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Abstract: Porous carbon is an emerging material for the capture of CO2 from point sources of
emissions due to its high structural, mechanical, and chemical stability, along with reusability
advantages. Currently, research efforts are mainly focused on high- or medium-pressure adsorption,
rather than low-pressure or DAC (direct air capture) conditions. Highly porous and functionalized
carbon, containing heteroatoms (N, O, etc.), is synthesized using different activation synthesis
routes, such as hard template, soft template, and chemical activation, to achieve high CO2 capture
efficiency at various temperatures and pressure ranges. Fundamental pore formation mechanisms
with different activation routes have been evaluated and explored. Higher porosity alone can be
ineffective without the presence of proper saturated diffusion pathways for CO2 transfer. Therefore, it
is imperative to emphasize more rational multi-hierarchical macro-/meso-/micro-/super-/ultra-pore
design strategies to achieve a higher utilization efficiency of these pores. Moreover, the present
research primarily focuses on powder-based hierarchical porous carbon materials, which may reduce
the efficiency of the capture performance when shaping the powder into pellets or fixed-bed shapes
for applications considered. Therefore, it is imperative to develop a synthesis strategy for pelletized
porous carbon and to explore its mechanistic synthesis route and potential for CO2 capture.

Keywords: porous carbon; micropores; ultra-micropores; biomass; CO2 capture; surface functionalized;
hierarchical structure; super-micropores; chemical activation; template strategy

1. Introduction

The industrialization and urbanization of humans have resulted in a significant in-
crease in CO2 emissions, estimated to be over 36 billion tons at present [1]. As a consequence,
the current CO2 concentration levels in the environment have reached ~420 ppm, compared
to ~280 ppm during preindustrial times (Figure 1) [2,3]. This increase is certain to cause
hugely detrimental effects on human life through climate change. It requires immediate
efforts to adopt a net-zero strategy to mitigate CO2 effects by efficiently capturing CO2
from point sources (such as oil refineries, heavy industries, cement, fossil fuel power plants,
and industrial process plants) or through direct air capture (DAC) [4–6].

Over the years, CO2 capture or separation from flue gases has seen the development
of the chemical absorption technique utilizing liquid alkanolamine solution process (scrub-
bing) on an industrial scale [7,8]. The liquid amine absorption technique has reached an
industrial state-level advancement with considerable CO2 capture capacity (1.5 mmol g−1)
and absorption rate (0.05–0.18 mol m−2 s−1) at a 4–25 vol.% concentration level [7,9,10].
Primary and secondary amines form carbamate with comparatively higher reaction kinet-
ics with CO2, requiring high enthalpy absorption reactions of 80–90 and 70–75 kJ mol−1

CO2, respectively. In the case of tertiary amines, they form bicarbonate with CO2 with
sluggish reaction kinetics, requiring 40–55 kJ mol−1 CO2 absorption enthalpy through a
base-catalyzed hydration mechanism [11–13].
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with sluggish reaction kinetics, requiring 40–55 kJ mol−1 CO2 absorption enthalpy through 
a base-catalyzed hydration mechanism [11–13]. 
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Figure 1. CO2 concentration monitoring by decade (1960~present) by ESRL’s (Earth System Research 
Laboratories) Global Monitoring Laboratory (GML) at Mauna Loa observatory in Hawaii. 

Consequently, solvent regeneration (stripping) requires a huge amount of energy (3–
5 GJ t−1 CO2 captured), leading to large-scale industrial energy consumption and adding 
to the 70% additional cost, which is the main obstacle. However, the acceptable value for 
industrial application is 0.4–0.7 GJ t−1 CO2 [14–16]. Furthermore, the liquid amine absorp-
tion process faces other hurdles, such as liquid amine degradation due to high heating, 
solvent loss, equipment corrosion of reactors (steel/carbon), production of carcinogenic 
toxic products (nitramines, nitrosamines), and the utilization of large amounts of NaOH 
or KOH to restore CO2 absorption capacity of amines, resulting in a secondary pollutant 
to alkaline wastewater [17,18]. 

To address the drawbacks of the liquid amine absorption process mentioned above, 
the physical adsorption technique has become a focal point. CO2 physisorption on porous 
sorbent surfaces provides lower adsorption enthalpy (15–50 kJ mol−1) [19,20]. Conse-
quently, the regeneration of CO2 gas molecules requires lower energy consumption and 
provides a completely clean surface for reusability. Solid adsorbents, such as MOFs 
(metal–organic frameworks), COFs (covalent–organic frameworks), zeolites, and carbon, 
offer alternative options for CO2 sorption from point sources, countering the drawbacks 
of the aqueous liquid amine absorption technique (84 kJ mol−1, USD 45–80 per ton of CO2 
capture) [21]. Compared to the liquid amine absorption technique, solid adsorption offers 
lower heat of adsorption (MOF: 50 kJ mol−1, COF: 30–50 kJ mol−1, zeolites: 30–50 kJ mol−1, 
carbon: 10–35 kJ mol−1) [11,20,22]. Comparing the approximate capital costs/operation and 
maintenance expenses, including abandonment costs, for CO2 capture using polymeric 
membranes, chemical absorption, and physical absorption reveals values of USD 640/290, 
839/365, and 590/271 million, respectively [23–25]. Depending on the specific characteris-
tics and properties (surface area, pore volume, porosity, interconnected pore structure, 
surface functionality, etc.) of the solid adsorbent, an efficient level of capture and separa-
tion from flue gas can be achieved after post-combustion capture [26,27]. 

One of the technical criteria for solid adsorbent capture is the consideration of cap-
ture under dry conditions to ensure a reasonable capture efficiency. However, most of the 
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Consequently, solvent regeneration (stripping) requires a huge amount of energy
(3–5 GJ t−1 CO2 captured), leading to large-scale industrial energy consumption and
adding to the 70% additional cost, which is the main obstacle. However, the acceptable
value for industrial application is 0.4–0.7 GJ t−1 CO2 [14–16]. Furthermore, the liquid
amine absorption process faces other hurdles, such as liquid amine degradation due to
high heating, solvent loss, equipment corrosion of reactors (steel/carbon), production of
carcinogenic toxic products (nitramines, nitrosamines), and the utilization of large amounts
of NaOH or KOH to restore CO2 absorption capacity of amines, resulting in a secondary
pollutant to alkaline wastewater [17,18].

