.B.;
writing—original draft preparation, B.H., C.B., A.F., J.W. and A.B.; writing—review and editing,
J.K.W.J., J.L.C., J.C., B.H. and A.B.; visualization, C.B., A.F., J.W., B.H. and A.B.; supervision, J.K.W.J.
and A.B.; project administration, B.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Figures 1–3 created with Biorender.com.

Conflicts of Interest: The authors declare no conflict of interest.

Disclosures: The opinions and assertions expressed herein are those of the author(s) and do not
reflect the official policy or position of the Uniformed Services University of the Health Sciences or
the Department of Defense.

Appendix A

Table A1. Previous animal model studies on TBI, sleep dysfunction, and melatonin.

Citation Design Title

Rehman et al.,
2019 [178] RCT Mice Neurological Enhancement Effects of Melatonin Against Brain Injury-Induced Oxidative

Stress, Neuroinflammation, and Neurodegeneration via Ampk/Creb Signaling

Naeser et al.,
2016 [179] LED Human Transcranial, Red/Near-Infrared Light-Emitting Diode Therapy to Improve Cognition in

Chronic Traumatic Brain Injury

Ge et al.,
2020 [180] Rats Effect of Melatonin on Regeneration of Cortical Neurons in Rats with Traumatic Brain Injury

Ozdemir et al.,
2005 [181] Rats Protective Effect of Melatonin Against Head Trauma-Induced Hippocampal Damage and

Spatial Memory Deficits in Immature Rats

Bao et al.,
2019 [182] Rats Silencing of A20 Aggravates Neuronal Death and Inflammation After Traumatic Brain

Injury: A Potential Trigger of Necroptosis

Osier et al.,
2017 [18] RCT Rats Brain Injury Results in Lower Levels of Melatonin Receptors’ Subtypes MT1 and MT2
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Table A1. Cont.

Citation Design Title

Wang et al.,
2012 [183] Model Melatonin Activates the NRF2-Are Pathway When It Protects Against Early Brain Injury in

a Subarachnoid Hemorrhage Model

Ding et al.,
2014 [156] Model Melatonin Stimulates Antioxidant Enzymes and Reduces Oxidative Stress in Experimental

Traumatic Brain Injury: The NRF2-Are Signaling Pathway as a Potential Mechanism

Senol et al.,
2014 [184] Rats Melatonin Reduces Traumatic Brain Injury-Induced Oxidative Stress in the Cerebral Cortex

and Blood of Rats

Ding et al.,
2015 [185] Rats Melatonin Protects the Brain from Apoptosis by Enhancement of Autophagy After

Traumatic Brain Injury in Mice

Ates et al.,
2006 [186] Rats Effect of Pinealectomy and Melatonin Replacement on Morphological and Biochemical

Recovery After Traumatic Brain Injury

Beni et al.,
2004 [187] Rats Melatonin-Induced Neuroprotection after Closed Head Injury is Associated with Increased

Brain Antioxidants and Attenuated Late-Phase Activation of Nf-кB and Ap-1

Campolo et al.,
2013 [102] Rats Combination Therapy with Melatonin and Dexamethasone in a Mouse Model of Traumatic

Brain Injury

Dehghan et al.,
2013 [188] Rats Effect of Melatonin on Intracranial Pressure and Brain Edema Following Traumatic Brain

Injury: Role of Oxidative Stresses

Ding et al.,
2014 [189] Rats

Melatonin Reduced Microglial Activation and Alleviated Neuroinflammation Induced
Neuron Degeneration in Experimental Traumatic Brain Injury: Possible Involvement of

Mtor Pathway

Ding et al.,
2015 [185] Rats Melatonin Protects the Brain from Apoptosis by Enhancement of Autophagy After

Traumatic Brain Injury in Mice

Kabadi et al.,
2010 [190] Rats Posttreatment With Uridine and Melatonin Following Traumatic Brain Injury Reduces

Edema in Various Brain Regions in Rats

Kelso et al.,
2011 [191] Rats Melatonin and Minocycline for Combinatorial Therapy to Improve Functional and

Histopathological Deficits Following Traumatic Brain Injury

Lin et al.,
2016 [192] Rats Melatonin Attenuates Traumatic Brain Injury-Induced Inflammation: A Possible Role

for Mitophagy

Mesenge et al.,
1998 [193] Rats Protective Effect of Melatonin in a Model of Traumatic Brain Injury in Mice

Sarrafzadeh
et al.,

2000 [194]
Rats Neuroprotective Effect of Melatonin on Cortical Impact Injury in the Rat

Wu et al.,
2016 [195] Rats Melatonin Attenuates Neuronal Apoptosis Through Up-Regulation of K(+)-Cl(−)

Cotransporter KCC2 Expression Following Traumatic Brain Injury in Rats

Yamakawa
et al.,

2017 [196]
Rats

Manipulating Cognitive Reserve: Pre-injury Environmental Conditions Influence the
Severity of Concussion Symptomology, Gene Expression, and Response to Melatonin

Treatment in Rats

Ran et al.,
2021 [160] Rats Melatonin Protects Against Ischemic Brain Injury by Modulating pi3K/Akt Signaling

Pathway via Suppression of Pten

Wang et al.,
2022 [159] Rats Melatonin Protected Against Myocardial Infarction Injury in Rats Through a

SIRT6-Dependent Antioxidant Pathway

Rui et al.,
2021 [19] Mice Deletion of Ferritin H in Neurons Counteracts the Protective Effect of Melatonin Against

Traumatic Brain Injury-induced Ferroptosis
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