To address the drawbacks of the liquid amine absorption process mentioned above, the
physical adsorption technique has become a focal point. CO2 physisorption on porous sor-
bent surfaces provides lower adsorption enthalpy (15–50 kJ mol−1) [19,20]. Consequently,
the regeneration of CO2 gas molecules requires lower energy consumption and provides a
completely clean surface for reusability. Solid adsorbents, such as MOFs (metal–organic
frameworks), COFs (covalent–organic frameworks), zeolites, and carbon, offer alternative
options for CO2 sorption from point sources, countering the drawbacks of the aqueous
liquid amine absorption technique (84 kJ mol−1, USD 45–80 per ton of CO2 capture) [21].
Compared to the liquid amine absorption technique, solid adsorption offers lower heat
of adsorption (MOF: 50 kJ mol−1, COF: 30–50 kJ mol−1, zeolites: 30–50 kJ mol−1, car-
bon: 10–35 kJ mol−1) [11,20,22]. Comparing the approximate capital costs/operation and
maintenance expenses, including abandonment costs, for CO2 capture using polymeric
membranes, chemical absorption, and physical absorption reveals values of USD 640/290,
839/365, and 590/271 million, respectively [23–25]. Depending on the specific character-
istics and properties (surface area, pore volume, porosity, interconnected pore structure,
surface functionality, etc.) of the solid adsorbent, an efficient level of capture and separation
from flue gas can be achieved after post-combustion capture [26,27].

One of the technical criteria for solid adsorbent capture is the consideration of capture
under dry conditions to ensure a reasonable capture efficiency. However, most of the
post-combustion flue gas remains wet (5–7 vol.% water) at 40–80 ◦C, necessitating an
energy-intensive drying process to remove moisture from the multi-component flue gas
flow [27,28]. Ultimately, removing moisture from the gas flow or drying it backfires in
terms of technical feasibility on an industrial scale. Additionally, wet condition CO2 capture
significantly reduces the efficiency of MOF-, COF-, and zeolite-based solid adsorbents due
to lower hydrothermal stability [27,29]. In comparison, carbon-based materials exhibit
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comparable stability under moisture and thermal conditions due to the structural and
mechanical rigidity of the carbon structure.

Among the solid adsorbents, carbon-based adsorbents are considered promising
candidates for CO2 capture technology due to their abundant sources, low cost, and
scalable preparation process [30]. Additionally, carbon-based materials are known for
their good thermal and chemical stability, low energy regeneration, and ability to maintain
adsorption performance even under high moisture conditions [31,32]. They also offer the
benefit of tunable opportunities for textural properties and surface functionalization [33].

2. Carbon as a Promising Candidate for CO2 Capture Technology

Carbon is considered a promising candidate for CO2 capture technology due to its
capacity to offer a clean surface for reutilization, along with its thermal, mechanical,
chemical, and moisture stability [34]. Its simple preparation strategy and low cost make it
suitable for industrial applications [35].

A large variety of precursor sources, primarily biomass-based, such as rice husk,
coconut shells, shrimp shells, sawdust, microalgae, carrot, olive stones, almond shells, kiwi
peel, sugar beet pulp, palm stone saccharides, and glucose, are available [36]. Different
activation strategies, including chemical methods (using urea, KOH, NaOH, ZnCl2, H3PO4,
K2CO3, H2SO4, HNO3, HCl, H3PO4/KOH, NaOH, ZnCl2, CaCl2, K2CO3/H2O2, and
KMnO4), physical methods (using oxidizing gases like O2, CO2, steam, air, and NH3), and
both hard (using molten salt, eutectic salt, MOF, silica, zeolite) and soft (using organic
precursors like melamine and cyanuric acid) approaches, can be employed to tailor the
pore size and shape of the carbon structure [21,37].

Various templating methods, including gas templates, hard templates, soft templates,
and chemical activation, are employed to design ultra-super-micropores for low-pressure
CO2 capture and macro–mesopores for high-pressure CO2 capture [1]. Heteroatom doping
on carbon and surface modification induces hetero-surface functionalized groups on the
carbon structure to control surface chemistry [38,39]. CO2 molecules, being of acidic nature
and possessing a quadrupole moment, have a competitive advantage over other gases for
surface sorption due to the surface chemistry. Essentially, weak van der Waals forces induce
the physisorption of CO2 molecules on the surface, which can be intensified by functional
groups, such as acid–base interactions, H-bonds, or electrostatic interactions. As a result,
this leads to a higher adsorption capacity for CO2 compared to other gas mixtures, making
it more selective towards CO2 molecules [40,41].

During carbonization, a higher degree of aromaticity imparts a hydrophobic nature
to carbon, allowing it to function effectively under hydrated conditions [42]. However,
while heteroatom doping reduces polyaromatic condensation and reduce mechanical and
chemical stability, it is essential to seek a rational design strategy for synthesizing carbon
materials [43,44].

2.1. Carbon Products Preparation Mechanism

A carbon synthesis technique utilizes various technical processes such as pyrolysis
(400–1100 ◦C), sol–gel, and hydrothermal processes [45]. Hydrothermal technology utilizes
water as a medium in a closed reactor vessel to undergo processes such as hydrolysis,
dehydration, decarboxylation, concentration polymerization, and aromatization [46]. It
aligns with the principles of thermochemical conversion, making it a sustainable and
green process similar to the natural formation of carbon. Hydrothermal methods offer the
opportunity to produce various initial intermediate products that can later be combined
with the general pyrolysis process, enabling the diversification of morphological and struc-
tural properties [47,48]. Pyrolysis is a thermochemical conversion process where materials
decompose into solid (char), liquid (oil), and gas (syngas) as the temperature increases.
The properties of pyrolysis products depend on various factors, including temperature,
residence time, heating rate, and whether fast or slow pyrolysis is employed. In the con-
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ventional pyrolysis process, a furnace’s heating wall transfers heat to the material’s surface,
resulting in a higher yield of char compared to microwave pyrolysis [49,50].

Fundamental carbon formation mechanisms bear the dehydration, intramolecular con-
densation, decarboxylation, and polymerization for oxygen-containing functional groups
in the different temperature ranges (Figure 2) [1,51]. Various techniques or different sources
are utilized in the formation of different intermediate products to provide the different
characteristic carbon products. Initially, various sources or technical processes yield di-
verse intermediate products through dehydration, intramolecular condensation, or initial
polymerization, resulting in an intermediate structural framework [52]. With increasing
temperature, aromatic polycondensation steps occur, generating multiple gas components
like NH3, CH4, CO, CO2, H2, water vapor, or structural degradation, which create struc-
tural, internal, and surface pores. Additionally, pressure modifies or influences the shape
of the carbon [53,54].
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2.2. Factors Influencing CO2 Adsorption on the Carbon Surface

The number of CO2 molecules adsorbed on the surface depends on several factors, in-
cluding surface area, cumulative pore volume, pore sizes, pore interconnectivity, pore shape,
and surface chemistry [55]. The low-pressure or high-pressure capture efficiency depends
on the textural properties of the adsorbents. It is suggested that low-pressure conditions are
overwhelmed by ultra-micropores (0.35–0.70 nm) to super-micropores (0.70–0.90 nm). At
high-pressure conditions, pores size greater than micropores is more favorable [56,57]. Also,
it is important to consider the competition among the different gases (CO2, N2, NOx, SO2,
H2O vapor, etc.) to be separated or captured at a point source [58]. The kinetic diameter
of CO2 (0.33 nm) is smaller than the kinetic diameters of nitrogen (0.36 nm) and oxygen
(0.34 nm); CO2 adsorption favors the smaller than micro-size pores (<2 nm), while N2
adsorption is more favorable at mesoporous volumes (>2 nm) [59]. Surface chemistry of the
adsorbents influences the CO2 sorption amounts, selectivity, dynamic kinetics due to CO2
molecule polarizability, and quadrupole nature. A CO2 molecule has higher polarizability
(26.3 × 10−25 cm3) and quadrupole moment (13.4 × 10−40 C m2) in comparison to a N2
molecule of 17.6 × 10−25 cm3 and 4.7 × 10−40 C m2 [10,20,26].

CO2 physisorption on a carbon surface occurs due to the weak van der Waals force.
Heteroatoms or heteroatom-containing functional groups influence the CO2 adsorption on
the surface of carbon, leading to more adsorption potential, depending on the types of in-
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teractions (H-bond, electrostatic interaction, Lewis acid–base interaction) (Figure 3) [60–62].
There is still an ongoing debate about which types of interactions mainly occur or which
forces are important in the CO2 physisorption on the carbon surface. It can be assumed
that higher polarizability and quadrupole moment of CO2 molecules are more favorable
for CO2 molecules to separate from the other gases (N2, O2, H2, CH4, etc.) [63].
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3. Strategies for Modifying Carbon Structures

A three-dimensional interconnected porous carbon synthesis strategy has been de-
veloped over the years to enhance the surface area, porosity, and gas diffusion rate of
the components [37]. Various activation techniques for the carbon structure have been
explored, including chemical activation, soft and hard template methods, and in situ metal
ion activation strategies. The basic synthesis strategy, challenges, and minute factors that
influence the structure of carbon are discussed in the following section.

3.1. Chemical Activation

To produce highly porous and efficient carbon products, chemical activation of the
carbon during carbonization has shown a potential utilization technique [65]. In the
process, carbon precursors or carbon sources are simply mixed with an activating agent,
and carbonization proceeds through different temperatures (350~800 ◦C) to achieve a
porous carbon. Different acidic (e.g., HCl, FeCl3, ZnCl2, H3PO4, H2SO4, and HNO3),
alkaline (e.g., KOH, NaOH, CaCO3 and K2CO3), or oxidant substances (e.g., H2O2, and
KMnO4) have previously been utilized as activating agents to activate the carbon during
carbonization [66–68]. Utilizing such an activating agent provides a very effective way to
reduce the carbonization temperature and induce porosity or shape modification during
the formation process. However, it cannot omit the extra step of removing the corrosive
chemical from the structure using water.

Different groups have tried to determine the activation mechanism, nearly in complete
agreement. Most commonly, KOH was used as the chemical activation agent, being a
strong base [65,69]. Most groups predict the carbonization reaction as Equation (1) [70]:

2C + 6KOH→ 2K2CO3 + 2K+ + 3H2, (1)
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Afterward, some groups have shown that volatile groups from the precursor (CO,
CO2, and H2O), upon heating, react with KOH and form K2CO3:

2KOH + CO2 → 2K2CO3 + H2O, (2)

The metallic potassium (K), resulting from the reaction of the K2CO3 with the carbon
species, as well as its spatial positioning or penetration into the internal structure of carbon,
promotes porosity. This internal porosity, upon removal during the washing step, provides
the internal pore network:

K2CO3 + 2C→ 2K + 3CO, (3)

A proper ratio of precursors to activating agents influences the textural, mechanical,
and structural properties of the carbon products. An optimally high ratio of the activating
agent (approximately 4) enhances the porosity of the carbon by intercalating its structure
and resulting in expansion of the pores. However, with a higher ratio (>6), the excessive
enhancement breaks the pore walls and reduces the overall porosity. A carbon nanosphere
was hydrothermally prepared from glucose [71]. This process controlled the spherical
shape of the precursor. Subsequent heat treatment and activation using a KOH solution
were employed to introduce finely tuned ultra-micropores into the structure (Figure 4).
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3.2. Physical Activation

Physical activation is environmentally friendly, cheaper, simpler and requires no
chemical agent. The gas template controls the textural properties [72,73]. During pyrolysis
(300–1100 ◦C), degradation products generate different kinds of gas, such as CO2, CO,
CH4, NO, H2O, and NH3, depending on the precursor’s source [37]. Sometimes, external
sources of media like CO2, NH3, steam, He, Ar, air, or a mixture of gases (binary mixture)
are utilized to activate the carbon surface (Figure 5) [74–76]. Several efforts have been
made to increase the pore volume and surface area by utilizing external steam during
pyrolysis [77]. Steam, along with the pyrolysis temperature, interacts with carbon to
produce C(O) and H2, which are sources of various activated gases such as CO, CO2, and
CH4. Consequently, this process promotes the formation of new pores and the expansion



Surfaces 2023, 6 322

of pore sizes (Figure 5) [64,78]. The steam activation mechanism of the carbon surface is
described in the following reactions [36,79]:

C + H2O→ C(O) + H2, (4)

C(O)→ CO + C, (5)

CO + H2O→ CO2 + H2, (6)

C + 2H2O→ CO2 + 2H2, (7)

C + CO2 → 2CO, (8)

C + 2H2 → CH4, (9)

CH4 + H2O→ CO + 3H2, (10)

a.Os 

d. 5s 

(1) Volatiles release and react with 

atmosphere. 

(2) Steam and oxygen diffuse into and reaction 

with carbon te>.iure. 

Figure 5. Schematic diagram showing the mechanisms of pore formation within the carbon structure
during the physical activation process; (a–d) activation reaction time: 0, 1, 3, and 5 s, consecutively [78].
Adapted with permission from ref., copyright (2019) Elsevier Ltd.

Jung-Heo showed that steam activation of carbon from cellulose fiber expanded the
existing ultra-micropores and produced additional ultra-micropores (Figure 6) [80]. The
graphitic structure shattered due to the activation process, resulting in the size of the
pores being larger than 2 nm. The activation process increased the specific surface area
and pore volume to 1018 m2 g−1 and 0.43 cm3 g−1 from 452 m2 g−1 and 0.199 cm3 g−1,
respectively. Consequently, the CO2 capture performance reached 4.41 mmol g−1 at 0 ◦C,
1 bar (1.21 mmol g−1 at 25 ◦C, 15% CO2) compared to without activation, which was
3.18 mmol g−1 at 0 ◦C, 1 bar [80].
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Air activation is one of the efficient ways to simultaneously produce micropores and
mesopores on the carbon surface while inducing O-containing functional groups such as
C=O, C-O, -OH, and -COOH [81,82]. It is important to choose the activation time carefully.
Initially, micropore formation on the carbon surface occurs predominantly, and, over time,
it leads to an increase in mesopores due to the destruction of micropores [81,83]. The air
activation mechanism of the carbon surface is described in the following reactions [84]:

2C + O2 (g)→ 2C(O), (11)

C + O2 (g)→ CO2, (12)

C(O) + O2 (g)→ CO (g) + CO2, (13)

In comparison to chemical activation, physical activation has less control over porosity
development than chemical activation. The flow rate of N2 or other gases influences the
textural properties of the carbonized products (10–200 mL min−1). During the carboniza-
tion process, the gas template of the degradation products provides the basic porosity and
shapes of the carbonized products [85]. The faster or slower removal of the gas template
depends on the gas flow rate of the carbonization medium. The effects of the flow rate
on textural properties and shapes need to be explored. Additionally, the activation time
(0.5~72 h) plays a crucial role in determining the textural properties, as higher activation
time and degree promote higher porosity in the structure. At the same time, the porosity
range differs based on the activation time or temperature range of carbonization. Smaller
pores (ultra-to-micropores, ultra-pores: 0.35–0.70 nm, super-micropores: 0.70–0.90 nm,
micropores: 0.90–2 nm) tend to shift to the range of higher pores with increasing tem-
perature due to pore wall breakages that induce the conversion of super-micropores to
mesopores [34,85].

3.3. Metal Ion Activation

The chemical and physical activation strategies are highly efficient for microporous
carbon synthesis. Pores smaller than 1 nm (ultra-to-super-micropores) are particularly
effective for low pressure CO2 uptake. Several research efforts have focused on the single-
ion activation route to produce carbon with ultra-micropores in the structure [86]. In this
process, monodispersed alkali metal ions (Li+, K+, Na+, Rb+, Cs+) are introduced into the
carbon precursors of phenolic resin through a reaction between alkali hydroxide and the
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acidic groups of the resin during the solution process [87]. Monodispersed metal ions
induce ultra-micropores in the carbon structure and provide the opportunity to tune pore
sizes at the angstrom or sub-angstrom level (0.6–0.76 nm), depending on their individual
activation strength and metal ionic size. The technique of metal ion activation has made
significant progress through the in situ homogeneous activation process. In this method,
metal salts are combined with organic precursors, such as alkali metal salts of carboxylic
phenolic resin, through a hydrothermal process to produce xerogel. Under a temperature
of 400 ◦C, these compounds undergo decomposition, resulting in the creation of metal
carbonate (M2CO3), accompanied by the release of water vapor and CO2 gas, which act
as templates. Moreover, the subsequent thermal decomposition of the metal carbonate
(M2CO3) facilitates the generation of metal oxide (M2O) through a redox reaction between
the metal carbonate (M2CO3) and carbon. This reaction is depicted by the equation M2CO3
+ C→M2O + 2CO.

Furthermore, the metal oxide (M2O) significantly etches the carbon framework through
a vigorous redox interaction between the metal oxide and the carbon framework. This
is illustrated by the equation M2O + C → 2M + CO. As a result, the produced metallic
component intercalates the crystalline graphitic lattice of the carbon. Consequently, this
process leads to the expansion of the interlayer spacing within the lattice, thereby stabilizing
the carbon structure. Subsequent to the washing process, in which the metallic portion is
removed by water, the structure no longer reverts to its previous nonporous state. Instead,
it retains the expanded lattice configuration, resulting in nanopores smaller than 1 nm. The
precise size of these pores (spacing) can be finely tuned based on the dimensions of the metal
ion, allowing for adjustment from Li+ to Cs+. Zhou et al. produced N-doped, uniformly
ultra-microporous carbon material of approximately 0.5 nm using a metal activation process
on K+-exchanged meta-aminophenol–formaldehyde resin [86]. This process led to a notable
CO2 capture performance of 1.67 mmol g−1 under low pressure (0.15 bar, 25 ◦C).

3.4. Hard Template Activation

A hard template is utilized to associate with gaseous and solid carbon structures
during high-temperature pyrolysis by duplicating or molecular printing on the surface of
the template structure. The carbon can maintain its microstructure during the activation
treatment process. Hard templates such as zeolites (zeolite x/y), porous metals (Zn–Co,
Cu–Ni, Ni–Mn, etc.), metal powder (Ni/Cu powder), metal foam (Ni, Cu, Fe, etc.), silica
(silica sphere, SBA-15, MCM-48), and MOFs (MOF-5, ZIF-8) have been explored to produce
interconnected porous carbon structures [88,89]. Hard templates can provide effective
and stable effects under confined conditions in spaces. In general, zeolites (0.1–10 nm),
MOFs (0.1–50 nm), silica (10–1000 nm), salts (1 nm–10 µm), porous metals (100 nm–10 µm),
metal powder (100 nm–1 µm), and metal foam (1 µm–10 µm) are utilized to infuse various
ranges of porosity into the carbon structure [89]. Recently, Joseph et al. successfully syn-
thesized interconnected hierarchical carbon by utilizing Coca-Cola, a soft drink, combined
with the hard template KIT-6 (mesoporous silica nanoparticles) and activating the carbon
using ZnCl2 [90]. This method resulted in an impressively high specific surface area of
2003 m2 g−1. In this process, the hard template acts as the source of the mesoporous struc-
ture, while ZnCl2 plays a pivotal role in enhancing micropores within the carbon structure
and reducing the number of mesopores. However, an excessive use of the activation agent
ZnCl2 can potentially lead to damage in both mesopore and micropore structures (Figure 7).
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Figure 7. Diagram illustrating the synthesis process of interconnected hierarchical carbon using the
KIT-6 hard template and ZnCl2 activation. [90]. Adapted with permission from ref., copyright (2023)
Elsevier Ltd.

A molten salt, or a eutectic mixture of salts such as LiBr/KBr (348 ◦C), LiI/KI (275 ◦C),
LiCl/KCl (353 ◦C), is utilized as a high-temperature solvent to synthesize porous carbon
(Figure 8) [52,91–93]. In the synthesis process, the solvent intermediate products are
carbonized under diluted conditions, resembling water under hydrothermal conditions,
providing the opportunity for the formation of structured carbon [94]. Carbohydrate
polymerization in the presence of strongly interacting metal ionic species creates nanopores
in the carbon material, and the pore size can be tuned depending on the ionic species or the
precursor-to-salt ratio. A proper choice of cation and counter anion controls the pore size.
Additionally, the miscibility in the reaction medium with intermediate products, depending
on their polarizability, influences the textural properties [95].
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Figure 8. Hierarchical porous carbon synthesis from glucose utilizing LiBr/KBr molten salt and an
organic reactive template of melamine–cyanuric acid complex [1]. Adapted with permission from
ref., copyright (2023) Springer Nature.

In situ hard salt templates of NaCl, ZnCl2, Na2CO3, and CaCO3 are utilized to enable
large-scale production of carbon from glucose, sucrose, and biomass. This is due to their
cheap and simple removal process through water washing steps. The silica and zeolite
templates require HF or NaOH, while metal powder, porous metal, metal foam, and
MOFs need an acidic solution for removal after shaping the carbon structure. Such types
of aggressive removal steps sometimes damage the objective pores’ structure to some
extent [89,96].

Overall, hard template carbon offers greater mechanical stability and robustness when
compared to reactive or soft template synthesis carbon. This type of carbon displays
elevated surface area and structural integrity. Moreover, it enables the production of
various ordered structures, including thin-walled carbon layers, sieving-specific pore sizes,
ordered mesoporous carbon, and close-packed ordered hexagonal or cubic mesoporous
carbon. It also leads to carbon with bimodal porosity [97,98]. Nonetheless, the utilization
of hard-templated carbon comes with notable drawbacks. A significant challenge involves
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the necessity of eliminating the hard template from the carbon through etching, achieved
by an aggressive acid removal process like, when using a silica template, washing with
HF or HCl. This extra step consumes time and resources. Additionally, hard-templated
carbon is constrained in terms of pore size range, which becomes critical when aiming for a
multi-hierarchical pore structure [97,99,100]. It is worth noting that even a high-surface-area
carbon product lacking multi-hierarchical porosity may not deliver efficient gas capture
performance [1,101]

3.5. Soft Template Activation

A soft template, derived from an organic co-polymer along with carbon precursors,
is employed in the preparation of meso-/macroporous carbon products [102]. This soft
template results in a supramolecular arrangement, combining carbon precursors, block co-
polymers, and polymers to form a mesophase. The stability of this mesophase is achieved
through either a catalytic or thermal treatment. Subsequent thermal decomposition re-
moves the template, inducing porosity in the carbon structure. To create the mesophase,
a carbon donor or carbon precursor is combined with a structure-directing organic or
co-polymeric agent. Both components are necessary for mesophase formation. It is crucial
for the template to withstand the thermal carbonization process while also facilitating the
crosslinking of carbon with polymers [102–104].

The size and morphology of carbon mesopores can be readily controlled through
the implementation of soft templating effects. The creation of supramolecular products,
assembled through molecular cooperation, can be regulated in terms of their size, shape,
and orientation by adjusting the ratio of carbon donors to directing co-polymers [105].
Additionally, factors such as the solubility of components in the solution, the solution
ratio, and polarizability effects play crucial roles in the modification of soft templating
products [106,107].

The mesophase structure primarily forms through hydrogen bonding between tem-
plate polymers and carbon precursors. For instance, the hydrogen-bonded molecular
cooperative assembled complex of melamine and cyanuric acid (MCA), along with various
other complexes like MCA and glucose (MG), Pluronic F108, Pluronic F127, P123, and ZIF-8,
contribute to the formation of the mesophase structure through H-bonding [1,108,109].
Subsequent thermal treatment leads to the compaction and shrinkage of materials, resulting
in the isotropic formation of mesopores ranging from 3 to 30 nm in size. The template is
either partially or completely removed at temperatures between 300 and 400 ◦C. Simulta-
neously, the carbonization process also involves the aromatic polycondensation of carbon
products [1,110].

4. Significant Role of Surface Functional Groups in Porous Carbon

The surface functional group on the carbon structure plays a critical role in CO2 capture
technology. Pure carbon bears adsorption energy of 6.6 kJ mol−1 for CO2, which is not
sufficient to capture CO2 molecules and separate them from a mixture of gases (flue gas),
even though CO2 molecules have a higher quadrupole moment. This becomes particularly
important at low pressure or during direct air capture, where higher adsorption energy is
required to effectively compete with other gases and moisture [101,111]. It is essential to
introduce exposed heteroatom functional groups (such as N, B, O, P, S, etc.) on the surfaces
of micro-/meso-/macropores of the carbon to enhance the amount of CO2 captured and
the kinetics [22,112–114].

Different precursors or mixtures of hetero-precursors are utilized to prepare and
induce various surface functional groups on the carbon [115,116]. Built-in functional
groups efficiently improve the adsorption of CO2 molecules through acid–base interactions,
H-bond interactions, or electrostatic quadrupole interactions. Numerical quantification
shows that O-containing, N-containing, and N-/O-co-modified functional groups on carbon
improve the CO2 adsorption energy to −14.3 to −22.6 kJ mol−1, −22.1 to −27.1 kJ mol−1,
and −28.9 kJ mol−1, respectively [117–119].
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Heteroatom doping or impregnation on the carbon structure influences its struc-
tural and mechanical stability. Heteroatom insertion counterbalances the structural or
mechanical properties of the carbon by reducing the degree of polyaromatic condensa-
tion during carbonization at over 600 ◦C and destroying the pore structure, which poses
challenges for maintaining the chemical, mechanical, and thermal stability of the carbon
framework [1,120].

Xing et al. demonstrated the importance of H-bonding in N-doped activated car-
bon [31]. The CO2 adsorption capacity is roughly proportional to the N content of the
activated carbon. The presence of the N atom on the carbon lattice modifies the electronic
state of the hydrogen atom in the graphene layer, intensifying the interaction between the
CO2 molecules and the carbon surface. The affinity for CO2 molecules through H-bonding
is measured by the binding energy ∆E (kJ mol−1), where a higher value of binding energy
denotes a stronger affinity for CO2 molecules. A CO2 molecule’s binding energy without
N-containing carbon is 1.26 kJ mol−1, which is much lower than the average binding energy
of N-containing carbon, which is 7.84 kJ mol−1. The binding energies with NH2, pyridinic
N, and CH are 11.2, 10.5, and 9.1 kJ mol−1, respectively. The findings of this study cannot
correlate with or explain the traditional acid–base interaction of CO2 molecules with carbon
surfaces [31].

Wu et al., through DFT analysis, compared the importance of configuration types
of N and O atoms in the carbon structure for the CO2 physisorption mechanism on the
carbon surface at the molecular level [118]; the pyridinic carbon surface shows the highest
attraction to CO2 molecules (Eads = −21.4 kJ mol−1) (Figure 9). Additionally, they explored
O doping on the carbon structure, which enhances the CO2 adsorption energy (Eads = −9.7
to –17.0 kJ mol−1) compared to bare carbon (Eads = −5.4 kJ mol−1). They also observed
a charge density difference with and without the N/O functional group, indicating no
significant electron transfer between a CO2 molecule and a carbon surface, which establishes
physisorption as the adsorption nature of functionalized carbon.
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Figure 9. (a) CO2 adsorption energy on carbon surfaces with N/O functional groups. (b) Charge
density difference of CO2 molecules on different carbon surfaces. C = gray; H = white; O = red;
N = blue. Reprinted (adapted) with permission from [118] {Ind. Eng. Chem. Res. 2020, 59, 31,
14055–14063}. Copyright (2020) American Chemical Society.
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Bari et al. investigated the precise role of surface functional groups in CO2 sorption
on the carbon surface using the CO2 temperature-programmed desorption profile (CO2-
TPD) [1]. Initially, the study adsorbed CO2 at 0.2 bar and desorbed all physiosorbed CO2
from the porous carbon by purging with helium gas for an hour. The experiment then
compared the roles of N- and O-containing functional groups in the temperature range of
50–400 ◦C through temperature-programmed desorption (Figure 10).
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Figure 10. CO2-TPD profiles of carbon samples (a) without or (b) with CO2 pre-adsorption, (c) de-
convolution of CO2-TPD profile of MG-Br-600 with CO2 pre-adsorption, and (d) multi-cycle pro-
files of CO2-TPD results of MG-Br-600 [1]. Adapted with permission from ref., copyright (2023)
Springer Nature.

N-containing functional groups (pyridinic N, pyrrolic N, graphitic N, and oxidized
N) in the carbon desorb approximately 24% of CO2 within the temperature range of
60–180 ◦C due to weak intermolecular interactions such as hydrogen bonding, acid–amine,
or electrostatic interactions. They also demonstrate that O-containing functional groups
(C-OH, (CO)OR, R = H, C) act as active sites for CO2 uptake by forming bicarbonate,
carbamic acid, and carbamate due to strong chemical bonds (~100 kJ mol−1) [121]. Such
chemisorbed CO2 is desorbed at temperatures above 200 ◦C [122–124].

Jianfei et al. successfully synthesized N- and P-co-doped porous carbon by employing
chitosan aerogel, phytic acid, and dicyandiamide as precursor materials. Subsequently,
they activated the carbon using NaNO3, thereby circumventing the need for the utilization
of harsh alkalis like NaOH or KOH (Figure 11) [125]. This innovative method yielded
an impressive CO2 capture performance of 5.31 mmol g−1 at a pressure of 1 bar and a
temperature of 25 ◦C. Notably, when examining the carbon sample lacking P doping, a CO2
capture capacity of 1.89 mmol g−1 was observed at 1 bar and 25 ◦C. These results strongly
suggest that the synergistic interaction between N- and P-doping induces modifications in
the surface chemistry, consequently augmenting the CO2 capture performance [125].
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Figure 11. Schematic diagram of synthesis of phytic acid–induced self–assembled chitosan gel-
derived N—,P–co–doped porous carbon [125]. Adapted with permission from ref., copyright (2023)
Elsevier Ltd.

Similarly, Davood et al. conducted a study involving the incorporation of various
heteroatoms (B, N, P, S) into activated porous carbon to enhance CO2 capture perfor-
mance [126]. A comparison was made among these elements in terms of their impact.
Among the considered elements (B, N, P, and S), phosphorus (P)-doping exhibited the
highest efficiency in enhancing CO2 capture, yielding an uptake of 7.13 mmol g−1 at 1 bar
and 20 ◦C (Figure 12a). In this context, it is worth noting that the carbon atom (C) has a
higher electronegativity (2.5) than the phosphorus (P) atom (2.1), which stands in contrast
to the situation in C–N interactions, where the nitrogen (N) atom possesses an electronega-
tivity of 3.0. This discrepancy results in the phosphorus atom displaying a relatively more
positive electrostatic charge, while the carbon atom withdraws bonding electrons. Simulta-
neously, due to the larger atomic radius of phosphorus, the graphene structure of carbon
experiences more significant distortion upon interaction. The distribution of the highest
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) is
predominantly centered around the phosphorus atom. This arrangement greatly facilitates
Lewis acid–base interactions with CO2 molecules, thereby contributing significantly to the
overall CO2 capture performance [126].

A hydrochar-based carbon material was synthesized through the combination of
glucose and ethylene diamine, and it exhibited efficient CO2 capture performance compared
to carbon derived from urea activation by KOH and carbon derived from urea activation
by ZIF8, specifically in the low-pressure range of 0 to 1 bar (Figure 12b) [127]. To assess the
influence of pore structure and chemical properties on CO2 adsorption capacity, a machine
learning approach was employed using a dataset comprising 1594 CO2 adsorption data
points. The findings of the study highlight that, under low-pressure conditions (0.1–1 bar),
ultra-micropores and carbon-containing nitrogen (N) functional groups have the most
significant impact on CO2 capture performance (Figure 12c,d). As the pore size increases,
the amount of CO2 adsorption decreases, as smaller pore sizes provide a greater likelihood
of interaction between the pore walls and CO2 molecules. Notably, the machine learning
outcomes emphasize that pore sizes smaller than 0.7 nm play a critical role in capturing CO2
at 1 bar. Regarding functional groups, N-containing groups such as pyridinic N, pyrrolic
N, and quaternary N exhibit substantial effects on CO2 uptake, surpassing the effects of
O-containing functional groups like hydroxyls, carboxylic acids, and ketones [127].
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adsorption isotherms of different oxygen and nitrogen groups with 0.5 nm pore size at 25 ◦C [127].
Adapted with permission from refs., copyright (2023) Elsevier Ltd.

5. Envisioning Future Research Prospects and Forging a Focused Strategy

It is interesting to note that, until now, the development of multi-hierarchical porous
carbon has mainly focused on powder-based highly efficient carbon products (Table 1).

Table 1. Performance comparison of CO2 uptake, kinetics, heat of adsorption, and selectivity in
carbon materials from different sources and under various modification processes for carbon capture.

Activation Process Carbon Materials Uptake (1 bar)
[mmol g−1]

Kinetics/Heat of Adsorption
(Qst)

[kJ mol−1]

Selectivity
CO2/N2 (15:85) Ref.

MS/organic template
N-/O-rich

multi-hierarchical
porous C

3.8 (0 ◦C),
2.9 (25 ◦C)

Kinetics
(Initial kpi,

0.2 mmol g−1 min−0.5)
26

43 (25 ◦C),
31 (0 ◦C) [1]

Activation free C (spherical) 2.9 (25 ◦C),
4 (0 ◦C) 27.5–29.3 CO2/N2 (15/85)

30 (25 ◦C) [128]

Template free B-/N-co-doped C 2.1 (30 ◦C) 28 – [129]

Chemical activation C from industrial
biomass

4.2 (25 ◦C),
6.6 (0 ◦C),

1.3 (0.15 bar)
34–18 27 [130]

Chemical activation Defluorinated porous
C

5.0 (25 ◦C),
8.8 (0 ◦C) 27.3 (zero coverage) 23 (25 ◦C),

22 (0 ◦C) [42]
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Table 1. Cont.

Activation Process Carbon Materials Uptake (1 bar)
[mmol g−1]

Kinetics/Heat of Adsorption
(Qst)

[kJ mol−1]

Selectivity
CO2/N2 (15:85) Ref.

Template free N-containing C
(PAN) 2.4 (25 ◦C) – Simulated flue gas CO2/N2

(10/90) 0.8 mmol g−1 (25 ◦C) [131]

Chemical activation N-containing porous
C

3.7 (25 ◦C),
6.2 (0 ◦C),
3.2 (0 ◦C)

15–36 18 kJ mol–1 (25 ◦C)
129 kJ mol–1 (25 ◦C)

[132]

Air activation N-containing porous
C fiber 2.2 (25 ◦C) 26.6–30.8 183 [133]

Template free Nanoporous C 2.7 (25 ◦C),
4.0 (0 ◦C) 31.5 30 [134]

Chemical activation N-containing porous
C fiber

5.0 (25 ◦C),
1.5 (0.15 bar) 24.6–25.5 24 [135]

Silica template Porous C 2.2 (25 ◦C) 31.8 – [136]

Chemical activation Porous N-containing
C

2.7 (25 ◦C),
3.8 (25 ◦C) ~36 CO2/N2 (10/90) 134 [137]

Freeze
drying/plasma

treatment

N-/O-containing
porous C 0.9 (30 ◦C) – 15 [118]

Ice/silica/CO2
templating

N-/O-containing
porous C 3.7 (25 ◦C) – – [138]

Chemical activation
Polybenzooxazine-

based porous
C

8.4 (25 ◦C) 32–35
CO2/N2 (10/90)

25 (25 ◦C),
34 (0 ◦C)

[139]

Hard template N-containing carbon
nitride

2.0 (25 ◦C),
2.5 (0 ◦C) – - [140]

Template free
Ionic

liquid/graphene
aerogel

0.2 (0 ◦C) –
CO2/CH4 (ideal selectivity)

120 (25 ◦C),
1 mbar

[141]

Metal ion activation N-containing porous
C nanosheet 2.5 (25 ◦C) – 17.5 (25 ◦C) [142]

Hard template Porous carbon from
MOF ~2.5 (27 ◦C) – – [143]

Salt template N-containing C 3.3 (25 ◦C) —- - [144]

Template free N-containing C
monolith

3.3 (25 ◦C),
5 (0 ◦C) ~20

CO2/N2 (14/86)
16 min breakthrough time

(25 ◦C)
[26]

Chemical activation N-containing porous
C

4.0 (25 ◦C),
6.0 (0 ◦C) ~25 CO2/N2 (10/90)

19 (25 ◦C) [145]

Hard template N-based porous
polymer

1.0 (25 ◦C),
1.6 (0 ◦C) – 63 (25 ◦C, 1 bar) [146]

Abbreviations: Carbon is denoted as C and Molten salt as MS in the Table.

However, for practical industrial-scale applications, it is necessary to shape the powder
into pellets [147]. Achieving a well-defined fixed shape and particle size before practical
application requires additional fabrication steps, such as extrusion, granulation, pressing,
and binder inclusion [148].

After shaping the powder into fixed pellets for practical use, there is a high concern
for pressure drops across the reactor bed, which can limit mass and heat transfer [149–152].
Moreover, the inclusion of a binder or other fabrication processes can lead to changes or
reductions in surface area, pore size, and pore volume [153–155]. This can also cause a
significant reduction in the amount of active components and efficient functional activity,
thereby affecting structural and material stability [156,157].

To overcome these drawbacks, research trends require a shift towards a pelletization-
based synthesis strategy as the ultimate solution to obtain well-preserved fixed-shaped and



Surfaces 2023, 6 332

functionally hierarchical porous carbon products [158,159]. However, only a few research
efforts have focused on this approach, and they are still far from achieving practical efficient
performance [160].

It could be assumed that pelletized-state carbonization, rather than powder state
carbonization or pyrolysis, will effectively improve, modify, or influence the morphological
state of carbon products, due to the close contact with the carbon intermediate. It could
also be assumed that the gas template is more aggressively utilized at the molecular level
during the precursor’s carbonization.

Figure 13 shows that, when precursors are carbonized at higher temperatures in pow-
der form, the self-degraded or mass-loss gas template may be able to escape easily from
the pyrolyzed medium. On the other hand, in a close-packed or void-filling state, the
degradation products of the gas template interact more intensely and effectively at the
molecular level, occupying the space left by the mass loss and providing more efficient tex-
tural properties. The proposed synthesis mechanism could reduce the technical complexity
of activation by chemical or secondary physical activation (hard template, soft organic tem-
plate, steam, air, NH3, He, Ar, etc.) processes. Alternatively, it could be combined with the
existing processes to explore new possibilities for obtaining more efficient carbon products.
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Figure 13. A schematic representation comparing powder and fixed-shape state carbonization
strategies for the effective utilization of the gas template from the carbon degradation products.

Different activation processes come with their own set of advantages and disadvan-
tages (Table 2). Achieving a multi-hierarchical porous carbon is crucial when considering
CO2 capture efficiency, selectivity, kinetics, and a wide pressure range (including DAC,
medium, and high pressures). To optimize low-pressure capture efficiency, an abundance
of ultra-to-super-micropores is highly anticipated, while high-pressure scenarios tend to
benefit from the presence of meso-/macropores.

To ensure both swift capture efficiency and effective utilization of ultra-micropores,
it is essential to integrate them harmoniously with meso-/macropores in the overall mor-
phological design or engineering. Furthermore, the inclusion of heteroatom-containing
compositions is paramount in creating an efficient and selective adsorbent, leveraging
surface chemistry. This task is challenging, as it requires the introduction of functional
groups while maintaining a high degree of aromatic condensation within carbon products,
in order to achieve a structurally stable carbon end-product. Combining all necessary
conditions within a single-pot synthesis strategy proves to be a formidable challenge, both
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in terms of attainment and the engineering of an efficient pore structure. Combining metal
ion activation with soft templating and pelletization followed by carbonization in a one-pot
process has the potential to produce multi-hierarchical carbon products.

Table 2. A comparison of the different activation processes.

Carbon Structure Modification Advantages Disadvantages

Chemical activation Provides ultra pores, micropores, lower
activation temperature

Extra steps of washing to remove corrosive
chemicals

Physical activation Provides micro-/meso-/macropores,
readily utilized on carbonization

Cannot provide shaped carbon, higher
activation temperature

Metal ion activation Ultra-to-super-micropores Limited carbon source, extra process of
washing to remove metal

Hard template Mechanical and structural stability,
micro-/mesopores

Extra process to remove template, etching,
time-consuming, can damage carbon structure
due to vigorous acid or base treatment to
remove template

Soft template Self-removal with carbonization,
provides multi-shaped carbon

Only meso-/macroporous carbon synthesis,
template needs to remain stable during
thermal process, template preparation process
requires time, meso-/macropores only

6. Summary

Porous carbon-based materials surpass many limitations and exhibit outstanding CO2
adsorption/desorption capabilities, as well as excellent clean surface cycling durability,
mechanical strength, chemical resistance, and moisture stability. Various fundamental
strategies have been developed to induce the efficient formation of hierarchical porous
carbon products. However, applying different pressure ranges to capture CO2 within
multi-porosity structures poses a challenging task. This is because ultra-/super-micropores
are favorable for low-pressure and low-quantity CO2 adsorption, while meso-/macropores
are more suited for high-pressure conditions.

Additionally, when considering the selectivity of ultra-to-micropores for CO2 adsorp-
tion, the meso-/macropores region competes with other gases. Considering the molecular
sieve effects, even with a higher surface area and a large number of ultra-/super-micropores,
there is an unfortunate limitation in their ability to provide effective adsorption and proper
kinetics due to improper diffusion pathways. Therefore, it becomes essential to devise
a proper and rational design strategy to achieve a multi-hierarchical pore structure en-
compassing macro-/meso-/micro-/super-/ultra-pores. Moreover, the use of heteroatom-
containing sources, along with inappropriate strategies for activation and templating,
hinders the degree of aromatic condensation during carbonization, leading to unbalanced
formation of macro-/mesopores.

The concept of merging soft templates and metal ion activation, alongside the inno-
vative pelletization method, holds the prospect of promising potential across a diverse
spectrum of practical applications (Figure 14). The ability of a soft template to direct the
structure helps in incorporating heteroatoms into the carbon structure from diverse multi-
component precursor sources. This plays a crucial role in maintaining the appropriate
level of carbon polycondensation during the carbonization process, contributing to the
mechanical strength of the structure and facilitating the development of meso- and macrop-
ores. The effectiveness of capturing CO2 and performing low-pressure capture relies on the
presence of ultra-to-super-micropores. Metal ion activation, in this context, facilitates the
efficient creation of these ultra-to-super-micropores within the structure. Additionally, the
challenges related to structural and functional degradation that often arise when shaping
synthesized efficient powder for application can effectively be addressed through the pro-
posed pre-pelletization strategy. It can be inferred that the pre-pelletization strategy makes
effective use of gas templates, which share similarities with the physical activation strategy.



Surfaces 2023, 6 334

This approach holds the potential to provide a solution to the limitations associated with
post-synthesis shaping while preserving the desired structural and functional attributes.
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